• Start
  • Services print
  • MPW & Prototyping print
  • SiGe:C BiCMOS technologies

Low-Volume & Multi-Project Service


IHP offers research partners and customers access to its powerful SiGe:C BiCMOS technologies and special integrated RF modules. 

These technologies are especially suited for applications in the higher GHz bands (e.g. for wireless, broadband, radar). They provide integrated HBTs with cut-off frequencies of up to 500 GHz. 

 

SiGe:C BiCMOS Technologies for MPW & Prototyping:

SG25H3:

A 0.25 µm technology with a set of npn-HBTs ranging from a higher RF performance (fT/fmax= 110/180 GHz) to higher breakdown voltages up to 7 V.

SG25H4:A high performance BiCMOS technology. Process is identical to former SG25H1 technology, only Process Design Kit is new. The bipolar module is based on H1 SiGe:C npn HBT’s with up to 190 GHz transit frequencies and up to 220 GHz oscillation frequencies.

SGB25V:

A cost-effective technology with a set of npn-HBTs up to a breakdown voltage of 7 V.

SG13S:

A high-performance 0.13 µm BiCMOS with npn-HBTs up to fT / fmax= 250/340 GHz, with 3.3 V I/O CMOS and 1.2 V logic CMOS.

SG13G2:

A 0.13 µm BiCMOS technology with much higher bipolar performance of fT/fmax = 300/500 GHz.

 

 

The backend offers 3 (SG13: 5) thin and 2 thick metal layers (TM1: 2 μm, TM2: 3 μm). 

  

A cadence-based mixed signal design kit is available. For high frequency designs an analogue Design Kit in ADS can be used. IHP's reusable blocks and IPs for wireless and broadband are offered to support your designs. 

 

 

There is a schedule for the MPW & Prototyping runs.

The following Modules are available

H3P:

Additional pnp-HBTs with fT/fmax = 90/120 GHz for complementary bipolar applications
(available in SG25H3).

RFMEMS:

This module is an additional option in SG13S and SG13G2 technologies which offers integrated capacitive RFMEMS switch devices for frequencies between 40 GHz to 150 GHz.

LBE:

The Localized Backside Etching module is offered to remove silicon locally to improve passive performance (available in all technologies).

PIC:Additional photonic design layers together with BiCMOS BEOL layers on SOI wafers
(available in SG25H4).

 

Bipolar Section 

 

SG25H3

High Performance

Medium Voltage

High Voltage

PNP H3P module

AE

0.22 x 0.84 µm2

0.22 x 2.24 µm2

0.22 x 2.24 µm2

0.22 x 0.84 µm2

Peak fmax

180 GHz

140 GHz

80 GHz

120 GHz

Peak fT

110 GHz

45 GHz

25 GHz

90 GHz

BVCE0

2.3 V

5 V

>7 V

-2.5 V

BVCB0

6.0 V

15.5 V

21.0 V

-4.0 V

VA

30 V

30 V

30 V

30 V

ß

150

150

150

100

 

 

SG25H4

npn1

npn2

AE

0.21 x 0.84 µm2

0.18 x 0.84 µm²

Peak fmax

190 GHz

220 GHz

Peak fT

190 GHz

180 GHz

BVCE0

1.9 V

1.9 V

BVCB0

4.5 V

5.0 V

VA

40 V

40 V

ß

270

260

 

 

SGB25V

High Performance    

Standard 

High Voltage

AE

0.42 x 0.84 µm2

0.42 x 0.84 µm2    

0.42 x 0.84 µm2

Peak fmax    

95 GHz

90 GHz

70 GHz

Peak fT

75 GHz

45 GHz

25 GHz

BVCE0

2.4 V

4.0 V

7.0 V

BVCB0

>7 V

>15 V

>20 V

VA

>50 V

>80 V

>100 V

ß

190

190

190

 

 

SG13S

npn13P

npn13V

AE

0.12 x 0.48 µm

0.18 x 1.02 µm2

Peak fmax

340 GHz             

165 GHz

Peak fT

250 GHz

45 GHz

BVCE0

1.7 V

3.7 V

BVCB0

5.0 V

15 V

ß

900       

900

 

 

SG13G2

npn13G2

AE

0.07 x 0.90 µm2

Peak fmax

500 GHz

Peak fT

300 GHz

BVCE0

1.7 V

BVCB0

4.8 V

ß

650



CMOS Section

SG25H3/H4*

SG13S***

Core Supply Voltage

2.5 V

3.3 V

1.2 V

nMOS

VTH

0.6 V

0.71 V

0.50 V

IOUT**

540 µA/µm

280 µA/µm

480 µA/µm

IOFF

3 pA/µm

10 pA/µm

500 pA/µm

pMOS

VTH

-0.6 V

-0.61 V

-0.47 V

IOUT

-230 µA/µm

-220 µA/µm

-200 µA/µm

IOFF

-3 pA/µm

-10 pA/µm

-500 pA/µm

    * Parameters for SGB25V are similar                        
  ** @ VG = 2.5 V
*** Parameters for SG13G2 have to be defined


RF MEMS Switch module

 

Actuation voltage   

60 V
(Pull-In ~50 V)

Con/Coff

> 10

Switch time

< 10 µs

Isolation*

< 20 dB

Insertion loss*

< 1dB

*@60 GHz


Passive Section
 

SG25H3/H4

SGB25V

SG13S

MIM Capacitor

1 fF/µm2

1 fF/µm2

1.5 fF/µm2

N+ Poly Resistor

210 Ω/ߛ

210 Ω/ߛ

-

P+ Poly Resistor

280 Ω/ߛ

310 Ω/ߛ

250 Ω/ߛ

High Poly Resistor

1600 Ω/ߛ       

2000 Ω/ߛ   

1300 Ω/ߛ

Varactor Cmax/Cmin   

3

tbd.

tbd.

Inductor Q@5 GHz

18 (1 nH)

18 (1 nH)

18 (1 nH)

Inductor Q@10 GHz

20 (1 nH)

20 (1 nH)

20 (1 nH)

Inductor Q@5 GHz

37 (1 nH)*

37 (1 nH)*

37 (1 nH)*

* with LBE

 

 

Photonic Integrated Circuit Module

  • 2 dopings (p+, n+)
  • Full backend metal stack (3x metal + 2x top metal)
  • Localized backside etching (optional)
     

Etch depth

220 nm

120 nm

70 nm

Waveguide loss

3.5 dB/cm

(Waveguide width =
 450 nm)

3 dB/cm 

(Waveguide width =

 500 nm)

1 dB/cm 

(Waveguide width =
 700 nm)

Smallest feature size

width > 140 nm,

notch/space>180 nm (remaining area is drawn)

 

width > 180 nm,

notch/space > 400 nm

(area being etched is drawn)

 

width > 130 nm,

notch/space > 130 nm

(area being etched is drawn)

 

 

Germanium Photo Diode Building Block

Waveguide stub

Bandwidth > 67 GHz @ Bias = -2V

Responsivity = 0.9 A/W @ Bias = -2V 

GDSII cell

 

 

Mach-Zehnder Modulator Building Block

5 mm phase shifter length

Designed for push-pull operation

Bandwidth ~ 15 GHz

Travelling Wave Electrode Design

Insertion loss (including coupling) ~ 14 dB

Vπ~6V 

GDSII cell

The building and the infrastructure of the IHP were funded by the European Regional Development Fund of the European Union, funds of the Federal Government and also funds of the Federal State of Brandenburg.