• Start
  • Research print
  • Materials for Micro- and Nanoelectronics print
  • Projects print
  • Virtual GaN substrates on Si wafers print
  • Overview

Virtual GaN substrates on Si wafers

Virtual GaN substrates on Si wafers

Integration of functional GaN layers on the mainstream Si technology platform

Objective

The integration of new functional semiconductor layers like Gallium nitride (GaN) on the Si technology platform via heteroepitaxy is in the focus of the project to increase the performance and / or functionality of Silicon-based integrated circuits by future “system-on-chip (SoC)” solutions. Virtual GaN wafers on Si are furthermore of interest as low-cost technology enablers for other applications, e.g. solid state lighting, blue lasers as well as high power electronics. Special emphasize is devoted to the fundamental solid state physics of GaN heteroepitaxy processes.

IHP`s Contribution

IHP materials research department patented together with SILTRONIC AG the integration of functional semiconductor layers (including GaN) via tailored oxide heterostructures on Si substrates. The use of European 3rd generation Synchrotron radiation facilities is a key competence to perform state-of-the-art materials science studies on the nano-scale.

Funding

The project is funded by SILTRONIC AG, ESRF, BESSY II & PETRA III, EU Marie Curie Program

Project Partners

  • Wroclaw University of Technology (Poland)

  • Paul Drude Institute Berlin (Germany)

  • Brandenburg Technical University of Cottbus (Germany)

Selected Publications

[1] "Enhanced ultraviolet GaN photo-detector response on Si(111) via engineered oxide buffers with embedded Y2O3/Si distributed Bragg reflectors", A. Szyszka, L. Lupina, G. Lupina, M. Mazur, M. A. Schubert, P. Storck,

S. B. Thapa and T. Schroeder, Appl. Phys. Lett. 104, 011106 (2014).

[2] "Virtual GaN substrates via Sc2O3/Y2O3 buffers on Si(111): Transmission electron microscopy characterization of growth defects electron microscopy characterization of growth defects" , T. Niermann, D. Zengler, L. Tarnawska,

P. Stork, T. Schroeder and M. Lehmann, J. Appl. Phys. 113, 223501 (2013).

[3] " Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory",

L. Tarnawska, J. Dabrowski, T. Grzela, M. Lehmann, T. Niermann, R. Paszkiewicz, P. Storck and T. Schroeder, J. Appl. Phys. 113, 213507 (2013).

[4] "Zero Lattice Mismatch and Truly Single Crystalline ScN Buffer Layers for GaN Growth on Silicon", L. Lupina,

M. H. Zoellner, T. Niermann, B. Dietrich, G. Capellini, S. B. Thapa, M. Haeberlen, M. Lehmann, P. Storck, T. Schroeder, Appl. Phys. Lett. 107, 201907 (2015).

[5] "Growth of ScN(111) on Sc2O3(111) for GaN integration on Si(111): Experiment and abinitio calculations",

P. Sana, H. Tetzner, J. Dabrowski, L. Lupina, I. Costina, S. B. Thapa, P. Storck, T. Schroeder, and M. H. Zoellner,

J. Appl. Phys. 120, 135103 (2016).

 

 

Das Gebäude und die Infrastruktur des IHP wurden finanziert vom Europäischen Fonds für regionale Entwicklung, von der Bundesregierung und vom Land Brandenburg.