• Start
  • Research print
  • Materials for Micro- and Nanoelectronics print
  • Projects print
  • Virtual GaN substrates on Si wafers print
  • References

Virtual GaN substrates on Si wafers



[1] "Enhanced ultraviolet GaN photo-detector response on Si(111) via engineered oxide buffers with embedded Y2O3/Si distributed Bragg reflectors", A. Szyszka, L. Lupina, G. Lupina, M. Mazur, M. A. Schubert, P. Storck, S. B. Thapa and T. Schroeder, Appl. Phys. Lett. 104, 011106 (2014).

[2] "Virtual GaN substrates via Sc2O3/Y2O3 buffers on Si(111): Transmission electron microscopy characterization of growth defects electron microscopy characterization of growth defects" , T. Niermann, D. Zengler, L. Tarnawska, P. Stork, T. Schroeder and M. Lehmann, J. Appl. Phys. 113, 223501 (2013).

[3] " Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory", L. Tarnawska, J. Dabrowski, T. Grzela, M. Lehmann, T. Niermann, R. Paszkiewicz, P. Storck and T. Schroeder, J. Appl. Phys. 113, 213507 (2013).



[4] L. Tarnawska, P. Zaumseil, M. A. Schubert, S. Okur, U. Ozgur, H. Morkoç, R.  Paszkiewicz, P. Storck, and T. Schroeder, J. Appl. Phys. 111, 073509 (2012).

[5] P. Zaumseil, L. Tarnawska, P. Storck, T. Schroeder, J. Phys. D: Appl. Phys. 44, 315403 (2011).

[6] L. Tarnawska, A. Giussani, P. Zaumseil, M. A. Schubert, R. Paszkiewicz, O. Brandt, P. Storck, and T. Schroeder, J. Appl. Phys. 108, 063502 (2010).

[7] Rainer Waser, Nanoelectronics and Information Technology - Advanced Electronic Materials and Novel Devices 2nd Edition, Wiley VCH, 2005.

[8]Takashi Hori, Gate Dielectrics and MOS ULSI - Principles, Technologies and Applications, Springer Series in Electronics and Photonics Volume 34, edited by I.P. Kaminow, W. Engl and T. Sugano, 1996.

[9] H.R. Huff and D.C. Gilmer, High Dielectric Constant Materials - VLSI MOSFET Applications, Springer Series in Advanced Microelectronics Vol. 16, 2005.

[10] J.D. Cressler (Editor), Silicon Heterostructure Handbook, Taylor & Francis, 2006.



[11] S.F. Fang, K. Adomi, S. Lyer, H. Morkoc, H. Zabel, C. Choi, and N. Otsuka, J. Appl. Phys. Vol. 68, p. R31 (1990).

[12] S. Cristoloveanu, and S.S. Li, Electrical Characterization of Silicon-on-Insulator Materials and Devices, Kluwer Academic Publishers, 1995.

[13] Soitec: http://www.soitec.com.

[14] G. Roelkens, J. v. Campenhout, J. Brouckaert, D. van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassel, X. Letartre, G. Hollinger, J.M. Fedeli, L.D. Cioccio, and C. Lagahe-Blanchard, Materials Today, Vol. 10, p. 37 (2007).

[15] K. Benkendorfer, E. Menard, and J. Carr, Compound Semiconductor, Vol. 13, p. 16 (2007).

[16] M. Meitl , Z. Zhu, V. Kumar, K. Lee, X. Feng, Y. Huang, I. Adesida, R. Nuzzo and J. Rogers, Nature Materials, 5, 33 (2006).

[17] J. Yoon, S. Jo, I. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J. Coleman, U. Paik and J. Rogers, Nature 465, 329 (20 May 2010).

[18] T. Li, M. Mastro and A. Dadgar, III-V compound semiconductors: integration with Silicon- based microelectronics, CRS Press (2011).

Das Gebäude und die Infrastruktur des IHP wurden finanziert vom Europäischen Fonds für regionale Entwicklung, von der Bundesregierung und vom Land Brandenburg.