• Start
  • Research print
  • Materials for Micro- and Nanoelectronics print
  • Projects print
  • Virtual GaN substrates on Si wafers print
  • References

Virtual GaN substrates on Si wafers



[1] "Enhanced ultraviolet GaN photo-detector response on Si(111) via engineered oxide buffers with embedded Y2O3/Si distributed Bragg reflectors", A. Szyszka, L. Lupina, G. Lupina, M. Mazur, M. A. Schubert, P. Storck, S. B. Thapa and T. Schroeder, Appl. Phys. Lett. 104, 011106 (2014).

[2] "Virtual GaN substrates via Sc2O3/Y2O3 buffers on Si(111): Transmission electron microscopy characterization of growth defects electron microscopy characterization of growth defects" , T. Niermann, D. Zengler, L. Tarnawska, P. Stork, T. Schroeder and M. Lehmann, J. Appl. Phys. 113, 223501 (2013).

[3] " Interface science of virtual GaN substrates on Si(111) via Sc2O3/Y2O3 buffers: Experiment and theory", L. Tarnawska, J. Dabrowski, T. Grzela, M. Lehmann, T. Niermann, R. Paszkiewicz, P. Storck and T. Schroeder, J. Appl. Phys. 113, 213507 (2013).



[4] L. Tarnawska, P. Zaumseil, M. A. Schubert, S. Okur, U. Ozgur, H. Morkoç, R.  Paszkiewicz, P. Storck, and T. Schroeder, J. Appl. Phys. 111, 073509 (2012).

[5] P. Zaumseil, L. Tarnawska, P. Storck, T. Schroeder, J. Phys. D: Appl. Phys. 44, 315403 (2011).

[6] L. Tarnawska, A. Giussani, P. Zaumseil, M. A. Schubert, R. Paszkiewicz, O. Brandt, P. Storck, and T. Schroeder, J. Appl. Phys. 108, 063502 (2010).

[7] Rainer Waser, Nanoelectronics and Information Technology - Advanced Electronic Materials and Novel Devices 2nd Edition, Wiley VCH, 2005.

[8]Takashi Hori, Gate Dielectrics and MOS ULSI - Principles, Technologies and Applications, Springer Series in Electronics and Photonics Volume 34, edited by I.P. Kaminow, W. Engl and T. Sugano, 1996.

[9] H.R. Huff and D.C. Gilmer, High Dielectric Constant Materials - VLSI MOSFET Applications, Springer Series in Advanced Microelectronics Vol. 16, 2005.

[10] J.D. Cressler (Editor), Silicon Heterostructure Handbook, Taylor & Francis, 2006.



[11] S.F. Fang, K. Adomi, S. Lyer, H. Morkoc, H. Zabel, C. Choi, and N. Otsuka, J. Appl. Phys. Vol. 68, p. R31 (1990).

[12] S. Cristoloveanu, and S.S. Li, Electrical Characterization of Silicon-on-Insulator Materials and Devices, Kluwer Academic Publishers, 1995.

[13] Soitec: http://www.soitec.com.

[14] G. Roelkens, J. v. Campenhout, J. Brouckaert, D. van Thourhout, R. Baets, P. Rojo Romeo, P. Regreny, A. Kazmierczak, C. Seassel, X. Letartre, G. Hollinger, J.M. Fedeli, L.D. Cioccio, and C. Lagahe-Blanchard, Materials Today, Vol. 10, p. 37 (2007).

[15] K. Benkendorfer, E. Menard, and J. Carr, Compound Semiconductor, Vol. 13, p. 16 (2007).

[16] M. Meitl , Z. Zhu, V. Kumar, K. Lee, X. Feng, Y. Huang, I. Adesida, R. Nuzzo and J. Rogers, Nature Materials, 5, 33 (2006).

[17] J. Yoon, S. Jo, I. Chun, I. Jung, H. Kim, M. Meitl, E. Menard, X. Li, J. Coleman, U. Paik and J. Rogers, Nature 465, 329 (20 May 2010).

[18] T. Li, M. Mastro and A. Dadgar, III-V compound semiconductors: integration with Silicon- based microelectronics, CRS Press (2011).

The building and the infrastructure of the IHP were funded by the European Regional Development Fund of the European Union, funds of the Federal Government and also funds of the Federal State of Brandenburg.