• Start
  • Research print
  • Technology Platform for Wireless and Broadband print
  • Former Projects print
  • MOSAIC

MOSAIC

Monolithic, electro-optical co-integration for the realization of high end sampler ASICs

Objective

Working out the fundamentals of monolithically integrated, optically clocked systems: The jitter of electronically generated clocks and clock distribution structures is a limiting factor for the performance of clocked systems in the GS/s range. Mode-locked lasers generate pulsed light signals which show 1-2 orders of magnitude lower jitter compared to electronic-only approaches. Therefore, the use of a mode-locked laser based clock generation let us expect a strong improvement in the dynamic range of such circuits. The particular goal of this project is the development of monolithically integrated demonstrators proving the jitter improvement when using a mode locked laser as a clock source.

IHP's Contribution

  • Development of waveguide-coupled Ge photodiodes with about 80 GHz optical bandwidth
  • Integration of the Ge photodiodes in the FEOL of IHP`s high-performance SiGe BiCMOS process SG25H1 to form a photonic BiCMOS technology
  • Stabilization of the new photonic BiCMOS process
  • Realization of monolithic integrated optoelectronic circuits with the partner Rohde & Schwarz under use of the new photonic BiCMOS process
  • Development, provision, and actualization of an optoelectronic process design kit
  • Enabling on-wafer measuring of essential parameters of optical and opto-electronic components

Funding

Project is funded by the BMBF with 0.66 Mill € (IHP portion, over 3 years)

Project Partners

  • Rohde & Schwarz GmBH & Co. KG
  • Uni Stuttgart (IHT)
  • TU Berlin
  • JCMWave GmBH
  • Advanced Laser Diode Systems A.L.S. GmBH

Selected Publications

(1) D. Knoll, St. Lischke, L. Zimmermann, B. Heinemann, D. Micusik, P. Ostrovskyy, G. Winzer, M. Kroh, R. Barth, T. Grabolla, K. Schulz, M. Fraschke, M. Lisker, J. Drews, A. Trusch, A. Krüger, St. Marschmeyer, H.H. Richter, O. Fursenko, Y. Yamamoto, B. Wohlfeil, K. Petermann, A. Beling, Q. Zhou, B. Tillack, “Mono-lithically Integrated 25Gbit/sec Receiver for 1.55µm in Photonic BiCMOS Technology”, Proc. OFC 2014, Th4C.4 (2014)

(2) St. Lischke, D. Knoll, L. Zimmermann, A. Scheit, C. Mai, A. Trusch, K. Voigt, M. Kroh, R. Kurps, P. Ostrovskyy, Y. Yamamoto, F. Korndörfer, A. Peczek, G. Winzer, B. Tillack, “High-Speed, Waveguide Ge PIN Photodiodes for a Photonic BiCMOS Process”, Proc. IEEE Bipolar / BiCMOS Circuits and Technology Meeting (BCTM 2014), 29 (2014)

(3) K. Jamshidi, E. Krune, K. Voigt, K. Petermann, L. Zimmermann, “Timing Jitter of Optical Clock Distribution Induced by Photodetection”, Proc. IEEE International Conference on Optical Interconnects 2013, 84 (2013)

The building and the infrastructure of the IHP were funded by the European Regional Development Fund of the European Union, funds of the Federal Government and also funds of the Federal State of Brandenburg.