Abstract—In this work, cells behavior during forming is monitored through an incremental pulse and verify algorithm on 4kbit RRAM arrays. This technique allows recognizing different cell behaviors in terms of read-verify current oscillation: the impact of these oscillations on reliability and cell-to-cell variability has been investigated during 1k endurance cycles and 100k pulse stress under a variety of cycling conditions. Conductance histograms for the post-forming current reveal the nanosized nature of the filamentary paths across the dielectric film.

I. INTRODUCTION

Resistive Random Access Memories (RRAM) gathered increasing interest in the last few years because of [1]. However, an extensive research activity is still to be performed on this innovative technology in order to increase RRAM reliability and performance: to bring such technology to a maturity level the characterization of array structures is mandatory [2].

RRAM behavior is based on the possibility of electrically modifying the conductance of a Metal-Insulator-Metal (MIM) stack: the Set operation switches the cell into a high conductive state, whereas Reset brings the cell back to a low conductive state. Some technologies require a preliminary forming operation to activate such a switching behavior [3]–[6]. Even if such forming process is performed just once, it plays a fundamental role in determining the system performance [6]. A deep understanding of the forming process allows recognizing faulty cells from scratch and to get a first glance insight on the cells reliability and performances during lifetime.

In this work, cell behavior during forming is monitored through an incremental pulse forming with verify algorithm. Such technique allows recognizing different cells behavior during forming in terms of read-verify current oscillations: the impact of these oscillations, interpreted either as the charging of a trap close to the surface of the conductive filament (CF) or the movement of an atom/defect in the filament [7], has been investigated in terms of reliability and cell-to-cell variability during 1k endurance cycles and 100k stress pulses in different cycling conditions.

II. MEMORY ARCHITECTURE AND EXPERIMENTAL SETUP

The variable resistor of the cells in the 4kbits arrays [8] is a MIM stack composed by 150 nm TiN top and bottom electrode layers deposited by magnetron sputtering, a 10 nm Ti layer, a 9 nm HfO2 AVD-deposited layer [3]. The schematic and cross-sectional SEM image of the integrated RRAM cell including the metal lines and the W based Via-connections is shown in Fig. 1. The resistor area is equal to 1 µm². The memory cells are constituted by a select NMOS transistor, which also sets the current compliance, whose drain is in series to the MIM stack connected to the bitlines (BL). Forming operation has been performed using a pulse-verify scheme: a sequence of increasing voltage pulses from 2V to 3.5V with \(V_{\text{step}} = 0.01V \), \(T_{\text{step}} = 10\mu\text{s} \) is applied on the BL with a wordline (WL) voltage \(V_{\text{WL}} = 1.4V \) to set the forming current compliance and after every pulse a read-verify operation with \(V_{\text{read}} = 0.2V \), \(T_{\text{read}} = 10\mu\text{s} \) is performed. When the read current reaches \(I_{\text{target}} = 20\mu\text{A} \) the forming operation is stopped. Incremental pulse scheme with verify has
been also implemented for set and reset operations, increasing \(V_{\text{set}} \) pulses on the BL and \(V_{\text{reset}} \) pulses on the source line (SL) from 1 V to 3.5 V with \(V_{\text{step}} = 0.05 \text{V} \), \(T_{\text{step}} = 10 \mu\text{s} \), \(V_{W,L,\text{set}} = 1.4 \text{V} \), \(V_{W,L,\text{reset}} = 2.8 \text{V} \) and the same read-verify condition used in forming. \(T_{\text{rise}} = T_{\text{fall}} = 1 \mu\text{s} \) have been used on all pulses in order to avoid overshoot issues. Set operation is stopped on a cell when the read-verify current reaches \(I_{\text{target}} = 20 \mu\text{A} \), whereas reset is stopped when \(I_{\text{target}} = 10 \mu\text{A} \) ensuring a minimum resistance ratio of two. Set and reset BL/SL voltages necessary to reach the requested read-verify current targets are defined as \(V_{\text{SET}} \) and \(V_{\text{RES}} \). \(I_{\text{LRS}} \) and \(I_{\text{HRS}} \) are defined as the read currents measured after set and reset operations, respectively.

III. Experimental Results and Discussion

Three different behaviors observed during forming process are reported in Fig. 2: while in many cells the read-verify current shows a sudden increase due to the creation of the CF, there are some cells showing read current oscillations with different amplitudes during forming due to the charging of a trap close to the surface of the CF or the movement of an atom/defect in the filament. Oscillations generally appears after reaching the quantum conductance unit \(G_0 = 2e^2/h \) corresponding to the creation of a single mode nanowire [9], where \(e \) is the electron charge and \(h \) is the Planck’s constant.

Fig. 3(a) shows the cumulative distribution of the maximum \(|\Delta I_{\text{read}}| \) measured during forming. \(\Delta I_{\text{read}} \) is the difference between two consecutive read verify steps after \(G/G_0 = 1 \) has been reached, where \(G = I_{\text{read}}/V_{\text{read}} \). The cells have been arbitrarily gathered in three groups with the same amount of cells defined as follows, as a function of the maximum \(|\Delta I_{\text{read}}| \) oscillation: small (\(|\Delta I_{\text{read}}| < 0.5 \mu\text{A} \)), medium (\(0.5 \leq |\Delta I_{\text{read}}| \leq 2.2 \mu\text{A} \)) and large (\(|\Delta I_{\text{read}}| > 2.2 \mu\text{A} \)). Fig. 3(b) shows the cumulative distributions of the forming voltages, defined as the voltage required to reach the read-verify target \(I_{\text{target}} = 20 \mu\text{A} \) during the incremental pulse and verify forming scheme. It can be seen that cells with lower forming voltages exhibit smaller current fluctuations.

To evaluate the endurance properties of the cells, 1k cycles have been performed through an incremental set/reset procedure: Fig. 4 shows the cumulative distributions of the resistance ratio, set and reset voltages calculated after cycling. Resistance ratio is calculated as \(I_{\text{LRS}}/I_{\text{HRS}} \) at \(V_{\text{read}} = 0.2 \text{V} \). The cells formed with smaller oscillations are shown to require higher \(V_{\text{SET}} \) and \(V_{\text{RES}} \) after 1k cycles: that means small oscillations correspond to wider filaments. The Resistance Ratio, \(V_{\text{SET}} \), \(V_{\text{RES}} \) average values and dispersion coefficients calculated during cycling are reported in Fig. 5. To evaluate the cell-to-cell variability the dispersion coefficient of \(I_{\text{LRS}} \) and \(I_{\text{HRS}} \) distributions, defined as \((\sigma^2/\mu) \), has been used. Resistance ratio of cells with large forming oscillations show both higher average value and dispersion coefficient in all cycling conditions: that means large fluctuations correspond to narrower filaments. \(V_{\text{SET}} \), \(V_{\text{RES}} \) average values and dis-
That reveals larger fluctuations indicate a not so well formed structure of the TiN bottom metal electrode [10]. One reason of the parameters dispersion could be the root mean square surface roughness of HfO₂ films due to the columnar structure of the TiN bottom metal electrode [10].

Average read current variation ($V_{READ} = 0.2\text{V}$) of HRS and dispersion coefficient evolution calculated during 100k reset pulse stress, with $V_{pulse} = 0.8\text{V}$ after endurance cycle 1 (left) and 1k (right).

Average read current variation ($V_{READ} = 0.2\text{V}$) of LRS and dispersion coefficient evolution calculated during 100k reset pulse stress, with $V_{pulse} = 0.8\text{V}$ after endurance cycle 1 (left) and 1k (right).

Average read current variation and dispersion coefficient calculated on HRS cells during set stress. Even if after 1k cycles cells show lower sensitivity to set stress due to devices degradation, which means smaller current variation compared to fresh devices, cells with larger current oscillations during forming still show slightly lower disturbs immunity.

To provide a possible physical explanation of the measured phenomenon, Fig. 10 shows the distributions of the read-verify currents measured during forming with medium and large oscillations in units of G_{r}, In order to evaluate only oscillations observed after the creation of the conductive filament, the analysis has been performed considering only
narrowest CF show higher read-verify current oscillations during forming, lower disturbs immunity and higher variability but also better switching properties in terms of set and reset voltages and higher resistance ratio.

ACKNOWLEDGMENTS

This work was supported by the European Union’s H2020 research and innovation programme under grant agreement No 640073.

REFERENCES

