
Citation: Aftowicz, M.; Kabin, I.;

Dyka, Z.; Langendörfer, P.

Non-Profiled Unsupervised

Horizontal Iterative Attack against

Hardware Elliptic Curve Scalar

Multiplication Using Machine

Learning. Future Internet 2024, 16, 45.

https://doi.org/10.3390/fi16020045

Academic Editor: Gianluigi Ferrari

Received: 1 December 2023

Revised: 11 January 2024

Accepted: 17 January 2024

Published: 29 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Non-Profiled Unsupervised Horizontal Iterative Attack against
Hardware Elliptic Curve Scalar Multiplication Using
Machine Learning
Marcin Aftowicz 1 , Ievgen Kabin 1, Zoya Dyka 1,2 and Peter Langendörfer 1,2,*

1 Leibniz-Institut für Innovative Mikroelektronik—IHP, 15236 Frankfurt (Oder), Germany;
aftowicz@ihp-microelectronics.com (M.A.); kabin@ihp-microelectronics.com (I.K.);
dyka@ihp-microelectronics.com (Z.D.)

2 Wireless Systems, Brandenburgische Technische Universität Cottbus-Senftenberg, 03046 Cottbus, Germany
* Correspondence: peter.langendoerfer@b-tu.de

Abstract: While IoT technology makes industries, cities, and homes smarter, it also opens the door
to security risks. With the right equipment and physical access to the devices, the attacker can
leverage side-channel information, like timing, power consumption, or electromagnetic emanation,
to compromise cryptographic operations and extract the secret key. This work presents a side channel
analysis of a cryptographic hardware accelerator for the Elliptic Curve Scalar Multiplication operation,
implemented in a Field-Programmable Gate Array and as an Application-Specific Integrated Circuit.
The presented framework consists of initial key extraction using a state-of-the-art statistical horizontal
attack and is followed by regularized Artificial Neural Networks, which take, as input, the partially
incorrect key guesses from the horizontal attack and correct them iteratively. The initial correctness
of the horizontal attack, measured as the fraction of correctly extracted bits of the secret key, was
improved from 75% to 98% by applying the iterative learning.

Keywords: side channel analysis; machine learning; horizontal attack; non-profiled attack; FPGA; ASIC

1. Introduction

According to IoT Analytics [1], the number of connected IoT devices by 2027 will
amount to around 29 billion, and 80% of the market is shaped by three main technologies:
WiFi, Bluetooth, and Cellular technology. The fast, wireless communication gives a strong
foundation to the development of “smart” industry, cities, homes, health monitoring,
autonomous vehicles, or Wireless Sensor Networks (WSN). WSNs are widely used to
monitor physical conditions, such as temperature, humidity, or pollution levels, in cities
and agriculture, or for predictive maintenance in industry, by measuring vibrations or noise
during machine operation. Some of their applications expose the communicating devices to
unauthorized physical access. In conjunction with the constraint of very limited resources,
the rapid growth of the market, and the ever-growing pressure on low prices and high
performance, this exposure can lead to dangerous security negligence. In the past few years,
there have been notable disclosures of microarchitectural vulnerabilities even in high-end
processors—Spectre [2] and Meltdown [3]—which should only sensitize us towards the
subject of hardware security. While those vulnerabilities affected mostly processors used
in consumer PCs, the most recently published attack—BUSted [4]—concerned the biggest
manufacturer of embedded processors, which constitute the majority of “things” in the
IoT world.

Security is an important aspect and concern in the World Wide Web, and the same
applies to the Internet of Things. Information security and data integrity can be achieved
through the use of cryptography. There are two main approaches in cryptography: symmet-
ric and asymmetric; the last one is also known as public-key cryptography. In symmetric

Future Internet 2024, 16, 45. https://doi.org/10.3390/fi16020045 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi16020045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-2975-2615
https://doi.org/10.3390/fi16020045
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi16020045?type=check_update&version=2

Future Internet 2024, 16, 45 2 of 23

cryptography, the same key is used to encrypt and decrypt information; therefore, the secu-
rity depends on keeping the common key secret, as well as on its length. The standardized
symmetric approach—the Advanced Encryption Standard (AES) based on the Rijndael
block cipher [5]—was published in 2001 [6] by the National Institute of Standards and
Technology (NIST) in the USA. In public-key cryptography, the encryption and decryption
happen using a pair of keys. The public key can be openly distributed and used to encrypt
information, which can only be decrypted by a corresponding private key. Keeping the
private key secret is the priority. The first standardized public-key cryptosystem was the
Rivest–Shamir–Adleman (RSA) cryptosystem, patented by the cryptographers Ronald
Rivest, Adi Shamir, and Leonard Adleman in 1977 [7] and published in 1978 [8]. The
next standardized public-key cryptosystem—the Elliptic Curve Cryptosystem (ECC)—was
proposed independently by two cryptographers: by Neal Koblitz, in 1985, as a journal
paper that was published in 1987 [9], and by Viktor Miller, presented in 1985 at a conference
and published in 1986 in the conference proceedings [10].

Modern cryptosystems usually use a hybrid approach and leverage public-key cryp-
tography to establish a secure communication channel and agree on a common symmetric
key, i.e., the Elliptic Curve Diffie–Hellman key agreement protocol ECDH (recommended
in standard ISO-11770-3) in combination with the AES symmetric key cipher. For example,
the Elliptic Curve Integrated Encryption Scheme (ECIES) was proposed in 2001 by Victor
Shoup [11] with the goal of accelerating the encryption and decryption significantly. But,
public-key cryptography is also commonly used to guarantee information integrity through
the usage of Digital Signature Algorithms (DSAs), wherein the (encrypted) information
digest is signed by a sender using their private key and the authenticity of the sender and
integrity of the information can be tested by anyone using the public key of the sender.
One such algorithm is the Elliptic Curve Digital Signature Algorithm (ECDSA) [12]. It
was suggested in a response to NIST’s (National Institute of Standards and Technology)
request for public comments on their proposal for Digital Signature Standards. Later, it
was accepted as a standard by the International Standards Organization (ISO-14888-3),
American National Standards Institute (ANSI X9.62), and Institute of Electrical and Elec-
tronics Engineers (IEEE 1363), and as the U.S. Government Federal Information Processing
Standard (FIPS 186) [13]. The main advantage of using Elliptic Curve Cryptography over
RSA is its short key size. The same level of security can be achieved using a 256-bit key for
ECDSA as can be achieved using a 3072-bit-long key for RSA [14].

The modern cryptosystems are extremely hard to break. It would take more years
than the number for which Earth has existed to solve the complex mathematic problems
that are the basis of modern cryptography (factorisation of big numbers, discrete logarithm
problem (DLP), or elliptic curve discrete logarithm problem (ECDLP)) or to brute-force
modern ciphers using the largest super computers available to men. However, there are
ways to compromise their security in merely hours. The cryptographic operations can
be implemented either as software libraries or as auxiliary hardware components. They
require additional processing time, more energy consumption, or larger chip area, which
is especially problematic in resource-constrained IoT or WSN devices. The processing
of cryptographic primitives is inevitably correlated to the transistor-switching activity
of the underlying hardware, whether it comprises a dedicated circuitry or a part of a
general-purpose processing pipeline. Dynamic power consumption, the electromagnetic
field emanation, heat dissipation, and, above all, the timing information are just some of
many side channels, which can be leveraged to uncover the secret. The first one to present
how this could be accomplished was Paul Kocher, in 1996 [15], who showed how to break
the RSA and Data Encryption Standard (DES) algorithms using only timing and power
consumption information. This was considered the beginning of Side Channel Analysis
(SCA), a branch of cryptoanalysis focusing on finding new ways to leverage side channels
to uncover secrets in cryptosystems, but also on finding new methods to mitigate potential
attacks and implement countermeasures.

Future Internet 2024, 16, 45 3 of 23

Since 2012, when the famous AlexNet [16] Convolutional Neural Network (CNN)
won the ImageNet competition, machine learning has gained popularity also among the
SCA community. The supervised learning paradigm of feeding the neural networks with
large amounts of data and corresponding labels fits perfectly into the profiling scenarios of
SCA, where electromagnetic traces (EMTs) or power traces (PTs) of multiple cryptographic
operations are recorded and the corresponding secret values are provided as labels. While
the profiling attacks make sense in SCA attacks against AES, in public-key cryptography,
the secret key is ephemeral and only a single recording of a cryptographic operation with
given inputs is possible. Especially dangerous are attacks against signature generation if
the secret—not the private key of the sender but a randomly generated big number—can
be revealed, analyzing only a single execution trace of the cryptographic operation. Knowl-
edge of the secret random number applied for the signature generation allows one to
calculate, easily, the private key of the sender. Our work is an extension of a conference
paper [17], published in the 26th Euromicro Conference Series on Digital System Design
(DSD), proposing a semi-supervised non-profiled side channel analysis attack against an
Elliptic Curve Scalar Multiplication (ECSM) hardware implementation. The analysis com-
bines a horizontal attack to derive initial key candidates and a highly regularized Support
Vector Machine (SVM) classification step to iteratively correct those candidates. We have
also discovered another work [18] discussing a similar framework, which we describe in
the related work section, outlining the differences with our approach. Our contributions in
this work are as follows:

1. We present a summary of existing horizontal non-profiled solutions against ECSM
implementations.

2. We show that even simple Artificial Neural Networks can be used to increase the
correctness of horizontal attacks, and we analyze the influence of the regularization of
those networks on the attack correctness.

3. We sensitize our readers to the importance of precisely citing the software versions
used for neural network training and the hyperparameters used. Using the example
of our own analysis, we show that the regularization is implemented differently in
two popular Python packages: scikit-learn and tensorflow.

Finally, we show how machine-learning-aided Side Channel Analysis is sensitive
to hyperparameters and that finding the optimal set of parameters is a matter of trial
and error.

The rest of this paper is structured in the following way. Section 2 describes the context
of our work and the brief history and development of the field of SCA attacks, with a focus
on horizontal single-trace non-profiled attacks against ECSM implementations. In Section 3,
we introduce our hardware accelerator and the two versions of its implementation: an
FPGA implementation utilizing the sequencing of addresses on the bus and an ASIC
implementation compiled with the compile_ultra option during logical synthesis. Section 4
explains how we have acquired the power and electromagnetic traces for our design. Later,
we describe two machine learning classification methods: the Support Vector Machine in
Section 5 and the Artificial Neural Network in Section 6. Next, in Section 7, we describe our
iterative framework, which consists of trace preprocessing, a statistical horizontal attack,
and machine learning classification using labels obtained during the horizontal attack. In
Section 8, we show the results of the attack using the power and electromagnetic traces
of both design implementations, evaluate the different regularization parameters, and
compare the artificial neural networks’ implementations using the scikit-learn framework
and the tensorflow, providing details about the hyperparameters used. We conclude our
work with Section 9, where we summarize our results and present possible improvements
and additional analysis steps that could increase the correctness of the attack even further.

2. Related Work

There has been a great interest in using machine learning for side channel analysis
in the last decade. The growing number of conference papers and journal articles have

Future Internet 2024, 16, 45 4 of 23

required systemization, which has been reflected by multiple reviews and state-of-the-art
articles published throughout the years.

The first to comprehensively study applying ML techniques in the context of SCA were
Hospodar, Gierlichs, and colleagues [19]. In their article, they compared the accuracy of the
LS-SVM algorithm with a Template Attack (TA) using the power trace of an AES software
implementation. They examined different parameter sets, numbers of traces used, and
preprocessing methods and concluded that properly tuned ML algorithms outperformed
the TA. In 2014, Jap and Breier [20] prepared an overview of ML-based SCA attacks on
various cryptosystems including one ECC [21] and one RSA [22]. Later, in 2016, in a very
extensive review of secure architectures with an emphasis on physical attacks by Hodgers,
Ragazzoni, and colleagues [23], the authors stated that the usage of ML for SCA is still in
the early stages and comparisons of such methods are not purposeful due to differences
in the ML algorithms used and target cryptosystem implementations. Nevertheless, the
authors cited a handful of papers categorizing them based on the ML algorithm used. One
year later, the book “Hardware Security and Trust” was published with a chapter from
Papachristodoulou, Batina, and Mentens [24] summarizing the SCA attacks against ECC,
including ML methods. In 2018 Benadjila, Prouff, and colleagues [25] presented the first
comprehensive study of deep learning (DL) methods used in SCA and introduced an open-
source dataset consisting of electromagnetic emanation (EM) traces of a software, masked
AES implementation, as a benchmark for future researchers interested in DL. In recent
years, the usage of ML for SCA against public-key cryptography has only been mentioned
in [26–28]. The only extensive summary can be found in the state-of-the-art chapter of
Hettwer’s doctoral thesis [29], where he was able to list 12 publications concerning the
usage of ML in SCA against ECC and RSA.

As can be observed, the side channel analysis of public-key cryptography implemen-
tations has always been less represented in the literature. One of the reasons is the small
number of open-source datasets. According to [30], there are 11 commonly used open-
source datasets for AES and only four for ECC [18,31,32]. Despite the lack of open-source
datasets, there are many proprietary datasets used, wherein the authors only describe the
used implementations but do not publish the traces. This prevents comprehensive compar-
isons but still contributes to the progression of the field. The high accessibility of datasets
with AES implementation has always spurred interest among researchers. The following
AES-dedicated summaries were published in 2019 [33], 2020 [34], and 2021 [30,35]. The
growing number of publications regarding AES implementations has led to situations
when researchers even forget to mention what the target cryptosystem is, assuming, by
default, some AES implementation. Moreover, conducting SCA attacks against AES allows
leveraging multiple power traces associated with the same key while EC-based cryptosys-
tems give much less information to the attacker. The key is ephemeral; it is used only once
due to either scalar randomization or nonce randomization between consecutive Elliptic
Curve Scalar Multiplications (ECSMs). It is harder to create a profile of a device or use
methods that require a larger corpus of data, like DL.

Nevertheless, there are still some works dedicated to SCA attacks against ECC. It
is not our purpose to list them all in this article, but we will focus on a particular sub-
group of attacks. First and foremost, we are interested in horizontal attacks. They give
the attackers only one trace of ECSM to distinguish the key bits (it consists of between
200 and 300 iterations, based on the length of the scalar or the blinding/splitting method
used). Furthermore, the attacker should not have access to other traces with known scalar,
captured on the same system; hence, single-trace, non-profiled attacks. We were only
interested in the usage of ML methods in such a limited scenario. Since the non-profiled
SCA attacks provide no key for training, the natural choice comprises the unsupervised
learning methods.

In 2010, Batina et al. [36] used Principal Component Analysis (PCA) on the power
trace of an FPGA implementation of the Edwards curve with a random-order-execution
countermeasure in place. The visualization of the absolute average value of principal

Future Internet 2024, 16, 45 5 of 23

components allowed the authors to distinguish ECSM iterations involving the processing
of key bit “zero” from key bit “one”. Although it was later shown that this countermeasure
can be broken with a simple SPA attack and the difference to the mean attack [37], this was
the first use of PCA in the context of non-profiled SCA.

Another example of unsupervised learning was the usage of clustering algorithm k-
means by Heyszl et al. [21]. The authors took measurements of current flow and electromag-
netic emanation and used them both to divide ECSM iterations into two clusters—“zeroes”
and “ones”—in a fully unsupervised manner. The EM traces were measured on different
places of the chip. Despite the fact that the implementation was protected using the random-
ized projective coordinates, the leakage was based on conditional register access, depending
on the key bit processed. Later, Specht et al. [38] improved the idea and used PCA as pre-
processing step for clustering analysis and reduced the algorithmic complexity of the attack,
especially when using multiple parallel side channels, although they experimentally showed
that including more side channels did not improve the non-profiled attack. The chosen
clustering algorithm was expectation maximization instead of the k-means algorithm. An
interesting remark regarding the PCA was that the exploitable leakage was not present in
the first few components, but was particularly present in the fourth component. The same
component was chosen for visualization by Batina et al. in their already-mentioned work [36].
In [39], Kabin et al. used k-means to cluster a hardware implementation of ECSM and PCA,
but not as a preprocessing step; rather, they used it as a distinguisher method. They used
PCA on an entire ECSM, treating clock cycles representing a single ECSM iteration as one
feature vector. Later, they classified points (iterations) based only on the first principal
component. All points with a first principal component smaller than zero were assumed to
process different scalar bits than those with a first component higher than zero. They also
observed that the leakage was not present in the first principal component, and, therefore,
k-means clustering outperformed PCA.

Another advantage of k-means was presented in our own work [40], where we showed
that in the case of an unbalanced scalar (where the number of ones is different from
the number of zeros), the k-means method provides robust results that are invariant to
the imbalance. The comparison was made with a state-of-the-art statistical method, the
difference to the mean, which performs well only in a balanced scenario.

All of the described attacks aimed at FPGA implementations of cryptographic op-
erations; however, in 2017, Järvinen et al. [41] attacked a software implementation of an
NIST P-256 curve with the ω-NAF method with precomputations on point P. The target
platform was an 8-bit microprocessor. This time, the k-means clustering was used not to
distinguish ECSM iterations but rather to cluster the power traces of partial multiplications.
The assumption behind the attack was that multiplications belonging to the same cluster
were performed using the same precomputed values, and hence, the attacker needed to
brute-force all combinations of precomputed values or use correlation analysis to limit
the search space. With the increasing bit width of the processor and window size of the
ω-NAF method, the precomputed values were repeated less often, making the brute-force
part of the attack unfeasible, although the authors showed in a simulation that a 16-bit
implementation might still be vulnerable.

PCA and the k-means algorithm are common in the world of SCA; they are well
understood and provide interpretable results. But, there is a newer group of methods in
the SCA toolbox that deliver promising results, albeit with a cost (lack of explainability),
namely, the Autoencoders (AENs). AENs are a type of Feed-Forward Artificial Neural
Network (ANN), trained in a supervised fashion but with a simple trick. While common
ANNs are built from stacked layers of neurons, where, with each consecutive layer, the
number of neurons decreases (Figure 1a), in AENs, the layers get smaller until they reach
some minimal size, then increase back to the original size of the input layer (Figure 1b).
Since the input layer and output layer are of the same size, the network can be trained to
simply recreate the input. By doing so, it learns a compressed representation of the dataset
in the latent space since all input vectors need to be mapped into the latent space by the

Future Internet 2024, 16, 45 6 of 23

encoder part of the network and recreated back to the original space by the decoder part.
After the training has been completed and the condition of satisfying recreation loss has
been achieved, the decoder part can be discarded and the encoder can be used to compress
input vectors into their latent representation, a non-linear mapping with fewer dimensions.
In his Master’s thesis, Aljuffri used multiple methods based on AENs to break software
implementations of ECSM [42]. All methods follow a similar pattern of deep embedded
clustering (DEC), where the AEN, or some variant of it, is trained on ECSM iterations and
the latent space representation is used for subsequent clustering (a similar approach was
presented later in the Master’s thesis of Xu [43]). The author also describes an improved
version of the attack wherein the clustering results are incorporated into the loss function
used to train the encoder. None of the presented single-trace non-profiled attacks achieved
remarkable correctness, but they did show improvement in cases of misaligned traces over
a naïve k-means clustering (proposed by Heyszl in [21]).

Future Internet 2024, 16, x FOR PEER REVIEW 6 of 23

ANNs are built from stacked layers of neurons, where, with each consecutive layer, the
number of neurons decreases (Figure 1a), in AENs, the layers get smaller until they reach
some minimal size, then increase back to the original size of the input layer (Figure 1b).
Since the input layer and output layer are of the same size, the network can be trained to
simply recreate the input. By doing so, it learns a compressed representation of the dataset
in the latent space since all input vectors need to be mapped into the latent space by the
encoder part of the network and recreated back to the original space by the decoder part.
After the training has been completed and the condition of satisfying recreation loss has
been achieved, the decoder part can be discarded and the encoder can be used to compress
input vectors into their latent representation, a non-linear mapping with fewer dimen-
sions. In his Master�s thesis, Aljuffri used multiple methods based on AENs to break soft-
ware implementations of ECSM [42]. All methods follow a similar pattern of deep embed-
ded clustering (DEC), where the AEN, or some variant of it, is trained on ECSM iterations
and the latent space representation is used for subsequent clustering (a similar approach
was presented later in the Master�s thesis of Xu [43]). The author also describes an im-
proved version of the attack wherein the clustering results are incorporated into the loss
function used to train the encoder. None of the presented single-trace non-profiled attacks
achieved remarkable correctness, but they did show improvement in cases of misaligned
traces over a naïve k-means clustering (proposed by Heyszl in [21]).

(a) (b)

Figure 1. Depiction of (a) Feed-Forward Neural Network architecture and (b) autoencoder archi-
tecture.

The usage of unsupervised learning and, especially, clustering analysis was again
leveraged by Nascimento et al. [44] as the first step of processing. They used three meth-
ods—the k-means, fuzzy k-means, and expectation maximization algorithms—to analyze
a software implementation of ECSM. The leakage assessment framework used in their
work was first proposed by Perin et al. in [45], wherein each clock cycle of the ECSM iter-
ation was attacked separately and then combined using majority voting or log-likelihood.
In their work, Nascimento et al. used multidimensional (multivariate) clustering, consid-
ering all clock cycles at once, to capture higher-order leakage, but noted that this approach
is more sensitive to noise. The choice of correct clock cycles is crucial, but since the non-
profiling framework does not give the attacker any knowledge about the key, the so-called

Figure 1. Depiction of (a) Feed-Forward Neural Network architecture and (b) autoencoder architecture.

The usage of unsupervised learning and, especially, clustering analysis was again lever-
aged by Nascimento et al. [44] as the first step of processing. They used three methods—the
k-means, fuzzy k-means, and expectation maximization algorithms—to analyze a software
implementation of ECSM. The leakage assessment framework used in their work was
first proposed by Perin et al. in [45], wherein each clock cycle of the ECSM iteration was
attacked separately and then combined using majority voting or log-likelihood. In their
work, Nascimento et al. used multidimensional (multivariate) clustering, considering all
clock cycles at once, to capture higher-order leakage, but noted that this approach is more
sensitive to noise. The choice of correct clock cycles is crucial, but since the non-profiling
framework does not give the attacker any knowledge about the key, the so-called Points
of Interest (POIs) need to be derived in a different way. After the initial clustering they
measured intrinsic cluster quality to assess which clusters were dense and far away from
each other and which samples did not fit into the discovered patterns. A dimensionality
reduction step consists of outlier detection and elimination. The result of clustering analysis
is used to recover the first set of key candidates for all analyzed traces. The goal of the next
step is to refine the list of POIs to reduce them even further and increase the likelihood of
choosing POIs associated with the leakage. The authors ran a t-test with two groups of

Future Internet 2024, 16, 45 7 of 23

traces, those where the corresponding bit was assumed to be “one” and those where it was
assumed to be “zero”. Samples with the highest t-score were chosen as the next round’s
POIs and the key was recovered based on the refined list. The subject of eliminating POIs
not containing leakage was used in context of ECC, in [18], by Perin et al. The authors
proposed an unsupervised, non-profiled iterative SCA framework using Cluster Leakage
Assessment for initial key candidates’ assumption and a Convolutional Neural Network
with dropout as a final distinguisher and for the elimination of POIs.

The choice of POIs was also addressed by Ravi et al. in [46]. Some points detected as
POIs are not key- but data-dependent and simply add noise to the analysis. The authors
assumed that there are usually more than one key-dependent POIs in a power trace and
that those points should correlate with each other, while multiple data-dependent points
will not. They ran a pairwise covariance computation between all pairs of POIs and ended
up with a covariance matrix. It was known that samples close to each other would be
correlated; therefore, pairs of samples further away from the covariance diagonal, which
had a high magnitude of covariance, were considered as key-dependent; hence, these were
chosen as POIs for further analysis. The covariance calculation increased the correctness
of multivariate k-means clustering, leading to a more successful attack against an FPGA
implementation of ECSM. It did, however, fail in case of an attack against a software
implementation, probably due to misalignment.

The choice of POIs can also be driven by the knowledge of the underlying algorithm,
and so, in [47], Sim et al. focused on the key identification phase of each ECSM iteration.
The identification phase was defined as the time when the key bit was stored in a temporal
variable/register. The authors attacked a hardware and software implementation of ECSM,
always considering only the beginning of each iteration using the k-means, fuzzy k-means,
and expectation maximization algorithms, and recovered the scalar successfully. The ECSM
iterations were aligned as part of the preprocessing.

In Table 1, we summarize all related publications that we could have found and which
used machine learning in the context of the Side Channel Analysis of Elliptic Curve Scalar
Multiplication (or when the authors stated that the analysis could be used for ECSM).
All authors assumed no knowledge about the processed key and all of the listed works
used machine learning in either the preprocessing step or as a final classifier for ECSM
iterations, i.e., to tell which iterations processed a “one” and which processed a “zero”. For
software (SW) implementations, we also report the software library used. Moreover, we
provide details about the platforms running the implementation and the type of captured
trace (PT—Power Trace, EMT—Electromagnetic Trace). The last entry is dedicated to our
conference publication [17] and this extended work. The abbreviations are listed below
Table 1 for readability.

Our work, similar to the non-profiled framework idea presented in [18], consists of
applying a horizontal attack and subsequently training a neural network with noisy labels
obtained from the attack. The idea can be extended to leverage any unsupervised attack
presented in Table 1 to subsequently train a supervised classifier with high regularization
to improve the success rate. The main difference between our work and [18] is that we
attacked hardware implementations, not software implementations. Moreover, the authors
in [18] used their knowledge about the implementation and isolated only subparts of the
ECSM iterations with known leakage, while we used the whole trace without discarding
any values. In [18], the authors used a Deep Convolutional Neural Network with dropout
layers and augmented their dataset to improve the generalization of their network and to
prevent overfitting. We have used a simple ANN (without convolutional layers, since we do
not need to deal with trace desynchronization) with only one hidden layer of 100 neurons.
As a consequence, our network is much simpler; therefore, we decided to use the L1 and L2
regularization in place of dropout. Our work may serve as a validation that the framework
proposed in [18] can be successfully applied against hardware implementations of ECSM
and that it can be even simplified in such cases. We have also conducted an additional
analysis of the influence of the regularization parameter on the success rate of the attack.

Future Internet 2024, 16, 45 8 of 23

Table 1. Summary of related work.

Ref. Implementation Platform Trace Type Preprocessing Classifier

[36] HW: FPGA Virtex-II Pro PT 1 mean of consecutive samples,
PCA 3 visual inspection

[21] HW: FPGA Spartan-3 PT, EMT 2 sum of squared values in each
clock cycle k-means

[38] HW: FPGA Spartan 3A EMT PCA EM 4 clustering

[41] SW: simulation 8-bit AVR
microcontroller PT

averaging over multiple traces
(same point means same
precomputed values)

k-means

[42] SW - PT SdAEN 5 k-means; IDEC 6

[44] SW: µNaCl ARM Cortex-M4 EMT low-pass filter, outliers replaced
with median of non-outliers

k-Means, fuzzy k-means,
EM clustering, SOSD 7,
SOST 8, MIA 9

[46] HW: FPGA Virtex-5
EMT

k-means, DoM 10, covariance,
variance, range as POI selection thresholding

SW: µNacl ATmega2560 trace alignment (for SW)

[47] HW: FPGA SASEBO-GII FPGA PT, EMT low-pass filter, POI 11 selection
with SOST, trace alignment

k-means, fuzzy k-means,
EM, SPA 12SW: mbedTLS, OpenSSL AVR XMEGA 128D4

[39] HW: FPGA Spartan 6 PT sum of squared values in each
clock cycle

difference to the mean and
k-means

[18] SW: µNaCl ARM Cortex-M4 EMT low-pass filter, Gradient
Visualization for POI selection

CLA 13 (k-means, fuzzy
k-means, EM clustering)
followed by CNN 14

[17] HW: FPGA, ASIC Spartan 6 PT, EMT sum of squared values in each
clock cycle

difference to the mean
followed by SVM 15

This followed by ANN 16

1 Power Trace, 2 Electromagnetic Trace, 3 Principal Component Analysis, 4 Expectation Maximization, 5 Stacked
Denoising Autoencoder, 6 Improved Deep Embedded Clustering, 7 Sum of Squared Differences, 8 Sum of Squared
t-values, 9 Mutual Information Analysis, 10 Difference of Means, 11 Points of Interest, 12 Simple Power Analysis,
13 Clustering Leakage Assessment, 14 Convolutional Neural Network, 15 Support Vector Machine, 16 Artificial
Neural Network.

3. Target Platforms

Our implemented design serves as a hardware accelerator for Elliptic Curve Scalar
Multiplication (ECSM), specifically for the NIST Elliptic Curve B-233. The operation it
performs is also denoted as kP, where the scalar k is an up-to-233-bit binary number and
P = (x, y) is a point on the EC B-233. The coordinates x and y are elements of the extended
binary Galois field GF (2233) with the irreducible polynomial f (t) = t233 + t74 + 1. They are
also represented as up-to-233-bit-long binary numbers. The accelerator is based on the
Montgomery kP algorithm using Lopez–Dahab projective coordinates [48]. The algorithm
processes each bit of the scalar k iteratively from left to right (from its Most Significant Bit
(MSB) to the Least Significant Bit (LSB)) using field operations. One ECSM iteration consists
of six field multiplications, five field squarings, three field additions, and write-to-register
operations and takes only 54 clock cycles. The processing sequence of the calculations,
i.e., comprising additions, multiplications, and squaring operations of finite field elements,
is independent of the bit value of the processed scalar k, which was the reason in the past
to denote Montgomery ladders as sources of resistance against timing attacks and simple
power analysis attacks. Please note that the resistance of the Montgomery ladder against
simple SCA attacks is based on the important assumption that the addressing of different
registers comprises indistinguishable operations regarding their energy consumption [49].
Nowadays, equipment allows one to measure even long power and electromagnetic traces
with a high time resolution applying a high sampling rate. This allows one to observe the
differences in the measured power shapes caused by the key-dependent addressing of the
registers. Dependent on the target platform, both the options used for design synthesis as
well as the frequency of the shapes corresponding to the processing of the key bit value ‘1’
can be distinguishable from the shapes corresponding to the processing of the key bit value
‘0′ [50]. The general structure of the design is depicted in Figure 2.

Future Internet 2024, 16, 45 9 of 23

Future Internet 2024, 16, x FOR PEER REVIEW 9 of 23

calculations, i.e., comprising additions, multiplications, and squaring operations of finite
field elements, is independent of the bit value of the processed scalar k, which was the
reason in the past to denote Montgomery ladders as sources of resistance against timing
attacks and simple power analysis attacks. Please note that the resistance of the Montgom-
ery ladder against simple SCA attacks is based on the important assumption that the ad-
dressing of different registers comprises indistinguishable operations regarding their en-
ergy consumption [49]. Nowadays, equipment allows one to measure even long power
and electromagnetic traces with a high time resolution applying a high sampling rate. This
allows one to observe the differences in the measured power shapes caused by the key-
dependent addressing of the registers. Dependent on the target platform, both the options
used for design synthesis as well as the frequency of the shapes corresponding to the pro-
cessing of the key bit value ‘1� can be distinguishable from the shapes corresponding to
the processing of the key bit value ‘0′ [50]. The general structure of the design is depicted
in Figure 2.

Figure 2. General structure of our hardware accelerator.

The Controller block governs the sequence of field operations within the design and
the data flow among different blocks and chooses the specific operation to be executed in
the ongoing clock cycle. Whenever the ALU block is active, it is responsible for carrying
out either addition (utilizing bitwise XOR) or squaring operations. Meanwhile, the al-
ways-active MULT block, functioning as the field multiplier, computes a field product,
employing the four-segment Karatsuba multiplication method iteratively. Throughout
the years, we have developed different versions of the ECSM accelerator. In this work, we
use the following variants of the accelerator:
• Design_ultra is a specific instance of our ECSM design that was compiled with the

Synopsys Design Compiler using the compile_ultra feature. This high-effort compi-
lation process involves logic-level and gate-level synthesis and optimization, aiming
to achieve an optimum quality of results. The compile_ultra feature leverages all DC
Ultra capabilities, balancing timing and area limitations to deliver a compact circuit
that meets stringent timing criteria. The exhaustive compilation enhances synthesis
quality, resulting in improved performance, reduced design area, and lower power
consumption. Design_ultra was manufactured into an ASIC. in the IHP 250 nm tech-
nology [51]. The compile options increased the resistance of the design against SCA
attacks. The authors applied a non-profiled horizontal statistical attack—the compar-
ison to the mean, which is a univariate attack on each clock cycle of the ECSM itera-
tion, capable of leveraging only the first-order leakage—and achieved 76% correct-
ness for the power trace (PT) and 77% for electromagnetic trace (EMT) for one of the
candidates. We use their attack as the first step in our analysis.

• Design_seq is another instance of our ECSM design, and it introduces a countermeas-
ure to the bus-addressing sequence. In clock cycles where no block is specifically ad-
dressed by the Controller block, Design_seq implements regular addressing instead
of some default constant address, ensuring that each of the 11 blocks, including reg-
isters, is called in sequence and its contents are written to the bus. This sequential
addressing, from 1 to 11 (or 1 to B in hexadecimal), adds a layer of security against
attacks like microprobing, especially for the register containing the scalar k, which is

Figure 2. General structure of our hardware accelerator.

The Controller block governs the sequence of field operations within the design and
the data flow among different blocks and chooses the specific operation to be executed in
the ongoing clock cycle. Whenever the ALU block is active, it is responsible for carrying
out either addition (utilizing bitwise XOR) or squaring operations. Meanwhile, the always-
active MULT block, functioning as the field multiplier, computes a field product, employing
the four-segment Karatsuba multiplication method iteratively. Throughout the years, we
have developed different versions of the ECSM accelerator. In this work, we use the
following variants of the accelerator:

• Design_ultra is a specific instance of our ECSM design that was compiled with the
Synopsys Design Compiler using the compile_ultra feature. This high-effort compila-
tion process involves logic-level and gate-level synthesis and optimization, aiming to
achieve an optimum quality of results. The compile_ultra feature leverages all DC Ul-
tra capabilities, balancing timing and area limitations to deliver a compact circuit that
meets stringent timing criteria. The exhaustive compilation enhances synthesis quality,
resulting in improved performance, reduced design area, and lower power consump-
tion. Design_ultra was manufactured into an ASIC. in the IHP 250 nm technology [51].
The compile options increased the resistance of the design against SCA attacks. The
authors applied a non-profiled horizontal statistical attack—the comparison to the
mean, which is a univariate attack on each clock cycle of the ECSM iteration, capable of
leveraging only the first-order leakage—and achieved 76% correctness for the power
trace (PT) and 77% for electromagnetic trace (EMT) for one of the candidates. We use
their attack as the first step in our analysis.

• Design_seq is another instance of our ECSM design, and it introduces a countermea-
sure to the bus-addressing sequence. In clock cycles where no block is specifically
addressed by the Controller block, Design_seq implements regular addressing instead
of some default constant address, ensuring that each of the 11 blocks, including reg-
isters, is called in sequence and its contents are written to the bus. This sequential
addressing, from 1 to 11 (or 1 to B in hexadecimal), adds a layer of security against
attacks like microprobing, especially for the register containing the scalar k, which
is never written to the bus. This countermeasure aims to reduce the effectiveness of
horizontal SCA attacks on the design by introducing artificial noise in the form of
regular addressing when the bus is not in use.

More details about the ECSM designs can be found in [50].

4. Power and Electromagnetic Trace Acquisition

Design_ultra was produced in the IHP 250 nm technology for a maximum working
frequency of 20 MHz (50 ns minimal clock cycle period) and bonded to a printed circuit
board (PCB). In our experiments, we used 4 MHz as the working clock frequency. The die
area was 2.7 mm2, with dimensions of 2.49 mm × 1.09 mm. Design_seq was implemented
in VHDL and ported to a Spartan-6 FPGA. The ECSM design is also running at 4 MHz.

Future Internet 2024, 16, 45 10 of 23

During a kP execution, we measured the current through the FPGA and ASIC using a
current probe from the security test equipment from Riscure [52] and the electromagnetic
emanation using an MFA-R-75 EM probe from Langer [53]. Samples captured using the
oscilloscope were saved to a file. We refer to power measurement as power trace, denoted
as PT, and electromagnetic measurements as electromagnetic trace, denoted as EMT. The
traces were captured using a LeCroy Waverunner 610Zi oscilloscope with a 2.5 GS/s
sampling rate, i.e., with 625 measurement points per clock cycle. We used a 232-bit-long
random number as the scalar k and the base point G of EC B-233 [13] as point P.

5. SVM Classification

The Support Vector Machines, introduced in 1992 by Bernhard Boser, Isabelle Guyon,
and Vladimir Vapnik [54] in the form we know them today, are robust classification models
that can leverage different kernels in order to construct non-linear decision boundaries
without the need of projecting the training set into a non-linear space. These models try
to fit a decision rule to the training set, aiming to maximize the distance between data
points and the decision boundary (thick line in Figure 3). The distance is referred to as a
margin and data points laying on the margin (dotted line) are called support vectors, hence
the name.

Future Internet 2024, 16, x FOR PEER REVIEW 11 of 23

Figure 3. Geometrical representation of optimal hyperplane separating negative examples (black
squares) from positive examples (white triangles).

Hard margin classification is convenient when the data points are easily separable
and one wants to avoid misclassifications at all costs. In case of our attack, the initial labels
derived from the comparison to the mean method are known to be imprecise, and the misla-
beled data points would distort the decision boundary and the model might learn wrong
classifications. The idea is to introduce a regularization parameter to allow for some data
points to be left misclassified, keep the decision boundary smooth, and, therefore, retain
a large margin. An SVM model with regularization is called a soft margin classifier and
was introduced by Corinna Cortes and Vladimir Vapnik in 1995 [55]. The margin maximi-
zation from (3) is modified as follows: minఠ,,క ଵଶ ‖𝜔‖ଶ + 𝐶 ∑ 𝜉ିଶୀଵ . (4)

We denote each data point in the training set with the subscript j since we classify
each slot to belong to either the positive or negative class. The new slack variable 𝜉 de-
termines the distance from the misclassified sample (slot) to the decision boundary
(marked in Figure 3). It is a penalty term for every misclassification and is derived during
the training processes. The regularization parameter C takes values between 0 and 1 and
needs to be set before the training procedure as a hyperparameter. A value of 1 means no
regularization, and values close to 0 mean high regularization and hence a smaller influ-
ence of misclassified data points on the decision boundary. The constraint from (2) takes
the following form for the soft margin classifier: 𝑦ሺ𝜔ഥ ∙ 𝑢ത + 𝑏ሻ ≥ 1 − 𝜉 ∀𝑗 = 1, … , 𝑛 − 2 𝑎𝑛𝑑 𝜉 0

(5)

The training algorithm optimizes (4) given the constraint from (5), using every sam-
ple from the training set 𝑥 as the unknown input vector 𝑢ത; in other words, it tries out
different hyperplanes separating the training set such that it maximizes the margin but
satisfies the constraint that all samples should lay outside of the margin with some toler-
ance of samples laying on the wrong side of the decision boundary. The SVM training
does not explicitly result in 𝜔ഥ. The decision boundary (the optimal hyperplane) is given
as a linear combination of support vectors, i.e., the vectors from the training set. Every
ECSM iteration processes either the key bit “zero” or “one”; therefore, all samples corre-
spond to a single ECSM iteration for one input vector during SVM training and classifica-
tion. The samples are compressed according to (8), which we describe in Section 7—the
iterative framework.

Figure 3. Geometrical representation of optimal hyperplane separating negative examples (black
squares) from positive examples (white triangles).

The hyperplane, also called the decision boundary, can be characterized using a normal
vector (perpendicular) to that hyperplane, marked as ω in Figure 3. In order to see on
which side of the decision boundary an unknown vector u resides, a decision function
is utilized:

ω·u + b ≥ 0. (1)

In hard margin classification, the training consists of maximizing the margin such that
the decision rule (1) for positive data points (input vectors) yields values equal to or greater
than 1 (they lay outside of the margin and not merely on the right side of the decision
boundary) and smaller than or equal to −1 for negative input vectors:

yj(ω ·u + b) ≥ 1, whereyj =

{
+1 f or positive samples

−1 otherwise
. (2)

The margin maximization is equivalent to the minimization of

min
ω,b

1
2
∥ω∥2 (3)

Future Internet 2024, 16, 45 11 of 23

with respect to the constraint given in (2).
Hard margin classification is convenient when the data points are easily separable

and one wants to avoid misclassifications at all costs. In case of our attack, the initial
labels derived from the comparison to the mean method are known to be imprecise, and the
mislabeled data points would distort the decision boundary and the model might learn
wrong classifications. The idea is to introduce a regularization parameter to allow for some
data points to be left misclassified, keep the decision boundary smooth, and, therefore,
retain a large margin. An SVM model with regularization is called a soft margin classifier
and was introduced by Corinna Cortes and Vladimir Vapnik in 1995 [55]. The margin
maximization from (3) is modified as follows:

min
ω,b,ξ

1
2
∥ω∥2 + C∑n−2

j=1 ξ j. (4)

We denote each data point in the training set with the subscript j since we classify
each slot to belong to either the positive or negative class. The new slack variable ξ j
determines the distance from the misclassified sample (slot) to the decision boundary
(marked in Figure 3). It is a penalty term for every misclassification and is derived during
the training processes. The regularization parameter C takes values between 0 and 1 and
needs to be set before the training procedure as a hyperparameter. A value of 1 means
no regularization, and values close to 0 mean high regularization and hence a smaller
influence of misclassified data points on the decision boundary. The constraint from (2)
takes the following form for the soft margin classifier:

yj(ω ·u + b) ≥ 1 − ξ j∀j = 1, . . . , n − 2 and ξ j > 0 (5)

The training algorithm optimizes (4) given the constraint from (5), using every sample
from the training set xj as the unknown input vector u; in other words, it tries out different
hyperplanes separating the training set such that it maximizes the margin but satisfies
the constraint that all samples should lay outside of the margin with some tolerance of
samples laying on the wrong side of the decision boundary. The SVM training does not
explicitly result in ω. The decision boundary (the optimal hyperplane) is given as a linear
combination of support vectors, i.e., the vectors from the training set. Every ECSM iteration
processes either the key bit “zero” or “one”; therefore, all samples correspond to a single
ECSM iteration for one input vector during SVM training and classification. The samples
are compressed according to (8), which we describe in Section 7—the iterative framework.

6. Artificial Neural Networks

ANNs are built from layers of neurons, like the Neural Network presented in Figure 1.
Every single neuron in the network takes a weighted sum of all its inputs and returns, as
output, the result of a non-linear activation function. The naming convention comes from
biology, where the neuron is activated whenever the incoming signals from its synapsis
excite it above a certain threshold. The output of one neuron is connected to all neurons
in the next layer, where, again, a linear combination of all inputs is passed through a
non-linear activation function.

The process of ANN learning starts with random weight initialization for all neurons
in all layers. The input vector is processed by the network and some output value is
calculated. The output of the network will usually differ from the expected result (target),
and so, the error of the network is calculated using a loss (error) function. As the next
step, the error for each neuron is calculated and used by the optimization algorithm to
change the weights of the model. This process is repeated for each sample (input vector) in
the dataset. When the network has processed all vectors from the dataset, the process is
repeated until the error satisfies some condition or a predefined number of repetitions is
achieved. Every such iteration (processing of the entire dataset) is called an epoch in neural
network training. The training can be therefore seen as the optimization process to find the

Future Internet 2024, 16, 45 12 of 23

minimum of the cost function, which is parametrized by the weights of the model. The
weights, on the other hand, influence the decision function realized by the network itself.
They change the way the network makes its predictions. If the error in the training set is
very small, the network has learned how to exactly map the input vector to the output
target value but may fail to generalize well to other inputs not seen during the training.
Such a case is called overfitting, and we say that the model has high variance. The other
extreme is when the model does not perform well on the training set, due to either not
enough complexity or too few epochs in order to minimize the training loss (error). Such a
model has high bias and the training results in underfitting. The correct training approach
is to find a trade-off between variance and bias, choosing the model complexity that is
enough to approximate the target function but not too complex to avoid overfitting, like in
Figure 4. We need to include minimizing model complexity into the optimization target of
the training function, as well as not create overly complex networks for trivial problems.

Future Internet 2024, 16, x FOR PEER REVIEW 12 of 23

6. Artificial Neural Networks
ANNs are built from layers of neurons, like the Neural Network presented in Figure

1. Every single neuron in the network takes a weighted sum of all its inputs and returns,
as output, the result of a non-linear activation function. The naming convention comes
from biology, where the neuron is activated whenever the incoming signals from its syn-
apsis excite it above a certain threshold. The output of one neuron is connected to all neu-
rons in the next layer, where, again, a linear combination of all inputs is passed through a
non-linear activation function.

The process of ANN learning starts with random weight initialization for all neurons
in all layers. The input vector is processed by the network and some output value is cal-
culated. The output of the network will usually differ from the expected result (target),
and so, the error of the network is calculated using a loss (error) function. As the next step,
the error for each neuron is calculated and used by the optimization algorithm to change
the weights of the model. This process is repeated for each sample (input vector) in the
dataset. When the network has processed all vectors from the dataset, the process is re-
peated until the error satisfies some condition or a predefined number of repetitions is
achieved. Every such iteration (processing of the entire dataset) is called an epoch in neu-
ral network training. The training can be therefore seen as the optimization process to find
the minimum of the cost function, which is parametrized by the weights of the model. The
weights, on the other hand, influence the decision function realized by the network itself.
They change the way the network makes its predictions. If the error in the training set is
very small, the network has learned how to exactly map the input vector to the output
target value but may fail to generalize well to other inputs not seen during the training.
Such a case is called overfitting, and we say that the model has high variance. The other
extreme is when the model does not perform well on the training set, due to either not
enough complexity or too few epochs in order to minimize the training loss (error). Such
a model has high bias and the training results in underfitting. The correct training ap-
proach is to find a trade-off between variance and bias, choosing the model complexity
that is enough to approximate the target function but not too complex to avoid overfitting,
like in Figure 4. We need to include minimizing model complexity into the optimization
target of the training function, as well as not create overly complex networks for trivial
problems.

(a)

(b)

(c)

Figure 4. Three cases of model performance: (a) underfitting, (b) a good bias–variance trade-off, and
(c) overfitting, given training set samples (red X).

The complexity of the model grows with the number of its trainable parameters
(weights). Every non-zero weight increases complexity; therefore, keeping the absolute
value of weights small, or even dropping some connections, contributes to fighting over-
fitting, hence producing simpler decision functions. This can be achieved by using a reg-
ularization term during training or adding special dropout layers to the network.

Figure 4. Three cases of model performance: (a) underfitting, (b) a good bias–variance trade-off, and
(c) overfitting, given training set samples (red X).

The complexity of the model grows with the number of its trainable parameters
(weights). Every non-zero weight increases complexity; therefore, keeping the absolute
value of weights small, or even dropping some connections, contributes to fighting over-
fitting, hence producing simpler decision functions. This can be achieved by using a
regularization term during training or adding special dropout layers to the network.

If L is a loss function, parametrized by the input vector X, output value y, and vector
of all weights θ, then the regularized loss function, L̂, will be increased by the Lp norm
of θ. The regularization parameter λ specifies how much the norm of the weight vector
influences the loss function and needs to be set as a hyperparameter before training:

L̂(θ, X, y) = L(θ, X, y) + λ∥θ∥p. (6)

It is visible that keeping the norm small minimizes the regularized loss function.

7. The Iterative Framework

A power trace (PT) or electromagnetic trace (EMT) acquired during an ECSM operation
can be regarded as a sequence of its individual samples. The algorithm’s iterative nature, i.e.,
the processing of the key bit by bit, and its consistent time execution provide the opportunity
for the attacker to partition the samples into smaller segments, representing the individual
iterations of the ECSM operation, i.e., the handling of a single key bit. In the hardware
implementation, the ECSM iterations are equally long (54 clock cycles) and processed one
after another without any breaks; therefore, there is no need for a trace alignment step, like
in software implementations. We refer to segmented portions, the single ECSM iterations, as
“slots”. Within each cycle, there are S samples, determined by the oscilloscope’s sampling
rate Sampling_Rate and the clock signal frequency F: S = Sampling_Rate

F . In our experiments,
S = 625 samples, applying Sampling_Rate = 2.5 Gsample/sec and F = 4 MHz.

Future Internet 2024, 16, 45 13 of 23

Our framework consists of the following:

• A preprocessing step, wherein we compress all values in each clock cycle, i.e., we
represent S samples in each clock cycle using only a single value, which is calcu-
lated corresponding to the selected compression method; for example, it can be the
arithmetic mean of all S samples or the maximum value.

• Then, a horizontal attack is used to derive initial key candidates, which are expected
to be somewhat incorrect. We have applied the comparison to the mean method used
in [50] to have a baseline for our attack, but it could be some other statistical or
machine-learning-based attack, which produces initial key candidates.

• At the end, an iterative classification algorithm is used to improve the labeling and
hopefully extract the secret scalar. In [17], we used Support Vector Machines; here,
we introduce Artificial Neural Networks to the framework. The classifiers are trained
based on the initial key candidates derived from the horizontal attack, i.e., one classifier
per key candidate, and new candidates are computed. The new candidates are used for
subsequent training until the candidates do not change anymore between iterations.
We initialize new ANNs after every iteration of the framework although, according
to our experiments, there is no difference in the result of the framework whether we
reuse already-trained ANNs from the previous iteration or initialize new ones each
time. Both the SVM and ANN methods produce single classification for each slot. We
used compressed values as inputs, i.e., there are only 54 features, one for each clock
cycle of the ECSM iteration. The general idea is shown in Figure 5.

Future Internet 2024, 16, x FOR PEER REVIEW 13 of 23

If ℒ is a loss function, parametrized by the input vector 𝑋, output value 𝑦, and vec-
tor of all weights 𝜃, then the regularized loss function, ℒመ, will be increased by the Lp
norm of 𝜃. The regularization parameter 𝜆 specifies how much the norm of the weight
vector influences the loss function and needs to be set as a hyperparameter before training: ℒመሺ𝜃, 𝑋, 𝑦ሻ = ℒሺ𝜃, 𝑋, 𝑦ሻ + 𝜆‖𝜃‖. (6)

It is visible that keeping the norm small minimizes the regularized loss function.

7. The Iterative Framework
A power trace (PT) or electromagnetic trace (EMT) acquired during an ECSM opera-

tion can be regarded as a sequence of its individual samples. The algorithm�s iterative
nature, i.e., the processing of the key bit by bit, and its consistent time execution provide
the opportunity for the attacker to partition the samples into smaller segments, represent-
ing the individual iterations of the ECSM operation, i.e., the handling of a single key bit.
In the hardware implementation, the ECSM iterations are equally long (54 clock cycles)
and processed one after another without any breaks; therefore, there is no need for a trace
alignment step, like in software implementations. We refer to segmented portions, the sin-
gle ECSM iterations, as “slots”. Within each cycle, there are S samples, determined by the
oscilloscope�s sampling rate Sampling_Rate and the clock signal frequency F: 𝑆 = ௌ_ோ௧ி . In our experiments, S = 625 samples, applying Sampling_Rate = 2.5 Gsam-
ple/sec and F = 4 MHz.

Our framework consists of the following:
• A preprocessing step, wherein we compress all values in each clock cycle, i.e., we

represent S samples in each clock cycle using only a single value, which is calculated
corresponding to the selected compression method; for example, it can be the arith-
metic mean of all S samples or the maximum value.

• Then, a horizontal attack is used to derive initial key candidates, which are expected
to be somewhat incorrect. We have applied the comparison to the mean method used
in [50] to have a baseline for our attack, but it could be some other statistical or ma-
chine-learning-based attack, which produces initial key candidates.

• At the end, an iterative classification algorithm is used to improve the labeling and
hopefully extract the secret scalar. In [17], we used Support Vector Machines; here,
we introduce Artificial Neural Networks to the framework. The classifiers are trained
based on the initial key candidates derived from the horizontal attack, i.e., one clas-
sifier per key candidate, and new candidates are computed. The new candidates are
used for subsequent training until the candidates do not change anymore between
iterations. We initialize new ANNs after every iteration of the framework although,
according to our experiments, there is no difference in the result of the framework
whether we reuse already-trained ANNs from the previous iteration or initialize new
ones each time. Both the SVM and ANN methods produce single classification for
each slot. We used compressed values as inputs, i.e., there are only 54 features, one
for each clock cycle of the ECSM iteration. The general idea is shown in Figure 5.

Figure 5. The general structure of the unsupervised framework.

Figure 5. The general structure of the unsupervised framework.

7.1. Preprocessing

All samples belonging to a single clock cycle are compressed using a sum of squared
values, according to the following equation:

xi = ∑S
s=1 vi,s

2, (7)

Here, v is a sample captured by an oscilloscope, i denotes the clock cycle index in the
slot (1 ≤ i ≤ 54), and s is a sample number in the ith clock cycle (1 ≤ s ≤ S). There are
n − 2 slots, where n is the bit length of the key and can maximally amount to 233 in the
attacked design.

7.2. Horizontal Attack

We have applied the comparison to the mean method used in [50] to have a baseline
for our attack. Moreover, we have used the derived key candidates to initialize the semi-
supervised learning. The method works as follows.

Firstly, a mean slot is constructed, i.e., an arithmetic mean of the ith clock cycle in all
slots is computed, according to

xi =
∑n−2

j=1 xj,i

n − 2
. (8)

Here, j denotes the slot number (1 ≤ j ≤ n − 2). For each of the j slots, the value that
represents its ith clock cycle, i.e., the value xj,i, is compared against the corresponding
average value xi. If xj,i is higher than or equal to the average, we assumed that this slot

Future Internet 2024, 16, 45 14 of 23

corresponds to the processing of the key bit value ‘one’; otherwise, it corresponds to the
processing of the key bit value ‘zero’. The classification process can be described as below:

k̂i,j = 1 i f xj,i ≥ xi, otherwise k̂i,j = 0 (9)

This method results in 54 key candidates k̂i, i.e., one per clock cycle, but the attacker
also needs to try out the inverse of the key. The disadvantage of this method is that it
can only leverage information from one clock cycle and does not pick up the higher-order
information present in multiple clock cycles at once.

7.3. Neural Network Iterative Classification

The performed horizontal attack results in 54 key candidates, which we know can
contain only first-order leakage, since each of them is calculated based on only one clock
cycle. In [17], we used SVM to classify the traces; in this work, we have used Artificial
Neural Networks (ANNs) instead. The input to the classification algorithms contains
all clock cycles of a single ECSM iteration. We have used the compressed values (8) as
the input vector (the uncompressed scenario was computationally much more intensive).
Before being fed to the ANN or SVM, the input vector is standardized to zero mean and
unit standard deviation.

Since there are 54 key candidates, we have trained 54 completely separate ANNs with
the same hyperparameters. The hypothesis is that if the leakage is present in any of the
clock cycles, the associated ANNs should find the solution based on the partially correct
key candidate from that clock cycle obtained with the horizontal attack. It was shown
in [18] and in [17] that regularization helps in combating noisy labels and that this approach
is capable of improving the results of the attack.

In our case, the input vector of the ANN, just like for the SVM case, represents one
ECSM iteration and consists of compressed values of all clock cycles of that ECSM iteration
xj = (x1, x2, . . . , x54), so the input layer has a size of 54. The regularized network predicts
one output value for each ECSM iteration. After all input vectors are fed to the classifier,
we obtain the new key candidate, which is used to train another ANN with the same
hyperparameters. Our training set encompasses the entire trace; we do not hold any testing
set on the side. We derive the new key candidate by classifying all ECSM iterations and use
all ECSM iterations for subsequent training. The process continues either a fixed number
of times or until the key candidates do not change anymore between the rounds.

7.4. Attack Evaluation

As mentioned before, in a non-profiled scenario, we cannot tell whether the resulting
key bits have been correctly extracted or not until we compare them with the real key for
evaluation. The horizontal attack determines only which scalar bits belong together and
not which ones are “zeroes” and which are “ones”. Therefore, we always compare the
extracted key value and its inverse with the real key to determine the correctness of the
attack (similarly, the adversary needs to try out both solutions). If the keys’ correctness
is 0%, it means that all bits were guessed wrongly and the inverse of the key has 100%
correctness. We simplify the evaluation and express the correctness as a relative correctness
between 50% and 100%. Our attack is based on a univariate horizontal attack leveraging
the first-order leakage present in only a single clock cycle. From the designers’ point of
view, it is interesting to know which clock cycles contain (significant) SCA leakage; hence,
we always report the number of key candidates that extracted the key with a relative
correctness greater than 95%. It is also true for key candidates that were subsequently
corrected by the ANN since the initial key candidate was based on information from only
one clock cycle.

Future Internet 2024, 16, 45 15 of 23

8. Results

We firstly implemented our ANN using the scikit-learn’s MLPClassifier from version
1.3.2 [56] with the default parameters: one hidden layer with 100 neurons, the ReLu
activation function, and 200 training epochs, with a constant learning rate of 0.001 and
an Adam optimizer of cross-entropy loss. The Python version used was 3.9.18. Since we
wanted to investigate the influence of regularization on the success rate of the attack, the
only parameter we changed was the λ parameter for L2 regularization. Then, we wanted
to port this network into tensorflow v2.15.0 [57] to try out L1 regularization as well (it is
not available in sci-kit learn), but there seemed to be differences in the implementation of
regularization since the network with the exact same hyper parameters yielded different
results for the same values of the regularization parameter. The problem seems to be
known, but we have not found any answer for its cause. We were forced to repeat the
analysis for tensorflow, trying out the same λ parameters for L1 and for L2 regularization,
keeping other hyperparameters intact.

8.1. Search for Optimal L1 and L2 Parameters

We tried different regularization parameters and recorded the relative correctness of
our attacks. The λ parameter was changed by one order of magnitude at a time. The default
setting for scikit-learn is λ = 0.0001, and for tensorflow, λ = 0.01. Our intuition, based
on [17,18], was that the regularization should be higher than any default value, but because
of the discrepancy between the Python packages, we started our investigation for λ = 0.001
and finished with λ = 10. Every attack resulted in 54 key candidates, and we reported
only the best-performing key candidates’ correctness. We evaluated the power trace (PT)
and electromagnetic trace (EMT) of Design_seq and Design_ultra. We used scikit-learn
and tensorflow implementations while, in scikit-learn, only L2 regularization is available.
We also reported the maximal correctness for the horizontal attack using the difference
to the mean as “initial” and SVM results from [17] in Table 2. The SVM was not used in
this framework but is given for reference. We show the results after only one iteration of
ANN training.

The results from Table 2 show the relative correctness described previously at the end
of Section 7 (the iterative framework). The correctness tells us how many bits of the secret
key were correctly discovered. The higher the correctness is, the more successful the attack
was. The correctness is reported for the best-performing key candidate among 54.

We observed that the L2 regularization, which worked for the scikit-learn framework,
does not work the same way for tensorflow. The optimal values for every framework and
regularization type were different. The scikit-learn-based neural network performs best
with λ = 10, tensorflow L2 regularization with λ = 1, and L1 regularization with λ = 0.01.
The SVM outperformed all other methods for the first iteration. Similar to what was found
in [17], attacks against Design_ultra were less successful, showing how synthesis options
used during hardware compilation play significant roles in resistance against SCA attacks.
The subject was explained in [50].

Future Internet 2024, 16, 45 16 of 23

Table 2. Correctness of the best extracted key candidate after one iteration of the framework. The
SVM classification is just given for comparison.

λ

Analyzed Trace Method 0.001 0.01 0.1 1 10

Design_seq
(FPGA)

EMT

initial 96%

SVM C = 0.3 100%

scikit-learn L2 96% 100%

tensorflow L2 96% 98% 100% 98%

tensorflow L1 96% 99% 52% 57% 52%

Design_Seq
(FPGA)

PT

initial 88%

SVM C = 0.3 99%

scikit-learn L2 88% 94%

tensorflow L2 88% 91% 97% 69%

tensorflow L1 88% 53% 52%

Design_ultra
(ASIC)
EMT

initial 75%

SVM C = 0.3 90%

scikit-learn L2 75% 82%

tensorflow L2 75% 77% 84% 86%

tensorflow L1 75% 55% 56% 58%

Design_ultra
(ASIC)

PT

initial 74%

SVM C = 0.3 89%

scikit-learn L2 74% 81%

tensorflow L2 74% 76% 80% 84%

tensorflow L1 74% 75% 63% 52% 62%

8.2. Stopping Condition

In our second experiment, we decided to observe how the correctness changed
throughout the iterations. The predicted key candidates were used in the next iteration
as training labels for newly initialized neural networks. Just like in [17], we observed
that the longer the framework runs, the fewer bits change in all key candidates between
iterations. Therefore, we monitored the hamming distance (HD) between consecutive
key candidates to see whether the framework converges to any particular solution. Since
there are 54 candidates, each 230 bits long, the maximal cumulative hamming distance is
12,420. If all key candidates do not change between the iterations, the cumulative hamming
distance is 0 and the framework stops. We have reported the maximal correctness of the
last iteration (with a cumulative hamming distance of 0) for both designs in Table 3. We
have also included the SVM results from [17] although the results between the first and
last rounds of SVM did not differ. In the first row, we show the initial correctness of the
horizontal attack, just like in Table 2, and the correctness in the last iteration. We have also
reported how many iterations were needed to achieve no change between consecutive key
candidates for all ANNs. Both tables are connected in the following way: we have taken all
λ parameters and reported the results after the first iteration in Table 2. We continued the
training until the cumulative hamming distance was equal to zero and reported the result
of the last iteration in Table 3. Table 2 includes all λ parameters, and we have marked the
best parameters with a bold font. Only those best parameters are later shown in Table 3.
Since the attack was fully unsupervised, we tried out all λ parameters reported previously
in Table 2, but only summarized the best results in Table 3.

Future Internet 2024, 16, 45 17 of 23

Table 3. Attack results after letting the framework run until the cumulative hamming distance
amounted to 0.

Analyzed Trace Method Max Score Scores > 95% Iterations

Design_seq
(FPGA)

EMT

initial 96% 1 -

SVM C = 0.3 100% 4 1

scikit-learn L2 λ = 10 100% 5 43

tensorflow L2 λ = 1 100% 4 29

tensorflow L1 λ = 0.01 100% 4 41

Design_Seq
(FPGA)

PT

initial 88% - -

SVM C = 0.3 99% 1 1

scikit-learn L2 λ = 10 98% 1 34

tensorflow L2 λ = 1 98% 1 48

tensorflow L1 λ = 0.01 90% - 90

Design_ultra
(ASIC)
EMT

initial 75% - -

SVM C = 0.3 90% - 1

scikit-learn L2 λ = 10 97% 6 68

tensorflow L2 λ = 1 98% 4 64

tensorflow L1 λ = 0.01 79% - 52

Design_ultra
(ASIC)

PT

initial 74% - -

SVM C = 0.3 89% - 1

scikit-learn L2 λ = 10 94% - 97

tensorflow L2 λ = 1 92% - 39

tensorflow L1 λ = 0.01 74% - 56

Similar to the results presented in Table 2, the percentages of correctly guessed bits
in the best-performing key candidate have been reported. The higher a percentage is, the
lower the remaining brute-force complexity needed to uncover the real secret scalar is.
Moreover, we have reported the number of key candidates exceeding the 95% relative
correctness. Those candidates are connected with clock cycles where leakage is present,
i.e., during those clock cycles, some key-dependent operation is executed in hardware.
Although the scikit-learn and tensorflow implementations of regularization are different,
with the right choice of λ, both frameworks achieved similar correctness, with scikit-learn’s
small advantage of discovering more key candidates with correctness higher than 95%. It
took different numbers of iterations to achieve the stopping condition; therefore, we took a
look at how many iterations were actually needed to achieve the same correctness as in
the final iteration. We observed how the cumulative hamming distance changes between
iterations for each implementation, monitoring the maximal correctness of each iteration at
the same time.

In Figure 6, we show the results of the analysis for the scikit-learn implementation
reported in Table 3. We measured the cumulative hamming distance between two iterations
in the following way: for each of the 54 key candidates, we checked the hamming distance
between the initial key candidate, used for training in the nth iteration, and the resulting
key candidate, resulting from the classification of the entire power or electromagnetic trace
in the nth iteration of the framework. Since we were interested in finding the best stopping
condition, we wanted to focus on the last iterations, not the first; therefore, we have limited
the vertical axis when showing the cumulative hamming distance.

Future Internet 2024, 16, 45 18 of 23

Future Internet 2024, 16, x FOR PEER REVIEW 18 of 23

distance between the initial key candidate, used for training in the nth iteration, and the
resulting key candidate, resulting from the classification of the entire power or electro-
magnetic trace in the nth iteration of the framework. Since we were interested in finding
the best stopping condition, we wanted to focus on the last iterations, not the first; there-
fore, we have limited the vertical axis when showing the cumulative hamming distance.

(a) (b)

Figure 6. Trend of (a) the cumulative hamming distance of all key candidates and (b) the correctness
of the best key candidate throughout iterations of the framework trained using the ANN imple-
mented in scikit-learn with L2 regularization and λ = 10.

In general, we can observe that the cumulative hamming distance decreases through-
out iterations. This is not true for every pair of consecutive iterations, but a general trend
is visible. Moreover, we observed that low regularization parameters (0.0001, 0.001, 0.01)
resulted in just a repetition of the key candidates obtained during the horizontal attack.
The ANNs were simply trained to repeat the candidates, trusting the labelling completely.
If the labels do not change in the results of ANN training, it might be a good indicator that
the regularization parameter is too low. Unfortunately, we do not have any similar rec-
ommendation for the upper bound of λ. We have observed that independent from the
correctness of the results, λ values higher than 0.01 give a stable downward trend of the
cumulative hamming distances and that converging to the cumulative hamming distance
of 0 is no indicator of attacks� successfulness, i.e., although the key candidates do not
change anymore, they are not necessarily correct. The correctness of attacks did gradually
improve throughout iterations, but only in the case of the optimal regularization parame-
ters. In any other case, even high initial correctness ended up in random key guesses.

We also tried stopping the training of individual ANNs when only their respective
key candidates did not change between iterations, but this led to worse results; therefore,
even the global condition of achieving the cumulative hamming distance of zero might
not guarantee the highest possible correctness. It is possible that training beyond this level,
with appropriate regularization, will give even better results.

8.3. Number and Position of Best Key Candidates
Although ANNs leverage multivariate leakage information from all clock cycles,

every key candidate resulting from the horizontal attack is based on a single clock cycle
only. Those clock cycles can be considered leaking information and are the first to be in-
vestigated by the cryptographic implementation designer. Moreover, we investigated the
key candidates based on which our framework provided the best correctness, to see
whether the good correctness of the final result correlated with the good correctness of
the initial horizontal attack. We have shown, based on the scikit-learn implementation, the
initial and last round�s correctness for every clock cycle of a single ECSM iteration in Fig-
ure 7.

Figure 6. Trend of (a) the cumulative hamming distance of all key candidates and (b) the correctness
of the best key candidate throughout iterations of the framework trained using the ANN implemented
in scikit-learn with L2 regularization and λ = 10.

In general, we can observe that the cumulative hamming distance decreases through-
out iterations. This is not true for every pair of consecutive iterations, but a general trend
is visible. Moreover, we observed that low regularization parameters (0.0001, 0.001, 0.01)
resulted in just a repetition of the key candidates obtained during the horizontal attack.
The ANNs were simply trained to repeat the candidates, trusting the labelling completely.
If the labels do not change in the results of ANN training, it might be a good indicator
that the regularization parameter is too low. Unfortunately, we do not have any similar
recommendation for the upper bound of λ. We have observed that independent from the
correctness of the results, λ values higher than 0.01 give a stable downward trend of the
cumulative hamming distances and that converging to the cumulative hamming distance of
0 is no indicator of attacks’ successfulness, i.e., although the key candidates do not change
anymore, they are not necessarily correct. The correctness of attacks did gradually improve
throughout iterations, but only in the case of the optimal regularization parameters. In any
other case, even high initial correctness ended up in random key guesses.

We also tried stopping the training of individual ANNs when only their respective
key candidates did not change between iterations, but this led to worse results; therefore,
even the global condition of achieving the cumulative hamming distance of zero might not
guarantee the highest possible correctness. It is possible that training beyond this level,
with appropriate regularization, will give even better results.

8.3. Number and Position of Best Key Candidates

Although ANNs leverage multivariate leakage information from all clock cycles, every
key candidate resulting from the horizontal attack is based on a single clock cycle only.
Those clock cycles can be considered leaking information and are the first to be investigated
by the cryptographic implementation designer. Moreover, we investigated the key candidates
based on which our framework provided the best correctness, to see whether the good
correctness of the final result correlated with the good correctness of the initial horizontal
attack. We have shown, based on the scikit-learn implementation, the initial and last round’s
correctness for every clock cycle of a single ECSM iteration in Figure 7.

We can observe that the initial high correctness of the key candidate correlates with
the high correctness of the final result and, hence, the ANN increases the correctness via
subsequent training iterations. Please note that the performed attack results into a slightly
higher correctness of the best key candidates in comparison to the analysis of the same,
but uncompressed traces of Design_ultra, applying Fourier transformation [58], i.e., the
performed attack currently has the highest success rate against the optimized design.

Future Internet 2024, 16, 45 19 of 23Future Internet 2024, 16, x FOR PEER REVIEW 19 of 23

(a) (b)

(c) (d)

Figure 7. The correctness of each key candidate as an indication of leakage in a given clock cycle,
for initial horizontal attack (blue) and last iteration of the scikit-learn implementation (orange) for
(a) EMT of Design_seq, (b) EMT of Design_ultra, (c) PT of Design_seq, and (d) PT of Design_ultra.

We can observe that the initial high correctness of the key candidate correlates with
the high correctness of the final result and, hence, the ANN increases the correctness via
subsequent training iterations. Please note that the performed attack results into a slightly
higher correctness of the best key candidates in comparison to the analysis of the same,
but uncompressed traces of Design_ultra, applying Fourier transformation [58], i.e., the
performed attack currently has the highest success rate against the optimized design.

9. Conclusions
Similar to the framework used by Perin et al. in [18], we have shown that it is possible

to correct the initial key candidates resulting from a horizontal attack by training a highly
regularized machine learning classifier. We have proven that the right choice of the regu-
larization parameter can lead to breaking both analyzed Elliptic Curve Scalar Multiplica-
tion hardware accelerators with a high correctness. In our experiments, we increased the
results of the initial horizontal attack from 75% up to 98% using an ANN and achieved
better results than in our previous implementation using the SVM [17]. In this work, we
have also reached higher correctness than the authors of [58], attacking the same traces of
the design compiled with the compile_ultra setting. We have also shown that even simple
neural networks can be utilized without the need of leveraging deep learning architec-
tures although it must be noted that our implementations are very regular and no trace
synchronization is necessary. The proposed framework is fully unsupervised, in a way
that it does not require any knowledge about the cryptographic key, but it is very sensitive
to the choice of the regularization parameters, and possibly to other hyperparameters of
the neural network as well. Even more confusing is the fact that both open-source imple-
mentations of neural networks, scikit-learn and tensorflow, implement regularization in
different ways and even using the same hyperparameters renders differences in the attack
correctness and general attack performance. They also propose different values for default
parameters (scikit-learn sets λ = 0.0001, and tensorflow, λ = 0.01).

We have proposed a stopping condition for the iterative framework to be the cumu-
lative hamming distance between two consecutive key candidates, equal to zero (a sum of
the hamming distances of all candidates between two iterations). It is worth noting that
in our experiments, stopping any of the key candidates before the entire framework

Figure 7. The correctness of each key candidate as an indication of leakage in a given clock cycle,
for initial horizontal attack (blue) and last iteration of the scikit-learn implementation (orange) for
(a) EMT of Design_seq, (b) EMT of Design_ultra, (c) PT of Design_seq, and (d) PT of Design_ultra.

9. Conclusions

Similar to the framework used by Perin et al. in [18], we have shown that it is
possible to correct the initial key candidates resulting from a horizontal attack by training
a highly regularized machine learning classifier. We have proven that the right choice
of the regularization parameter can lead to breaking both analyzed Elliptic Curve Scalar
Multiplication hardware accelerators with a high correctness. In our experiments, we
increased the results of the initial horizontal attack from 75% up to 98% using an ANN and
achieved better results than in our previous implementation using the SVM [17]. In this
work, we have also reached higher correctness than the authors of [58], attacking the same
traces of the design compiled with the compile_ultra setting. We have also shown that
even simple neural networks can be utilized without the need of leveraging deep learning
architectures although it must be noted that our implementations are very regular and no
trace synchronization is necessary. The proposed framework is fully unsupervised, in a way
that it does not require any knowledge about the cryptographic key, but it is very sensitive
to the choice of the regularization parameters, and possibly to other hyperparameters
of the neural network as well. Even more confusing is the fact that both open-source
implementations of neural networks, scikit-learn and tensorflow, implement regularization
in different ways and even using the same hyperparameters renders differences in the
attack correctness and general attack performance. They also propose different values for
default parameters (scikit-learn sets λ = 0.0001, and tensorflow, λ = 0.01).

We have proposed a stopping condition for the iterative framework to be the cumula-
tive hamming distance between two consecutive key candidates, equal to zero (a sum of
the hamming distances of all candidates between two iterations). It is worth noting that in
our experiments, stopping any of the key candidates before the entire framework reached
the stopping condition, decreased the results of the attack. Therefore, waiting until all
candidates reach this point seems reasonable.

Our attack required trying out different magnitudes of the L2 regularization param-
eters, and if applied for different designs, it would probably require trying out different
hyperparameters. We provided an intuition on determining the lower band for the regular-
ization parameter. The regularization is not strong enough if the stopping condition is met
already after the first iteration, i.e., all key candidates simply do not change.

Future Internet 2024, 16, 45 20 of 23

Our framework could benefit from an analysis of which extracted key candidates have
the highest probability of being correct to reduce the remaining brute-force complexity and
leverage information from multiple side-channels during a single attack like in [38,59].

Author Contributions: Conceptualization, framework implementation, model training, optimal
parameter search, writing—original draft preparation, M.A.; cryptographic design implementation,
traces acquisition, statistical analysis, I.K.; writing—review and editing, Z.D., I.K. and P.L.; super-
vision and project administration Z.D. and P.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the corre-
sponding author. The data are not publicly available due to concerns associated with the publication
of sensitive information to comply with German export laws governing cryptographic hardware accel-
erators. The authors are highly motivated to publish the acquired power and electromagnetic traces,
knowing their importance for the Side Channel Analysis community; yet, this precautionary measure
is essential to prevent any potential risks or vulnerabilities that could arise from unauthorized access
to the disclosed information, ensuring compliance with legal and security protocols.

Conflicts of Interest: Marcin Aftowicz, Ievgen Kabin and Zoya Dyka are employee of IHP—Leibniz-
Institut für innovative Mikroelektronik. The authors declare no conflicts of interest.

References
1. Sinha, S. State of IoT 2023: Number of Connected IoT Devices Growing 16% to 16.7 Billion Globally. IoT Analytics GmbH, 24 May

2023. Available online: https://iot-analytics.com/number-connected-iot-devices/ (accessed on 3 November 2023).
2. Kocher, P.; Horn, J.; Fogh, A.; Genkin, D.; Gruss, D.; Haas, W.; Hamburg, M.; Lipp, M.; Mangard, S.; Prescher, T.; et al. Spectre

Attacks: Exploiting Speculative Execution. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, USA, 19–23 May 2019; pp. 1–19.

3. Lipp, M.; Schwaz, M.; Gruss, D.; Prescher, T.; Haas, W.; Mangard, S.; Kocher, P.; Genkin, D.; Yarom, Y.; Hamburg, M.; et al.
Meltdown. Available online: https://arxiv.org/pdf/1801.01207.pdf (accessed on 30 November 2023).

4. Pinto, S.; Rodrigues, C. Hand Me Your SECRET, MCU!: Microarchitectural Timing Attacks on Microcontrollers Are Practical.
Presented at the Black Hat Asia, Singapore, 9–12 May 2023; Available online: https://www.youtube.com/watch?v=xso4e4BdzFo
(accessed on 30 November 2023).

5. Daemen, J.; Rijmen, V. The Design of Rijndael: AES—The Advanced Encryption Standard; Springer: Berlin, Germany; London, UK, 2011.
6. Advanced Encryption Standard (AES), FIPS 197. Available online: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1

.pdf (accessed on 30 November 2023).
7. Rivest, R.L.; Shamir, A.; Adleman, L.M. Cryptographic Communications System and Method. U.S. Patent 4,405,829, 20

September 1983.
8. Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM

1978, 21, 120–126. [CrossRef]
9. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209. [CrossRef]
10. Miller, V.S. Use of Elliptic Curves in Cryptography. In Proceedings of the Conference on the Theory and Application of

Cryptographic Techniques, Santa Barbara, CA, USA, 18–22 August 1985; Springer: Berlin/Heidelberg, Germany, 2000; Volume
218, pp. 417–426. [CrossRef]

11. Shoup, V. A Proposal for an ISO Standard for Public Key Encryption. Available online: https://eprint.iacr.org/2001/112 (accessed
on 30 November 2023).

12. Johnson, D.; Menezes, A.; Vanstone, S. The Elliptic Curve Digital Signature Algorithm (ECDSA). Int. J. Inf. Secur. 2001, 1, 36–63.
[CrossRef]

13. Digital Signature Standard (DSS), NIST FIPS 186-4. Available online: https://csrc.nist.gov/pubs/fips/186-4/final (accessed on
30 November 2023).

14. Barker, E. NIST Special Publication 800-57 Part 1 Revision 5: Recommendation for Key Management; National Institute of Standards
and Technology: Gaithersburg, MD, USA, 2020. [CrossRef]

15. Kocher, P.C. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances in Cryptology—
CRYPTO’96: 16th Annual International Cryptology Conference, Santa Barbara, CA, USA, 18–22 August 1996; Koblitz, N., Ed.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1996; pp. 104–113. [CrossRef]

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings
of the 26th Annual Conference on Advances in Neural Information Processing Systems NeurlPS’12, 2012; Available online:
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf (accessed on 30
November 2023).

https://iot-analytics.com/number-connected-iot-devices/
https://arxiv.org/pdf/1801.01207.pdf
https://www.youtube.com/watch?v=xso4e4BdzFo
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://doi.org/10.1145/359340.359342
https://doi.org/10.1090/S0025-5718-1987-0866109-5
https://doi.org/10.1007/3-540-39799-x_31
https://eprint.iacr.org/2001/112
https://doi.org/10.1007/s102070100002
https://csrc.nist.gov/pubs/fips/186-4/final
https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.1007/3-540-68697-5_9
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf

Future Internet 2024, 16, 45 21 of 23

17. Aftowicz, M.; Kabin, I.; Dyka, Z.; Langendoerfer, P. Non-profiled semi-supervised horizontal attack against Elliptic Curve Scalar
Multiplication using Support Vector Machines. In Proceedings of the 26th Euromicro Conference Series on Digital System Design
(DSD), Durres, Albania, 6–8 September 2023.

18. Perin, G.; Chmielewski, L.; Batina, L.; Picek, S. Keep it Unsupervised: Horizontal Attacks Meet Deep Learning. IACR Trans.
Cryptogr. Hardw. Embed. Syst. 2020, 2021, 343–372. [CrossRef]

19. Hospodar, G.; Gierlichs, B.; De Mulder, E.; Verbauwhede, I.; Vandewalle, J. Machine learning in side-channel analysis: A first
study. J. Cryptogr. Eng. 2011, 1, 293–302. [CrossRef]

20. Jap, D.; Breier, J. Overview of machine learning based side-channel analysis methods. In Proceedings of the 2014 International
Symposium on Integrated Circuits, Singapore, 10–12 December 2014; pp. 38–41.

21. Heyszl, J.; Ibing, A.; Mangard, S.; de Santis, F.; Sigl, G. Clustering Algorithms for Non-profiled Single-Execution Attacks on
Exponentiations. In Sublibrary: SL 4, Security and Cryptology, Proceedings of the Smart Card Research and Advanced Applications: 12th
International Conference, CARDIS 2013, Berlin, Germany, 27–29 November 2013; Revised Selected Papers; Francillon, A., Rohatgi, P.,
Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2014; Volume 8419, pp. 79–93.
[CrossRef]

22. Perin, G.; Imbert, L.; Torres, L.; Maurine, P. Attacking Randomized Exponentiations Using Unsupervised Learning. In Proceedings
of the Constructive Side-Channel Analysis and Secure Design: 5th International Workshop, COSADE 2014, Paris, France, 13–15
April 2014; Revised Selected Papers. Prouff, E., Ed.; Springer: Cham, Switzerland, 2014; Volume 8622, pp. 144–160. [CrossRef]

23. Hodgers, P.; Regazzoni, F.; Gilmore, R.; Moore, C.; Oder, T. State-of-the-Art in Physical Side-Channel Attacks and Resistant
Technologies. Secure Architectures of Future Emerging Cryptography (SAFEcrypto) D7.1. February 2016. Available online: https:
//ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a63fd691&appId=PPGMS (accessed
on 30 November 2023).

24. Papachristodoulou, L.; Batina, L.; Mentens, N. Recent Developments in Side-Channel Analysis on Elliptic Curve Cryptography
Implementations. In Hardware Security and Trust: Design and Deployment of Integrated Circuits in a Threatened Environment; Sklavos,
N., Chaves, R., Di Natale, G., Regazzoni, F., Eds.; Springer International Publishing: Cham, Swtizerland, 2017; pp. 49–76.
[CrossRef]

25. Benadjila, R.; Prouff, E.; Strullu, R.; Cagli, E.; Canovas, C. Study of Deep Learning Techniques for Side-Channel Analysis and
Introduction to ASCAD Database. J. Cryptogr. Eng. 2018, 2018, 53.

26. Taouil, M.; Aljuffri, A.; Hamdioui, S. Power Side Channel Attacks: Where Are We Standing? In Proceedings of the 2021 16th
International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS), Montpellier, France, 28–30 June
2021; pp. 1–6.

27. Jovic, A.; Jap, D.; Papachristodoulou, L.; Heuser, A. Traditional Machine Learning Methods for Side-Channel Analysis. In Security
and Artificial Intelligence: A Crossdisciplinary Approach; Batina, L., Bäck, T., Buhan, I., Picek, S., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Swtizerland, 2022; Volume 13049, pp. 25–47. [CrossRef]

28. Krček, M.; Li, H.; Paguada, S.; Rioja, U.; Wu, L.; Perin, G.; Chmielewski, Ł. Deep Learning on Side-Channel Analysis. In Security
and Artificial Intelligence: A Crossdisciplinary Approach; Batina, L., Bäck, T., Buhan, I., Picek, S., Eds.; Lecture Notes in Computer
Science; Springer International Publishing: Cham, Switzerland, 2022; Volume 13049, pp. 48–71. [CrossRef]

29. Hettwer, B. Deep Learning-Enhanced Side-Channel Analysis of Cryptographic Implementations. Ph.D. Thesis, Ruhr-Universität
Bochum, Bochum, Germany, 2021. [CrossRef]

30. Picek, S.; Perin, G.; Mariot, L.; Wu, L.; Batina, L. SoK: Deep Learning-based Physical Side-channel Analysis. ACM Comput. Surv.
2023, 55, 1–35. [CrossRef]

31. Weissbart, L. 25519 WolfSSL. Available online: https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
(accessed on 30 November 2023).

32. Chmielewski, Ł. REASSURE (H2020 731591) ECC Dataset. Zenodo. 16 January 2020. Available online: https://zenodo.org/
records/3609789 (accessed on 30 November 2023).

33. Masure, L.; Dumas, C.; Prouff, E. A Comprehensive Study of Deep Learning for Side-Channel Analysis. IACR Trans. Cryptogr.
Hardw. Embed. Syst. 2019, 2020, 348–375. [CrossRef]

34. Jin, S.; Kim, S.; Kim, H.; Hong, S. Recent advances in deep learning-based side-channel analysis. ETRI J. 2020, 42, 292–304.
[CrossRef]

35. Kaur, J.; Lamba, S.; Saini, P. Advanced Encryption Standard: Attacks and Current Research Trends. In Proceedings of the 2021
International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), Greater Noida, India,
4–5 March 2021; pp. 112–116.

36. Batina, L.; Hogenboom, J.; Mentens, N.; Moelans, J.; Vliegen, J. Side-channel evaluation of FPGA implementations of binary
Edwards curves. In Proceedings of the 2010 17th IEEE International Conference on Electronics, Circuits and Systems—(ICECS
2010), Athens, Greece, 12–15 December 2010; pp. 1248–1251.

37. Kabin, I.; Dyka, Z.; Klann, D.; Mentens, N.; Batina, L.; Langendoerfer, P. Breaking a fully Balanced ASIC Coprocessor Implementing
Complete Addition Formulas on Weierstrass Elliptic Curves. In Proceedings of the 2020 23rd Euromicro Conference on Digital
System Design (DSD), Kranj, Slovenia, 26–28 August 2020; pp. 270–276. [CrossRef]

38. Specht, R.; Heyszl, J.; Kleinsteuber, M.; Sigl, G. Improving Non-profiled Attacks on Exponentiations Based on Clustering
and Extracting Leakage from Multi-channel High-Resolution EM Measurements. In Sublibrary: SL 4, Security and Cryptology,

https://doi.org/10.46586/tches.v2021.i1.343-372
https://doi.org/10.1007/s13389-011-0023-x
https://doi.org/10.1007/978-3-319-08302-5_6
https://doi.org/10.1007/978-3-319-10175-0_11
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a63fd691&appId=PPGMS
https://ec.europa.eu/research/participants/documents/downloadPublic?documentIds=080166e5a63fd691&appId=PPGMS
https://doi.org/10.1007/978-3-319-44318-8_3
https://doi.org/10.1007/978-3-030-98795-4_2
https://doi.org/10.1007/978-3-030-98795-4_3
https://doi.org/10.13154/294-8127
https://doi.org/10.1145/3569577
https://github.com/leoweissbart/MachineLearningBasedSideChannelAttackonEdDSA
https://zenodo.org/records/3609789
https://zenodo.org/records/3609789
https://doi.org/10.46586/tches.v2020.i1.348-375
https://doi.org/10.4218/etrij.2019-0163
https://doi.org/10.1109/DSD51259.2020.00051

Future Internet 2024, 16, 45 22 of 23

Proceedings of the 6th International Workshop on Constructive Side-Channel Analysis and Secure Design, Berlin, Germany, 13–14 April
2015; Revised selected papers; Mangard, S., Poschmann, A.Y., Eds.; Lecture Notes in Computer Science; Springer: Cham,
Swtizerland, 2015; Volume 9064, pp. 3–19. [CrossRef]

39. Kabin, I.; Aftowicz, M.; Varabei, Y.; Klann, D.; Dyka, Z.; Langendoerfer, P. Horizontal Attacks using K-Means: Comparison with
Traditional Analysis Methods. In Proceedings of the 2019 10th IFIP International Conference on New Technologies, Mobility and
Security (NTMS), Canary Islands, Spain, 24–26 June 2019; pp. 1–7.

40. Aftowicz, M.; Kabin, I.; Dyka, Z.; Langendoerfer, P. Clustering versus Statistical Analysis for SCA: When Machine Learning
is Better. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro,
7–10 June 2021; pp. 1–5.

41. Järvinen, K.; Balasch, J. Single-Trace Side-Channel Attacks on Scalar Multiplications with Precomputations. In Proceedings of the
Smart Card Research and Advanced Applications: 15th International Conference, CARDIS 2016, Cannes, France, 7–9 November
2016; Revised Selected Papers. Lemke-Rust, K., Tunstall, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 10146, pp. 137–155.
[CrossRef]

42. Aljuffri, A. Exploring Deep Learning for Hardware Attacks. Master’s Thesis, Delft University of Technology, Delft, The
Netherlands, 2018. Available online: http://resolver.tudelft.nl/uuid:c0dddd21-bdc1-4641-bd5d-4abdbd7fe35f (accessed on 30
November 2023).

43. Xu, T. A Novel Simple Power Analysis (SPA) Attack against Elliptic Curve Cryptography (ECC). Ph.D. Thesis, Northeastern
University, Boston, MA, USA, 2021. [CrossRef]

44. Nascimento, E.; Chmielewski, Ł. Applying Horizontal Clustering Side-Channel Attacks on Embedded ECC Implementations. In
Sublibrary: SL 4, Security and Cryptology, Proceedings of the International Conference on Smart Card Research and Advanced Applications,
Lugano, Switzerland, 13–15 November; Revised selected papers; Eisenbarth, T., Teglia, Y., Eds.; Lecture Notes in Computer Science;
Springer International Publishing: Cham, Switzerland, 2018; Volume 10728, pp. 213–231. [CrossRef]

45. Perin, G.; Chmielewski, Ł. A Semi-Parametric Approach for Side-Channel Attacks on Protected RSA Implementations. In
Sublibrary: SL 4, Security and Cryptology, Proceedings of the International Conference on Smart Card Research and Advanced Applications,
Bochum, Germany, 4–6 November 2015; Revised Selected Papers; Homma, N., Medwed, M., Eds.; Lecture Notes in Computer
Science; Springer: Cham, Switzerland, 2016; Volume 9514, pp. 34–53. [CrossRef]

46. Ravi, P.; Jungk, B.; Jap, D.; Najm, Z.; Bhasin, S. Feature Selection Methods for Non-Profiled Side-Channel Attacks on ECC. In
Proceedings of the 2018 IEEE 23rd International Conference on Digital Signal Processing (DSP), Shanghai, China, 19–21 November
2018; pp. 1–5.

47. Sim, B.-Y.; Kang, J.; Han, D.-G. Key Bit-Dependent Side-Channel Attacks on Protected Binary Scalar Multiplication. Appl. Sci.
2018, 8, 2168. [CrossRef]

48. López, J.; Dahab, R. Fast Multiplication on Elliptic Curves Over GF(2m) without precomputation. In Proceedings of the
International Workshop on Cryptographic Hardware and Embedded Systems, Worcester, MA, USA, 12–13 August 1999; Koç,
Ç.K., Paar, C., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 1717, pp. 316–327. [CrossRef]

49. Joye, M.; Yen, S.-M. The Montgomery Powering Ladder. In Proceedings of the International Workshop on Cryptographic
Hardware and Embedded Systems, Redwood Shores, CA, USA, 13–15 August 2002; Kaliski, B.S., Koç, C.K., Paar, C., Eds.;
Springer: Berlin/Heidelberg, Germany, 2003; pp. 291–302. [CrossRef]

50. Kabin, I. Horizontal Address-Bit SCA Attacks against ECC and Appropriate Countermeasures. Ph.D. Thesis, BTU Cottbus—
Senftenberg, Cottbus, Germany, 2023. [CrossRef]

51. IHP-Solutions: Foundry Service, SiGe BiCMOS Technology. Available online: https://www.ihp-solutions.com/services (accessed
on 8 January 2024).

52. Riscure, Driving Your Security forward—Riscure. Available online: https://www.riscure.com/ (accessed on 8 January 2024).
53. Langer EMV-Technik GmbH. Available online: https://www.langer-emv.de/de/index (accessed on 8 January 2024).
54. Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual

Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; pp. 144–152. [CrossRef]
55. Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [CrossRef]
56. Pedregosa, F.; Varoquaus, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
57. Google. TensorFlow. Available online: https://www.tensorflow.org (accessed on 22 February 2023).

https://doi.org/10.1007/978-3-319-21476-4_1
https://doi.org/10.1007/978-3-319-54669-8_9
http://resolver.tudelft.nl/uuid:c0dddd21-bdc1-4641-bd5d-4abdbd7fe35f
https://doi.org/10.17760/D20410367
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-31271-2_3
https://doi.org/10.3390/app8112168
https://doi.org/10.1007/3-540-48059-5_27
https://doi.org/10.1007/3-540-36400-5_22
https://doi.org/10.26127/BTUOPEN-6397
https://www.ihp-solutions.com/services
https://www.riscure.com/
https://www.langer-emv.de/de/index
https://doi.org/10.1145/130385.130401
https://doi.org/10.1007/BF00994018
https://www.tensorflow.org

Future Internet 2024, 16, 45 23 of 23

58. Kabin, I.; Dyka, Z.; Klann, D.; Aftowicz, M.; Langendoerfer, P. FFT based Horizontal SCA Attack against ECC. In Proceedings of
the 2021 11th IFIP International Conference on New Technologies, Mobility and Security (NTMS), Paris, France, 19–21 April 2021;
pp. 1–5.

59. Genevey-Metat, C.; Gérard, B.; Heuser, A. Combining sources of side-channel information. In Proceedings of the Cybersecurity
Conferences Series C&ESAR’19, Rennes, France, 2019; Available online: https://hal.science/hal-02456646v1/document (accessed
on 30 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://hal.science/hal-02456646v1/document

	Introduction
	Related Work
	Target Platforms
	Power and Electromagnetic Trace Acquisition
	SVM Classification
	Artificial Neural Networks
	The Iterative Framework
	Preprocessing
	Horizontal Attack
	Neural Network Iterative Classification
	Attack Evaluation

	Results
	Search for Optimal L1 and L2 Parameters
	Stopping Condition
	Number and Position of Best Key Candidates

	Conclusions
	References

