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Abstract: In this paper, we report a high-performance balun with characteristics suitable for future
broadband sub-THz differential circuits. The idea of the balun is based on three asymmetric coupled
lines, which enhance the odd mode capacitances to equalize the even/odd mode phase velocities.
The inner line of the three asymmetric coupled lines is configured to form the open stub (λ/2),
while the outer lines form short stubs (λ/4). To further reduce the phase imbalance, the short stubs
in one of the arms of the balun are connected with vias and a lower metal layer. The balun is
developed using the standard 130-nm SiGe BiCMOSback-end process and EM simulated with ADS
momentum and Sonnet. The −10-dB reflection coefficient (S11) bandwidth of the balun is 136 GHz
(88–224 GHz). It shows insertion loss (including RF pads) <1.5 dB, phase imbalance <7 degrees,
and amplitude imbalance <1 dB at 94–177 GHz. Furthermore, a scaled-down version of the balun
operates on the WR-6, WR-5, and WR-4 frequency bands without significant degradation in its
performance. Such characteristics of the balun make it an ideal candidate for various broadband
differential circuits.

Keywords: broadband balun; SiGe BiCMOS; THz balun; D-band; G-band; differential circuits

1. Introduction

With the recent advance in the operating speeds of solid-state devices, high-frequency transistors
based on SiGe BiCMOStechnology have been developed with fmax up to 500 GHz [1]. This has allowed
the development of various solid-state systems above 100 GHz. These systems have been successfully
demonstrated for numerous applications including radar, sensing, radiometric imaging, high-speed
wireless communication, and spectroscopy [2–9]. Generally, the basic circuit blocks used in these
systems are designed to have fully-differential configurations, which have the advantage of high
CMRR (common-mode rejection ratio) for common-mode noise cancellation.

Baluns are essential in constructing differential circuits as they transform single-ended
(unbalanced) input signals to differential (balanced) output signals or vice versa [10,11]. They are
required in the design and characterization of differential circuits such as voltage-controlled oscillators
(VCO), mixers, push-pull amplifiers, and frequency multipliers. Furthermore, single-ended antennas
can be connected to differential circuits via a balun. The parameters that assess the performance of a
balun are its input/output reflection coefficient, bandwidth, insertion loss, and phase and amplitude
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imbalance. Depending on the application, any deviation in the balun’s performance from the ideal
case can affect the inherent benefits of differential circuits. For instance, in characterizing broadband
differential circuits, such as distributed amplifiers or frequency multipliers, the bandwidth of the balun
itself must be larger than the circuits. In the case of mixers, the bandwidth, insertions loss, and phase
and amplitude imbalance of the balun can directly influence its conversion gain.

Baluns can be broadly divided into active and passive baluns [10–17]. Active baluns have
the advantage of a finite gain and occupy a very small area. However, they face linearity issues,
which can limit the dynamic range of solid-state circuits. Unlike active baluns, passive baluns do
not experiences noise and linearity issues. They can be further classified into lumped element and
distributed baluns [14]. The Marchand balun is a type of distributed balun, which exhibits wideband
characteristics. Several modifications of the conventional Marchand balun exist in the literature [14–20].
These modifications have been performed using different technologies (SiGe BiCMOS, CMOS) to
improve bandwidth, return loss, reduce the size, and decrease the phase and amplitude imbalance.
However, there are still some disadvantages associated with them in terms of limited operational
bandwidth, higher losses, or large amplitude and phase imbalances. Furthermore, some of them
occupy a larger chip area. Owing to the prominent applications above 100 GHz and the salient features
of differential circuits, a broadband balun with minimal losses and amplitude and phase imbalances is
highly desired.

Electromagnetic field theory plays a vital role in understanding the behavior of various systems
in designing engineered materials and devices for different applications. Recently, electromagnetic
field manipulation has been used to design various devices based on metasurfaces, metamaterials,
graphene, and plasmonics [21–26]. In the field of THz electronics, the electromagnetic field analysis
can assist in designing various passive structures such as baluns and power combiners and splitters.

In this work, we report the design of an edged coupled balun based on three asymmetric coupled
lines. First, we presented different capacitances associated with coupled lines that control the phase
velocities in the even/odd mode. Then, a balun based on three asymmetric coupled lines is designed
with IHP’s 130-nm SiGe BiCMOS back-end process to cover the frequency band of 110–220 GHz.
The three asymmetric coupled transmission lines increase odd mode capacitances, which improves the
balun’s performance parameters. This paper is organized in the following sections. Section 2 presents
the theoretical background of the balun. Then, in Section 3, the design and simulation results of the
balun are discussed. Finally, Section 4 presents the conclusion and future aspects of the balun.

2. Theoretical Background

The conventional Marchand balun is a three-port network, which consists of a λ/2 section and
two identical λ/4 sections. The principle operation of the balun relies on electromagnetic coupling
between a λ/2 open/short stub and two λ/4 short/open stubs. It can be design using even/odd mode
analysis of symmetric coupled transmission lines. The parameters that are important in its design are
even/odd mode impedances (ZOe, ZOo) and the electrical lengths of the coupled lines. Figure 1 shows
coupled lines with ports’ assignment (a) and the Marchand balun (b). The corresponding admittance
matrix of Figure 1a is given by [27,28],

Y =


Y11 Y12 Y13 Y14

Y21 Y22 Y23 Y24

Y31 Y32 Y33 Y34

Y41 Y42 Y43 Y44

 (1)

If a homogeneous medium is considered for the coupled lines, then, under even and odd mode
excitations, one can obtain the following equations,
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Y11 = Y22 = Y33 = Y44 = −j(YOo + YOe)
cot θ

2
(2a)

Y12 = Y21 = Y34 = Y43 = j(YOo −YOe)
cot θ

2
(2b)

Y13 = Y31 = Y24 = Y42 = −j(YOo −YOe)
csc θ

2
(2c)

Y14 = Y41 = Y23 = Y32 = j(YOo + YOe)
csc θ

2
(2d)

If θ = 90o (λ/4), then Equation (2) can be further simplified to,

Y11 = Y22 = Y33 = Y44 = 0 (3a)

Y12 = Y21 = Y34 = Y43 = 0 (3b)

Y13 = Y31 = Y24 = Y42 =
−j(YOo −YOe)

2
(3c)

Y14 = Y41 = Y23 = Y32 = Y42 =
j(YOo + YOe)

2
(3d)

The conditions for ideal balun operations are,

S11 = 0 (4a)

S21 = −S31 (4b)

Using Figure 1b and Equations (3) and (4), one can obtain the following design equations for
the balun,

YOo −YOe =
√

2YinYout (5a)

1
ZOo
− 1

ZOe
=

√
2

ZinZout
(5b)

ZOe
ZOo

= ZOe

√
2

ZinZout
+ 1 (5c)

ZOx =
1

c
√

Cx,airCx
(6a)

Vp,x =
c

√
εe f f ,x

(6b)

εe f f ,x =
Cx

Cx,air
(6c)

where the subscript x stands for odd or even mode excitation, ZOx is the characteristic impedance of
the coupled line, Vp,x is the phase velocity, εe f f ,x is the effective dielectric constant, and c is the speed
of light in a vacuum. The capacitance Cx can be further expended using Figure 2.

Co = Cp + C f + Cga + Cgd (7a)

Ce = Cp + C f + C f ′ (7b)

where Cp, C f , Cga, Cgd, and C f ′ are the parallel plate capacitance, fringing capacitance, gap capacitance
in air, gap capacitance in a dielectric, and fringing capacitance in even mode, respectively. Equation (5)
is valid if θ = 90◦, which requires even/odd mode phase velocities to be equal [20]. It also shows that
the large even/odd mode characteristic impedance ratio is required for the design of the balun, which
can result in low phase and amplitude imbalance. The ratio can be increased either by decreasing
the odd mode impedance or increasing even mode impedance. The odd mode impedance can be
decreased if the odd mode capacitances shown in Figure 2 are increased. Using three asymmetric
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coupled lines, the odd mode capacitances increase by almost twice the two coupled lines, which helps
in equalizing the even/odd mode phase velocities. Thus, it can result in low phase and amplitude
imbalance over a wide bandwidth.

Z

Z

θ 

Z

Z

1

2 3

4

ZO

(a)

Zin

ZoutZout

θ θ 

Open 

Circuit

1

23

(b)

Figure 1. Symmetric coupled line with ports’ definition (a) and the conventional Marchand balun (b).
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Figure 2. Capacitances of coupled lines under odd mode excitation (a) and even mode excitation (b).

A strong capacitive coupling is required for an edged coupled balun to have excellent performance,
which is proportional to the dielectric material and the area of the coupled lines and inversely
proportional to the gap separation between them. The coupling can be enhanced if either the lines
are placed very close to each other or lines with a large area and a material with a high dielectric
constant are used. However, the standard technologies such as 130-nm SiGe BiCMOS have some
limitations in terms of minimum separation between two conductors, and they must be separated by
some distance. Additionally, the dielectric constant of the material and thickness of the conductors
(which in the case of edge coupling, defines the area of the conductors) are fixed. This makes the
design of a wideband edged coupled balun based on two lines highly challenging. Alternatively,
three asymmetric coupled lines can be used to design the edged coupled balun, which can assist in
attaining the capacitive coupling needed for wideband performance without violating the design rules
of standard technologies. The coupling between asymmetric coupled lines can be adjusted with two
different sizes of gap separation. The two gaps together with the width of the coupled lines provide
extra design flexibility in controlling the even/odd mode capacitances (see Equation (7)).

3. Design of the Asymmetric Coupled Line Balun

Figure 3 shows IHP’s 130-nm SiGe BiCMOS back-end of the line (BEOL) process
cross-section [1,29,30]. The BEOL contains six metal layers including two thick low-loss metals
(TM2and TM1), which provide flexibility in choosing different metal layers for the balun design.
To design an edged coupled balun, one can use either lower metals (M1–M5) or top metals (TM2, TM1).
The TM2 and TM1 have a thickness of 3 µm and 2 µm, respectively, while the lower metals have a
thickness of roughly 0.49 µm. In edge-coupling where the thickness of conductors defines the area of
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the parallel plate, TM2 and TM1, respectively, will give six- and four-times higher coupling than lower
metals. This makes the lower metal not suitable to achieve strong mutual capacitive coupling in odd
mode. Furthermore, they can increase the insertion loss. Therefore, TM2 and TM1 were utilized in the
design of three asymmetric coupled lines, while M3 served as a ground plane.

Active Devices (Transistors, Polysilicon 

Resistors)

Si-substrate

TM2

TM1

MIM Capacitor

M5
M4

M2
M1

M3

Vias

Figure 3. The 130-nm SiGe BEOLprocess cross-section [29].

Figure 4 shows the 3D views of the conventional edged coupled balun (a) and the three asymmetric
coupled line balun (b). In the three asymmetric coupled line balun, the inner (λ/2) line is surrounded
by two (λ/4) lines. The widths (W1, W2) of the lines and separations (S1, S2) among them can be
adjusted to increase effective odd mode capacitance as discussed earlier. This helps in equalizing
the phase velocities for even and odd mode. In order to match the single-ended input impedance
(Zin) to 50 Ω and differential output impedance (Zout) to 100 Ω, the parameters (W1, W2, S1, and S2)
were determined through the parametric study of bandwidth, return loss, insertion loss and the phase
and amplitude imbalance of the balun. For instance, Figure 5 shows the effect of S1 and S2 on the
input reflection coefficient (S11), bandwidth, insertion loss, amplitude imbalance, and phase difference
of the asymmetric coupled line balun when all three ports were terminated in 50 Ω except for the
insertion loss, which was found by placing two baluns in a back-to-back configuration. As can be
seen, lower values of S1 and S2 provided a wider bandwidth (Figure 5a,b) and a small amplitude
imbalance (Figure 5c,d). However, the matching at the intermediate frequencies was not better than
−15 dB, which caused higher mismatch losses (Figure 5e,f) and a phase difference (Figure 5g,h) less
than 170 degrees (phase error ≥10 degrees). On the other hand, higher values of S1 and S2 enhanced
the matching at the intermediate frequencies, which resulted in lower losses and phase error at a
narrow bandwidth. The variation of S1 and S2 changed the even/odd capacitances discussed earlier
(see Figure 2). Therefore, intermediate values can be selected, which provide a wider bandwidth with
lower losses and amplitude and phase imbalance. A similar study can be performed on W1 and W2.
The optimal values for the parameters of the balun were W1 = 5 µm, W2 = 6.5 µm, S1 = 2.75 µm, and
S2 = 4.75 µm. The length of the λ/2 and λ/4 sections were adjusted around the center frequency ( fc)
of 150 GHz. Furthermore, two adjustment lines made of top metal (TM1) were added in the second
arm of the balun where the λ/2 was terminated in open circuit. These lines increased the length of
the second arm slightly to decrease the phase imbalance without affecting the amplitude imbalance.
A folded layout was used for the balun to reduce its size, which resulted in a small area of 0.0318 mm2.
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50 Ω 

TM2

W2

W1

S1

Balun 1: Conventional 

edged coupled balun

(a)

50 Ω 

TM2

TM1

W

W2

W2

W1

S1

S2

Balun 2: Three 

asymmetric coupled 

line balun
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Figure 4. 3D views of the conventional edged couple balun (a) and a three asymmetric coupled lines
balun (b), where different important parameters are shown. For the sake of simplicity, the ground
plane is not shown. The size of each balun is 215 × 148 µm2. Balun 1: conventional coupled line balun
without the inner lines; Balun 2: the three asymmetric coupled lines balun. W, width; S, separation.

To see the advantages of three asymmetric coupled lines over the conventional two coupled lines
in the balun design, the two baluns were EM-simulated in ADS momentum. The input and output
reflection coefficients were found for the single-ended 50 Ω and differential 100 Ω loads, respectively.
Figure 6 shows a comparison of the input and output reflection coefficients (S11 and S22) (a) and the
amplitude imbalance and phase difference (b) of the two baluns. In the case of Balun 1, S11 and S22 did
not matched well to their respective port impedances over a wide bandwidth, which resulted in a large
amplitude imbalance, as can be seen in Figure 6b. The main reasons for such performances were the
weak coupling between the coupled lines and the lower even-odd mode impedance ratios, resulting
in the even/odd mode phase velocity variation over the frequencies. In contrast, the asymmetric
coupled line balun not only improved the capacitive coupling, it also adjusted the even/odd mode
capacitances over a wider bandwidth, which enhanced the input and output matching and reduced
the amplitude imbalance in the frequency band of 88–224 GHz. The phase difference was very close to
±180◦ in both cases. The surface current distribution of the two baluns is shown in Figure 7 at 150 and
200 GHz. At these two frequencies, the magnitude of the surface current was varying significantly
for Balun 1, while it was almost similar for Balun 2. The surface current verified the performance
of the proposed asymmetric three coupled line balun over the conventional two coupled line balun.
Thus, the asymmetric coupled line balun improved the odd mode capacitances, which equalized the
even/odd mode phase velocities needed for a high performance balun.



Appl. Sci. 2019, 9, 1907 7 of 13

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0
 S 1  =  2 . 0 ,  S 2  =  4 . 7 5      S 1  =  2 . 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5    S 1  =  3 . 0 ,  S 2  =  4 . 7 5
 S 1  =  3 . 2 5 ,  S 2  =  4 . 7 5    S 1  =  3 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  4 . 2 5 ,  S 2  =  4 . 7 5

S 11
 (d

B)

F r e q u e n c y  ( G H z )

(a)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0- 3 0

- 2 5

- 2 0

- 1 5

- 1 0

- 5

0
 S 1  =  2 . 7 5 ,  S 2  =  2   S 1  =  2 . 7 5 ,  S 2  =  2 . 5
 S 1  =  2 . 7 5 ,  S 2  =  3   S 1  =  2 . 7 5 ,  S 2  =  3 . 5
 S 1  =  2 . 7 5 ,  S 2  =  4   S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  5

S 11
 (d

B)

F r e q u e n c y  ( G H z )

(b)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0

- 2

- 1

0

1

2  S 1  =  2 . 0 ,  S 2  =  4 . 7 5     S 1  =  2 . 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5   S 1  =  3 . 0 ,  S 2  =  4 . 7 5
 S 1  =  3 . 2 5 ,  S 2  =  4 . 7 5   S 1  =  3 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  4 . 2 5 ,  S 2  =  4 . 7 5

Am
pli

tud
e I

mb
ala

nc
e (

dB
)

F r e q u e n c y  ( G H z )

(c)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0

- 2

- 1

0

1

2
 S 1  =  2 . 7 5 ,  S 2  =  2    S 1  =  2 . 7 5 ,  S 2  =  2 . 5
 S 1  =  2 . 7 5 ,  S 2  =  3    S 1  =  2 . 7 5 ,  S 2  =  3 . 5
 S 1  =  2 . 7 5 ,  S 2  =  4    S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  5

Am
pli

tud
e I

mb
ala

nc
e (

dB
)

F r e q u e n c y  ( G H z )

(d)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0- 3 . 0

- 2 . 5

- 2 . 0

- 1 . 5

- 1 . 0

- 0 . 5

0 . 0
 S 1  =  2 . 0 ,  S 2  =  4 . 7 5     S 1  =  2 . 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5   S 1  =  3 . 0 ,  S 2  =  4 . 7 5
 S 1  =  3 . 2 5 ,  S 2  =  4 . 7 5   S 1  =  3 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  4 . 2 5 ,  S 2  =  4 . 7 5

Ins
ert

ion
 Lo

ss
 (d

B)

F r e q u e n c y  ( G H z )

(e)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0- 3 . 0

- 2 . 5

- 2 . 0

- 1 . 5

- 1 . 0

- 0 . 5

0 . 0
 S 1  =  2 . 7 5 ,  S 2  =  2    S 1  =  2 . 7 5 ,  S 2  =  2 . 5
 S 1  =  2 . 7 5 ,  S 2  =  3    S 1  =  2 . 7 5 ,  S 2  =  3 . 5
 S 1  =  2 . 7 5 ,  S 2  =  4    S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  5

Ins
ert

ion
 Lo

ss
 (d

B)

F r e q u e n c y  ( G H z )

(f)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0
1 6 6
1 6 8
1 7 0
1 7 2
1 7 4
1 7 6
1 7 8
1 8 0
1 8 2
1 8 4
1 8 6
1 8 8
1 9 0

 S 1  =  2 . 0 ,  S 2  =  4 . 7 5   
 S 1  =  2 . 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5  
 S 1  =  3 . 0 ,  S 2  =  4 . 7 5
 S 1  =  3 . 2 5 ,  S 2  =  4 . 7 5  
 S 1  =  3 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  4 . 2 5 ,  S 2  =  4 . 7 5

Ph
as

e D
iffe

ren
ce

 (d
B)

F r e q u e n c y  ( G H z )

(g)

8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 2 2 0 2 4 0
1 6 6
1 6 8
1 7 0
1 7 2
1 7 4
1 7 6
1 7 8
1 8 0
1 8 2
1 8 4
1 8 6
1 8 8
1 9 0

 S 1  =  2 . 7 5 ,  S 2  =  2   
 S 1  =  2 . 7 5 ,  S 2  =  2 . 5
 S 1  =  2 . 7 5 ,  S 2  =  3   
 S 1  =  2 . 7 5 ,  S 2  =  3 . 5
 S 1  =  2 . 7 5 ,  S 2  =  4   
 S 1  =  2 . 7 5 ,  S 2  =  4 . 7 5
 S 1  =  2 . 7 5 ,  S 2  =  5

Ph
as

e D
iffe

ren
ce

 (d
eg

ree
)

F r e q u e n c y  ( G H z )

(h)

Figure 5. Simulated input reflection coefficient (S11), amplitude imbalance, and phase difference for the
two gap (S1 and S2) variations with fixed widths of W1 = 5 µm and W2 = 6.5 µm. S11 under S1 (a) and
S2 (b) variation, amplitude imbalance under S1 (c) and S2 (d) variation, insertion loss of a single balun
under S1 (e) and S2 (f) variation, and phase difference under S1 (g) and S2 (h) variation. All parameters
are in µm, while absolute values of the phase difference are shown to clearly see the phase imbalance.
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Figure 6. Simulated input/output reflection coefficients (S11, S22) (a) and amplitude imbalance
and phase difference (b) of the two baluns.
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Figure 7. Simulated surface current distribution at 150 GHz of Balun 1 (a) and Balun 2 (b) and at
200 GHz of Balun 1 (c) and Balun 2 (d).

To validate the design of the asymmetric coupled line balun, it was also simulated in Sonnet
EM-simulator. Figure 8 shows a comparison of S11and S22 (a) and the amplitude imbalance and phase
difference (b) of the balun in the two software programs. A good correlation was found between the
two simulators. S11, S22 were below −10 dB for the frequency band of 88–224 GHz, which covers
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the entire WR-6 (110–170 GHz) and WR-5 (140–220 GHz) frequency bands. The −10 dB reflection
coefficient (S11) bandwidth of the balun was 136 GHz. An amplitude imbalance of ±1 dB with a phase
difference close to ±180◦ was found in the frequency range of 94–177 GHz.

Figure 9 shows the phase imbalance (a) and insertion loss (b) of the balun. The phase imbalance
was less than seven degrees. The minimum and maximum insertion losses of two back-to-back baluns
including RF-pads in the D-band were 2.45 and 3 dB, respectively, which exhibited less than 1.5 dB
of maximum insertion loss for the single balun. Above 200 GHz, the performances of the balun were
degraded due to mismatches. A simple re-scaling of the size of balun can improve its performance.
For this reason, the balun’s earlier dimensions of 215 × 148 µm2 were modified to 175 × 148 µm2, and
the resulting input/output reflection coefficients, insertion loss and phase and amplitude imbalances
are shown in Figure 10. As can be seen, S11, and S22 were improved over a wider frequency range of
106–266 GHz (WR-6, WR-5, and WR-4), which made the impedance bandwidth (S11 and S22 <−10 dB)
close to 160 GHz. The maximum losses of the single balun including RF-pad in WR-5 and WR-4 were
2.1 dB and 3.8 dB, respectively. The phase imbalance was less than seven degrees across all frequencies.
Furthermore, the amplitude imbalance was <1 dB at most of the frequencies. However, there were
some limitations arising from the frequency-dependent conductor losses and asymmetry of the balun
itself. These limitations resulted in higher amplitude imbalances, which were more visible at the
higher frequencies.
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Figure 8. Simulated S11, S22 (a) and amplitude imbalance and phase difference (b) of the asymmetric
coupled line balun in Sonnet and ADS momentum.
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Figure 9. Simulated insertion loss (a) and phase imbalance (b) of the asymmetric coupled line balun in
Sonnet and ADS momentum.
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Figure 10. Simulated S11, S22 insertion loss (a) and amplitude and phase imbalance (b) of the re-scaled
asymmetric coupled line balun.

Table 1 shows a summary of the various state-of-the-art baluns at different frequencies. It can be
clearly seen that both baluns reported in this paper outperformed, in terms of the critical parameter,
the existing baluns based on similar technologies. Most of the earlier baluns either presented higher
losses or limited bandwidth. Such performances of the balun are state-of-the-art, which makes
it highly suitable for the future broadband differential circuits for various applications including
imaging, spectroscopy, radar, and high-speed data communication. Furthermore, the balun reported
in this paper can be easily re-scaled to cover other frequencies of interest. However, due to the
frequency-dependent conductor losses and asymmetry of the balun, the re-scaling can cause slightly
higher amplitude imbalances at some frequencies.

Table 1. State-of-the-art balun comparison.

f (GHz) Technology Topology
Insertion Loss Amplitude Phase

Ref.(min.–max.) Imbalance Imbalance
(dB) (1) (dB) (degree)

16.5–67 180-nm Asymm.stack (1.1–4) 1 5 [15]CMOS

57–67 65-nm With grounded (1.5–3.5) 0.5 1 [16]CMOS T-bars

27.6–65.5 65-nm Stack (2.8–4.2) 0.8 8 [17]CMOS

20–67 130-nm Symm. (1.4–3) 1 4 [18]CMOS offset stack

34–110 180-nm Stack (1.7–4.7) 1.5 7 [19]SiGe BiCMOS

200–325 130-nm 3-line symm. (2.5–3.3) 1.5 10 (2) [20]SiGe BiCMOS edge coupled

88–224 130-nm 3-line asymm. (1.2–1.5) (3)
<1 <7 This Work #

SiGe BiCMOS edge coupled (1.2–3) (4)

106–262
130-nm

SiGe BiCMOS
3-line asymm.
edge coupled

(1.2–1.9) (3)

(1.2–2.1) (4)

(1.35–3.8) (5)

<1 (3)

<1.8 (4) <6.2 This Work #

# Results using EM simulation of the baluns in ADS momentum. (1) The 3-dB loss due to splitting is not
included. (2) Valid in the frequency band of 200–273 GHz. (3) Valid for the WR-6 band (110–170 GHz). (4) Valid
for the WR-5 band (140–220 GHz). (5) Valid for the WR-4 band (170–260 GHz).
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4. Conclusions

Two high performance baluns based on three asymmetric coupled lines have been presented.
The asymmetric coupled lines improved the odd mode capacitances, which increased the even/odd
mode impedance ratio over a wider bandwidth. Thus, lower values for the insertion loss and phase and
amplitude imbalance can be achieved over a wider bandwidth. The baluns have been developed with
the standard 130-nm SiGe BiCMOS BEOL process to cover the WR-6, WR-5, and WR-4 frequency bands.
State-of-the-art performances have been achieved in terms insertion loss, reflection coefficients and
phase and amplitude imbalances. In the future, the baluns can be utilized to design, test, or characterize
broadband differential circuits at sub-THz frequencies for various applications including radar,
imaging, spectroscopy, and high-speed data communication. Furthermore, the amplitude imbalances
coming from the conductor losses and asymmetry of the balun at higher frequencies can be addressed
in the future.
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