
Received 6 January 2024, accepted 16 January 2024, date of publication 19 January 2024, date of current version 25 January 2024.

Digital Object Identifier 10.1109/ACCESS.2024.3356051

Investigating the Security of OpenPLC:
Vulnerabilities, Attacks, and
Mitigation Solutions
WAEL ALSABBAGH , (Member, IEEE), CHAERIN KIM , AND PETER LANGENDÖRFER
IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
Wireless Systems, Brandenburg University of Technology Cottbus–Senftenberg, 03046 Cottbus, Germany

Corresponding author: Wael Alsabbagh (alsabbagh@ihp-microelectronics.com)

This work was supported in part by the German Federal Office for Information Security as part of the Echtzeitfähige
Machine-Learning-Lösungen für resiliente und sichere 5G/6G-Netze am Beispiel von Automatisierungsanwendungen (EMiL) project
under Grant 01MO23014C.

ABSTRACT Open-source Programmable Logic Controller (OpenPLC) software is designed to be
vendor-natural and run on almost any computer or low-cost embedded devices e.g., Raspberry Pi, Ardunio,
and other controllers. The aim of this project is to introduce an affordable and practical alternative solution
for the high-cost of real hardware PLCs, and has successfully gained substantial interest within both the
research and industrial communities. Due to its popularity grows, understanding its security vulnerabilities
and implementing effective mitigation strategies become crucial. Through a combination of threat modeling,
vulnerability analysis, and practical experiments, this article provides valuable insights for developers,
researchers, and engineers aiming to deploy OpenPLC securely in industrial environments. To this end,
we first conducted an in-depth analysis aimed to shed light on various security challenges and vulnerabilities
within the OpenPLC project. These encompass issues such as unauthorized access, vulnerabilities in
communication protocols, concerns regarding data integrity, the absence of robust encryption mechanisms,
etc. After that, we showed the research community what the consequences of those vulnerabilities would be if
they are exploited. To this end, we performed a sophisticated control logic injection attack that maliciously
modifies the user program run on the OpenPLC Runtime. Our injection was stealthy and not detected by
the legitimate user. Finally, we introduced a security-enhanced OpenPLC software called OpenPLC Aqua.
Our developed software is equipped with a set of security solutions designed specifically to address the
vulnerabilities to which current OpenPLC versions are prone. All our attack codes as well OpenPLC Aqua
software are publically available.

INDEX TERMS OpenPLC, OpenPLC Aqua, SCADA, vulnerabilities, cyberattacks, cybersecurity,
mitigation solutions.

I. INTRODUCTION
Industrial Control Systems (ICSs) play a crucial role in
automating critical and complex physical processes across
various domains, including production lines, electrical power
grids, oil and gas facilities, petrochemical plants, and
others. These ICS environments typically consist of two
fundamental components: a control center and a field
site. Within the control center, a suite of ICS services

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen .

operates, including Human Machine Interfaces (HMIs) and
engineering workstations. In contrast, at the field site,
a network of sensors, actuators, and Programmable Logic
Controllers (PLCs) is deployed to locally monitor and control
physical processes [1]. The engineering station contains an
appropriate software to configure and program PLCs. It uses
specialized programming software tailored to the specific
PLC vendor. This software empowers engineers to create con-
trol logics, which determine how PLCs should operate and
maintain the physical processes at their intended operational
state [2].

VOLUME 12, 2024


 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

11561

https://orcid.org/0000-0001-5235-0262
https://orcid.org/0009-0002-9665-4342
https://orcid.org/0000-0002-6209-9048
https://orcid.org/0000-0002-6502-472X


W. Alsabbagh et al.: Investigating the Security of OpenPLC

It is worthmentioning that there are two categories of PLCs
in the industrial market as shown in figure 1. In the following,
we explore each category in more detail.
Hardware PLCs: Hardware PLCs, or traditional PLCs,

are physical devices designed for industrial control and
automation. They consist of dedicated hardware compo-
nents, including a processor, input/output modules, and
communication interfaces. The hardware PLCs have a fixed
proprietary hardware architecture and execute control logics
that are completely coupled to the hardware. Such devices
are programmed using vendor-specific engineering software
which is also tightly coupled to a single or very limited
type of hardware from a single vendor. Hardware PLCs
are often employed in medium- and large-scale industrial
environments and provide deterministic as well as real-time
control for complex physical processes. A good example of
such PLCs is Rockwell CompactLogix 5480. This device has
a virtualized Logix control engine which is tightly coupled to
the very certain hardware.
Software PLCs:
Software PLCs are classified into two sub-categories

based on how hardware and software are partially/completely
decoupled from each other as follows.

- ‘‘Hardware specific’’ software PLCs:
This refers to software-based PLCs designed to run on

specific hardware configurations from the same vendor. Such
PLCs execute control logics that are partially decoupled from
the hardware, which allows users to run these control logics,
seamlessly, on different hardware models produced by the
samemanufacturer. However, this type of PLCs still has some
compatibility limitations when used with hardware devices
from the same vendor e.g., devices from two PLC generations
(non-cryptographically and cryptographically PLCs) [2], and
not compatible with hardware devices from different vendors.
A good example of such PLCs is S7-1500 PLCs provided
by Siemens. They can run control logics on different devices
from the same family and vendor.

- ‘‘Hardware agnostic’’ software PLCs:
The PLCs in this category are designed to be independent

of the underlying hardware, offering greater flexibility in
terms of hardware compatibility. These software PLCs can
run on a variety of hardware platforms, regardless of the
manufacturer. Users can choose hardware based on their
requirements, and the software PLC is expected to adopt
to different hardware configurations. Such PLCs are often
designed to adhere to open communication and programming
standards, promoting interoperability, and can be easily
scaled and adapted to different system sizes and complexities.
A good example of such PLCs is CODESYS software PLCs
which have a control logic engine that can run on multiple
hardware from different vendors.

Software-based PLCs, particularly the ‘‘hardware-
agnostic’’ variety, have garnered widespread popularity and
show promise in potentially supplanting traditional PLCs in
specific applications. This is owing to their numerous advan-
tages, including cost-effectiveness, flexibility, scalability,

energy efficiency, rapid adaptability, realistic simulation
capabilities, and seamless integration with IT systems—
attributes often lacking in traditional PLCs.

As illustrated in Figure 2, the prevalence of automation
systems relying on ‘‘hardware-agnostic’’ software PLCs
is anticipated to double from 3.5% in 2019 to 7% by
2025 within the broader industrial PLCs market [5]. This
shift is propelled by the utilization of diverse development
environments and platforms in the industrial sector, such
as CODESYS, TwinCAT (Beckhoff), Beremiz, PLCopen
Control Code Library (CCL), OpenPLC, MatPLC, SoftPLC,
among others. In the scope of this work, we deliberately
selected the OpenPLC project to conduct a comprehensive
security investigation. Our objectives encompass uncovering
vulnerabilities, executing sophisticated attacks, and fortifying
the overall security posture of the project.

A. OPENPLC PROJECT
In 2014, Alves introduced OpenPLC, an open-source
software-based PLC, as a cost-effective alternative to expen-
sive hardware PLCs [8]. Initially, the project aimed to
support the research community, enabling scientists and
academic researchers to establish small ICS environments
for their research experiments [9]. However, due to its
numerous advantages, OpenPLC has undergone significant
development in recent years and has found application in
small- to medium-scale industrial settings1 where cost is
a crucial factor. Moreover, OpenPLC has been adopted in
diverse contexts, including home automation systems, traffic
lights,2 water treatment plants, field area netowrk,3 and
the control of Heating, Ventilation, and Air Conditioning
(HVAC) systems [8]. Additionally, it has been utilized in
various agricultural settings for tasks such as controlling
irrigation systems, monitoring environmental conditions, and
managing machinery operations.

The popularity and widespread use of OpenPLC can
be attributed to its open-source nature, providing freely
accessible source code, and its alignment with the com-
mon programming languages specified by the International
Electrotechnical Commission (IEC) 61131-3 [10]. Moreover,
OpenPLC exhibits compatibility with a diverse array of
low-cost hardware devices, including Raspberry Pi, Arduino,
BeagleBone, and others. This level of flexibility empowers
engineers to both test and implement their control logic
programs on various real hardware platforms without being
confined to specific vendors or configurations.

However, despite these advantageous features, the software
poses significant security risks that could potentially expose
OpenPLC-based systems to various cyberattacks. These

1https://www.cs2ai.org/post/raspberry-pi-and-openplc-how-to-and-use-
cases

2https://andisama.medium.com/towards-industry-4-0-4-plc-
programming-a-traffic-light-controller-use-case-with-sfc-scada-
a12398ae2762

3https://www.rad.com/resources/Demo-Videos/Edge-Computing-IIoT-
OpenPLC-SCADA-Firewall

11562 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 1. Definition of hardware and software PLCs in the industrial market.

FIGURE 2. Global Industrial PLCs market: Percentages are based on PLCs employed in real-world automation systems [5].

vulnerabilities arise from OpenPLC’s susceptibility to a mul-
titude of software vulnerabilities, including but not limited
to buffer overflows, injection flaws, insecure communication
channels, privilege escalation, and more. Exploitation of
these vulnerabilities by malicious attackers can lead to severe
damage to the physical processes controlled byOpenPLC and
its associated hardware devices. Hence, careful consideration
and implementation of security measures are imperative to
mitigate these potential risks and ensure the robustness of
OpenPLC-based systems in industrial applications.

B. PROBLEM STATEMENT
Since the OpenPLC inception in 2014, the project has gar-
nered increasing interest and enthusiasm. However, despite
the considerable success achieved by the project, a critical
issue remains unaddressed: its susceptibility to cyberattacks.
This issue has significant concerns among engineers and

scientists who not only require cost-effective open-source
PLC solutions but also demand robust security measures to
protect against potential threats. In light of these pressing
concerns, urgent action is imperative. The OpenPLC must
undergo through investigation to identify and rectify its
vulnerabilities.

This article sheds light on the security vulnerabilities
within the OpenPLC project, thereby alerting both founder
and the boarder research community that the software is still
susceptible to cyberattacks, and skilled adversaries armed
with appropriate tools can inflict significant damages on
OpenPLC environments. Our investigations aim to raise
awareness about these security concerns within the project
and contribute to the identification of new vulnerabilities
and weaknesses inherent in the existing OpenPLC versions.
Our main focus is on comprehending the potential attack
vectors and illustrating the repercussions of exploiting these

VOLUME 12, 2024 11563



W. Alsabbagh et al.: Investigating the Security of OpenPLC

vulnerabilities. In pursuit of real world scenarios, we run
experiments against the last version of the OpenPLC, namely
OpenPLCV3, and have detailed our findings in this article,
bolstered by a proof-of-concept demonstration. Finally,
we introduce an enhanced iteration of the OpenPLC, referred
to as OpenPLCAqua. This upgraded software is developed to
provide a higher level of security, rendering it more resilient
against a diverse array of cyberattacks. We hope that this
new software will be a valuable resource for researchers and
engineers, enabling them to conduct their experiments with
confidence and free from security concerns.

C. SCOPE OF OUR WORK
In this work, we investigate the security of the OpenPLC
project, and highlight design flaws within the project that
allow attackers to pilfer executable programs, particularly
those located in the Webserver, and subsequently carry out
successful control logic injection attacks. We also emphasize
that the communication channels employed by the OpenPLC
software are susceptible to security risks. The absence of
encryption leaves sensitive data, such as user credentials,
control commands, configurations, etc., exposed to potential
interception, manipulation and compromise by attackers with
the ability to tamper with the integrity of data transmitted
over the network. To support our findings, we conducted a
sophisticated control logic injection attack that enables an
external adversary not only to gain unauthorized access to the
OpenPLC Runtime, but also to disrupt the controlled physical
process. Remarkably, this scenario can be executed without
prior knowledge of user credentials or specific details about
the specific physical processes controlled by the OpenPLC.

To address and mitigate all the vulnerabilities revealed by
our investigations, we introduce a more secure version of the
OpenPLC software in this article, named OpenPLC Aqua.
Our new software incorporates robust security measures to
enhance the overall security and reliability of the OpenPLC
project. One significant feature of OpenPLC Aqua is its
utilization of the Advanced Encryption Standard (AES)
algorithm to encrypt user credentials, including usernames
and passwords. The outputs of AES algorithm are then
encoded from binary to American Standard Code for
Information Interchange (ASCII). This approach prevents
potential attackers from intercepting user credentials in
plaintext or attempting to retrieve them from the OpenPLC
project files, such as the openplc.db database.

Furthermore, the OpenPLC Aqua enhances the security
of the project by restricting access to the Webserver and
openplc.db database, allowing only legitimate users with root
permissions. Unauthorized users are thus prevented from
accessing critical data e.g., control logics, user credentials,
and configuration settings. Additionally, OpenPLC Aqua
introduces a novel whitelisting function that permits only
pre-approved or trusted users to upload a new program into
the OpenPLC Runtime. This function aims to detect any
malicious attempts to manipulate the running program by an
unauthorized user.

Finally, our new software ensures the security of all data
transmitted between the client (user) and server (Open-
PLC) over the internet by implementing Secure Sockets
Layer/Transport Layer Security (SSL/TLS) protocol. This
safeguard guarantees the confidentiality of information, ren-
dering it inaccessible to malicious attackers and preventing
eavesdropping and data tampering.

D. COMPARING OUR WORK TO OTHERS
Reviewing the prior research works, as listed in table 1,
showed that, until this point, there are no comprehensive
papers have delved into the full spectrum of security aspects
related to the OpenPLC project. This includes investigating
new vulnerabilities, potential attacks and introducing cor-
responding security solutions. In the following subsections,
we spotlight the differences between our work and the
previous ones related to the OpenPLC theme.

1) INVESTIGATING THE SECURITY OF OPENPLC PROJECT
The security of the OpenPLC software was examined by
Xinxin in [16]. The author analyzed the four phases of
the OpenPLC’s Runtime operation and monitored all the
hook functions of linux kernel Security Modules (LSM).
This investigation revealed several serious vulnerabilities
in the software e.g., ST file integrity issues, susceptibility
of associated memory to tampering, insecure network
communications, andmore. Based on this findings, the author
developed a security-enhanced software named AESI-PLC.
This new software offers improved resistance against MitM
attacks, replay attacks, and command injection attacks when
compared to the original OpenPLC software.

However, the author didn’t consider the possibility of a
control logic injection attack, precisely a stealthy attack sce-
nario as outlined in Section IV. In our article, we conducted
a comprehensive security assessment of the entire OpenPLC
project, not just the OpenPLC Runtime, as done by Xinxin.
Our investigation revealed additional vulnerabilities in the
project files, communication protocols, and design flaws.
These findings are detailed in Section III.

2) A SOPHISTICATED CONTROL LOGIC INJECTION ATTACK
Several research works introduced attack scenarios targeting
the OpenPLC software and related systems. For instance,
Alves and Morris [9] conducted a study wherein they
demonstrated a Modbus command injection attack targeting
PLCs from different vendors (Schneider, Siemens, Omron
and OpenPLC). The authors evaluated the behavior of each
device under such an attack. Their approach aimed to rapidly
send write messages to the Modbus holding register ‘‘0’’
on the target PLC, with the intention of overwriting the
internal count on the target PLCwith the value ‘‘99’’. Another
research group performed a command injection attack against
OpenPLC [11]. The author exploited a security vulnerability
in the ‘‘Hardware Layer Code Box’’ within the OpenPLC
Runtime, successfully executing an arbitrary code via this
box. By overwriting a specific code in the vulnerable code

11564 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

TABLE 1. Related works discussing the security of OpenPLC project.

box, the author could establish a communication between
the attacker’s machine and OpenPLC. However, the founder
of the OpenPLC project responded to this attack by discon-
tinuing the ‘‘Hardware Layer Code Box’’ and replacing it
with a Python Sub Module (PSM) Code Box. The authors
of [12] introduced two attack scenarios against the OpenPLC.
In the first scenario, they placed the attacker’s machine in a
Man-in-the-Middle (MitM) position between the OpenPLC
Runtime and the HMI Builder. Subsequently, they initiated
a False Data Injection (FDI) by injecting false data through
the Manufacturing Message Specification (MMS) messages
in the OpenPLC. In the second scenario, they impersonated
the HMI and injected false commands into the PLC.
Alsabbagh et al. [13] conducted a stealthy FDI attack scenario
using a virtual system that incorporated OpenPLC and its
HMI Builder. The authors created a database containing real
Modbus request-response pairs (captured prior to the attack)
exchanged between the OpenPLC and HMI stations. Their
attack approach generated two independent communication
channels: one between the OpenPLC Runtime and the
attacker, and the other between the attacker and HMI Builder.

In opposite to all previous works, this article pioneers
the examination of the OpenPLC’s control logic program.
Furthermore, it conducts a sophisticated attack scenario
that combines various techniques, including unauthorized
access, MitM, replay, and control logic injection attacks. Our
injection technique is insidious, evading detection by typical
security measures such as Intrusion Detection Systems
(IDSs) and Intrusion Prevention Systems (IPSs), leaving the
user unaware of the ongoing attack on the target system.

Notably, our work marks the first instant of an attack that
manipulates the information displayed on the OpenPLC
Runtime dashboard, presenting users with falsified data,
showing the user what he is expecting to see.

3) ADDRESSING THE DISCLOSED VULNERABILITIES -
OPENPLC AQUA
Researchers have actively been developing the OpenPLC
project in the recent years. Their developments include more
security features, communication protocols, programming
languages, etc. For example, in 2017, Alves et al. [15]
introduced an enhanced version of the OpenPLC project
called OpenPLC Neo. The new enhancement incorporated
an AES Layer positioned between the Webserver and the
external network. This AES encryption layer secures all
messages transmitted from the OpenPLC to an external
client (e.g., user, HMI, etc.) by employing a symmetric
key, and forwards then the corresponding ciphertext to the
external network. Conversely, it decrypts received messages
using a symmetric key provided by the user, and then
transmits them to the network layer for further processing.
The OpenPLCNeo establishes a secure end-to-end encrypted
channel between the PLC and user or HMI, eliminating
the need for external hardware to encrypt data. However,
the project’s security hinges entirely on the confidentiality
and integrity of the encryption keys. Therefore, improper
key management, such as weak, compromised, or poorly
stored keys, could undermine the overall security of the
AES encryption, exposing OpenPLC Neo to cyberattacks.
In 2021, Roomi et al. [19] introduced the OpenPLC61850

VOLUME 12, 2024 11565



W. Alsabbagh et al.: Investigating the Security of OpenPLC

as another enhancement of the OpenPLC project. This
updated version supports IEC 61850 protocols, including IEC
61131-3 standard for programming PLC logics, and uses
the MatIEC compiler for logic program compilation. In a
follow upwork, Roomi et al. [12] assessed the vulnerability of
the OpenPLC61850 software to network-based attacks e.g.,
false data and command injections. Their attack scenarios
successfully manipulated different Circuit Breaker (CB)
connected to OpenPLC. However, Roomi did not introduce
particular security solutions to safeguard the OpenPLC61850
against cyberattacks and only recommended incorporating
the security measures proposed in [20] as a part of forthcom-
ing research. Zheng et al. [17] proposed an active real-time
anomaly detection framework integrated with the OpenPLC
software, precisely in the control logics. They implemented
and tested their approach in an ICS virtual simulation
platform called GRFICS (Graphical Realism Framework For
Industrial Control Simulations) [18]. The authors managed
successfully to identify multiple threats e.g., replay, data
tempering and delay attacks. Another research group [24]
proposed a test-bed using OpenPLC for control system
security. The authors introduced a whitelisting function that
register normal operations on the list and register operations
that are not registered. Such operations includes communica-
tion commands, execution orders and configurations. Their
proposed approach could detect zero-day attacks and illegal
commands.

In this article, we present OpenPLC Aqua, an enhanced
OpenPLC software, implementing a suite of security solu-
tions tailored to address all the vulnerabilities present in
current versions. The architecture of the OpenPLC Aqua
encompasses four key security features: 1) encryption of
user credentials, 2) restricted accessibility, 3) whitelisting
approach, and 4) secure communication channels. To validate
the security of our new software, it underwent rigorous testing
against several attacks that were feasible against the older
OpenPLC versions. Our results showed that the OpenPLC
Aqua successfully thwarted all the conducted attacks.

E. CONTRIBUTION
Our main contributions in this work are summarized as
follows:

- Thorough Security Investigation of OpenPLC soft-
ware: in contrast to prior research on OpenPLC security,
our work provides a comprehensive investigation,
revealing several vulnerabilities within the design of the
OpenPLC project.

- Pioneering Control Logic Injection Attack against
OpenPLC based Systems: this article introduces the
first control logic injection attack tailored for Open-
PLC and related applications/systems. Our injection
approach maliciously alters the ongoing user program,
thereby causing confusion in the physical process
controlled by the compromised OpenPLC.

- Concealing of Malicious Injection: to heighten
the severity and stealthiness of our attack scenario,

FIGURE 3. Attacker model [4].

we exploit security flaws in project files, effectively
masking the attack from legitimate users who remain
unaware of the ongoing injection.

- Development of Enhanced OpenPLC Software
(OpenPLCAqua): building upon our findings, we have
enhanced the OpenPLC software by introducing a more
secure version known as OpenPLC Aqua. This new
software addresses the vulnerabilities present in current
OpenPLC versions while remaining compatible with
the same hardware devices as the older versions. Our
OpenPLC Aqua is publically available for academic
researchers and industrial engineers.

F. METHODOLOGY
1) ATTACKER MODEL
Figure 3 depicts the attacker model we used in this article to
conduct all our investigations and experiments.

As can be seen, the attacker is situated within the control
center and possesses access to the same network as the
OpenPLC.

2) ATTACK TECHNIQUES
All the attack scenarios presented in this work were
conducted with the help of MITRE ATT@CK knowledge

11566 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

base of adversary tactics and techniques [21]. They are
discussed as follows under the given ICS context.

- T1555 - Credentials from Password Stores. In this
scenario, the attacker initiates a crafted request to
retrieve the most recently entered password.

- T1040 - Network Sniffing. The attacker engages in
network traffic interception during authentication and
when uploading a new program.

- T1040 - Unauthorized Password Reset. In this case,
the attacker sends a crafted request to reset the password
without proper authorization.

- T1110.002 - Password Cracking. The attackers exploit
vulnerabilities to crack a password, particularly when
they can intercept and analyze network traffic.

- T830 - Man in the Middle (MitM). In this tactic, the
attacker positions himself between the machine running
the engineering software and the PLC. This is achieved
by poisoning the Address Resolution Protocol (ARP)
cache of the two machines to manipulate data flow.

- T0831 - Manipulating the Control. Here, the attacker
makes changes to set points value, tags, or other param-
eters to manipulate the control of physical processes.

- T0889 - Modify Program. In this scenario, the attacker
alters or introduces a program on a PLC to affect its
interactions with physical processes, peripheral devices
and other network hosts.

- T0843 - Program Upload. Here, the attacker initiates a
program upload, transferring a user-program to a PLC.

3) SOFTWARE AND TOOLS
In this work, we used the following software and tools to
analyze the security of the OpenPLC project and conduct our
experiments.

- OpenPLC software: we utilized the last version of
OpenPLC, namely OpenPLCv3.4

- ScadaBR5 software: to create an HMI for the Open-
PLC, making it easier to monitor and control the
physical process.

- Network Analyzer: we used the Wireshark6 to monitor
all the packets transmitted between the connected
stations i.e., between the OpenPLC and User machine.

- PythonLibraries: sqlite37 for storing the captured data.
Fnmatch8 for identifying the location of the OpenPLC
files. Requests9 to send HTTP packets. OS10 to access
the project files and modify them. hashlib11 to create
message digest for the Whitelisting function. Base6412

to convert bytes into srting for data storage. Pycrypto13

4https://github.com/thiagoralves/OpenPLC_v3
5https://github.com/ScadaBR
6https://www.wireshark.org/
7https://docs.python.org/3/library/sqlite3.html
8https://docs.python.org/3/library/fnmatch.html
9https://pypi.org/project/requests/
10https://docs.python.org/3/library/os.html
11https://docs.python.org/3/library/hashlib.html
12https://docs.python.org/3/library/base64.html
13https://pypi.org/project/pycrypto/

to encrpyt password with AES algorithm. Os.urandom14

to create random keys for the encryption process.
The rest of the article is organized as shown in figure 4.

Section II provides an architecture overview of the OpenPLC
project, while Section III shows our security investigations
and the vulnerabilities we found in the current OpenPLC
software. In Section IV, we demonstrate a control logic
injection attack against an OpenPLC based environment,
followed by security solutions to close the vulnerabilities as
well as the architecture of our new OpenPLC Aqua software
in Section V. In Section VI we evaluate our new software
and discuss our results, while Section VII concludes this
article. A proof-of-concept, along with the attack codes and
the OpenPLC Aqua software are found in Section VIII.

II. ARCHITECTURE OVERVIEW
A. OPENPLC OVERVIEW
The OpenPLC project is comprised of three main compo-
nents: Editor, Runtime and HMI Builder as shown in figure 5
(highlighted in blue). In the following, we provide more
technical details of each component.

1) OPENPLC EDITOR
The OpenPLC Editor is a programming software environ-
ment, providing users with set of tools to develop control
logic programs using graphical and textual programming
languages specified by the IEC 61131-3 standard e.g.,
Function Block Diagram (FBD), Ladder Diagram (LD),
Structured Text (ST), Instruction List (IL), and Sequential
Function Chart (SFC). While users have the flexibility to
choose their preferred programming language, the OpenPLC
Editor ultimately compiles all programs into ST files. Each
compiled program is then stored on the Webserver before
being transmitted to the OpenPLC Runtime upon an upload
request. To compile the programs into ST files, the Editor
incorporates an integrated module known as PLCopen XML.
When a user wishes to execute a new program on the
OpenPLC Runtime, the software recalls the ST file copy of
the program from theWebserver and sends it to the OpenPLC
Runtime through the port 8080.

2) OPENPLC RUNTIME
The OpenPLC Runtime serves as the central component of
the OpenPLC project, functioning as an open-source platform
that emulates a real hardware PLC. In essence, it executes
and monitors control logic programs developed by users,
operating in real-time, the OpenPLC Runtime boasts the
capability to swiftly respond to input signals and manage
output actions with minimal latency. This attribute renders it
highly suitable for a diverse sorts of industrial applications.
Within the OpenPLC Runtime, a built-in compiler, known
as MatIEC, is designed to compile the ST files received
from the Webserver into C files. This is necessary because
the OpenPLC Runtime is designed to exclusively read and

14https://docs.python.org/3/library/os.html

VOLUME 12, 2024 11567



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 4. Article structure diagram: boxes in blue indicate the sections, boxes in grey indicate the subsections and boxes in orange
indicate the sub-subsections.

execute C files. It is worth mentioning that the MatIEC
compiler operates internally, converting user programs from
their high-level code formats (ST files) to executable code
(C files) within the OpenPLC Runtime. Consequently, users
do not have direct access to the resulting C files. This
compilation process occurs whenever the user presses the
‘‘Upload’’ button on the OpenPLC Runtime. Following a
successful compilation, the final C file is uploaded and ready
for execution. In contrast to typical PLCs, the OpenPLC
Runtime does not automatically enter a ‘‘START’’ mode upon
completing the uploaded process. Instead, it necessitates
manual activation by the operator to execute the new program
and starts the OpenPLC Runtime.

Operators can upload, modify, update, execute, and remove
control logic programs within the OpenPLC Runtime envi-
ronment. To do so, user authentication is required, involving
a correct username and password. For the first login, the
project is protected by a default account with the username
and password both set as ‘‘openplc’’. After the initial login,
users can change the user credentials, create new user
accounts, and upload new programs in ST file format. The
Webserver operates on port 8080, and users can access the
OpenPLC Runtime by entering ‘‘localhost:8080’’ into their
web browser. Among many functions, the Webserver stores
user credentials in a database named openplc.db, located
within the internal OpenPLC project’ files. It is essential to

11568 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 5. OpenPLC architecture [21].

note that the openplc.db also stores critical information e.g.,
upload programs, registered user accounts, configurations,
and others.

User accounts are uniquely identified by a ‘‘user_id’’
assigned by the OpenPLC, which is used to access account
information such as user credentials, programs, configura-
tions, and more. Similarly, each uploaded program to the
OpenPLC Runtime is assigned by a unique identifier known
as ‘‘prog_id’’, along with general information including
the program’s name, date, and location. Both ‘‘prog_id’’
and ‘‘table_id’’ identifiers are employed by the OpenPLC
Runtime to locate the specific program that the user intends to
execute. The ‘‘user_id’’ is used when accessing the details of
a registered account. As more files are uploaded, the unique
identification number incrementally increases. Furthermore,
within the OpenPLC project, there is a so-called ‘‘active-
program’’ index, which denotes the copy of the compiled
program (ST file) stored in the Webserver. If the ‘‘active-
program’’ is empty or its value does not correspond to any
of the existing copies in the Webserver, the upload process
fails, and the OpenPLC Runtime remains inactive. It is worth
mentioning that all the communication sessions between
the user and OpenPLC Runtime are established through the
Hypertext Transfer Protocol (HTTP).

3) HMI BUILDER
Like most other real hardware PLCs, the control logic in
OpenPLC Runtime operates in a cyclical manner. Meaning

that, during each execution cycle, inputs are initially read
and then fed to the control logic, which executes the user
program. Afterwards, the outputs are updated accordingly
and transmitted to the physical Inputs/Outputs (I/O) devices
through the hardware layer provided by the software.

Operators have the ability to interact with the system using
the HMI Builder e.g., ScadaBR which is supported by the
project. The ScadaBR is an open-source Supervisory Control
and Data Acquisition (SCADA) system used to monitor and
control complex processes and systems. It offers real-time
visualization through aGraphical User Interface (GUI). Users
can create customized dashboards to oversee and manage
the physical processes controlled by the OpenPLC Runtime.
ScadaBR also supports alarm notifications and event handing,
alerting operators when predefined thresholds or conditions
are met. The communication protocols employed for data
exchange between OpenPLC and ScadaBR are Modbus and
Distributed Network Protocol (DNP3), running on the default
ports 502 and 20,000, respectively.

B. OPENPLC RUNTIME WORKFLOW
Figure 6 shows the four stages that the OpenPLC Runtime
goes through upon an upload request. In the following,
we illustrate each phase in more detail.

1) COMPILE STAGE
During the compilation stage, an ST program and runtime
data are amalgamated along with hardware configuration and

VOLUME 12, 2024 11569



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 6. OpenPLC runtime workflow.

network details, transforming them into a runtime program in
OpenPLC i.e., formatted as a C program.

2) INPUT STAGE
At the beginning of every scan cycle, the OpenPLC Runtime
initiates by retrieving external input signals originating from
sensors, switches, and various external devices. These input
signals depict the system’s present condition. The software
then samples these signals, capturing the real-time state of
the system, and subsequently stores this information within
its internal input registers. This stage serves the fundamental
purpose of accurately reflecting the current state of the system
in real time.

3) EXECUTION STAGE
After capturing and storing the input signals, the OpenPLC
Runtime engages in executing control programs developed by
the user. These programs commonly employ logic, arithmetic
operations, and conditional statements to analyze the input
signals and produce corresponding output signals. During the
execution stage, the program’s objective is to compute the
subsequent operation of the system by evaluating the current
state of the input signals.

4) OUTPUT STAGE
Upon completion of the program execution stage, the
OpenPLC Runtime updates the output registers with the
calculated signals. These signals are then transmitted to
actuators, drives, and external devices, regulating the sys-
tem’s operations. Refreshing the output signals guarantees the

FIGURE 7. Login web page to authenticate the operator.

system functions in accordance with the control program’s
specifications.

C. AUTHENTICATION PROCESS
The OpenPLC Runtime is in constant operation on the
Webserver, specifically on port 8080, and can be accessed
using various web browsers. To access the OpenPLC
Runtime, one simply needs to enter ‘‘localhost:8080’’ into the
address bar of a web browser. This action will bring up a login
web page for the operator. To gain entry, the operator must
provide a username and password, as depicted in figure 7.

11570 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 8. Upload program sequence diagram.

The default login credentials are set to ‘‘openplc’’, but
users have the flexibility to change their credentials after their
initial logic.

D. UPLOAD PROCESS
When a user initiates the upload of a new program file (ST
file) into the OpenPLC Runtime, the program is transmitted
from theWebserver to the OpenPLC Runtime through a series
of HTTP packets. Figure 8 illustrates the complete upload
program process executed by OpenPLC, showing the order
of the transmitted packets.

Here is a step-by-step description of this process:
- The operator initiates the upload process by sending
an ‘‘upload-program’’ packet, indicating the intention
to upload a new program (ST file) into the OpenPLC
Runtime.

- In response, The OpenPLC Runtime sends back an
‘‘OK’’ packet with a status code ‘‘200’’ to acknowledge
the request.

- Afterwards, an ‘‘upload-program-action’’ packet is dis-
patched to the OpenPLC Runtime. Prompting it to
generate a new ‘‘prog_id’’, ST file name, and a new
upload date.

- Once these details are generated and stored in the
openplc.db, the OpenPLC Runtime acknowledges with
another ‘‘OK’’ packet.

- Thereafter, a ‘‘compile-program’’ packet is sent to
the OpenPLC, marking the commencement of the
compilation process from the ‘‘ST file’’ to the ‘‘C file’’.

- Throughout the compilation process, several
‘‘compilation-logs’’ packets are transmitted to the
OpenPLC Runtime, their frequency dependent on the
complexity of the compiled program.

- Upon successful completion of the compilation process,
the OpenPLC Runtime sends a final ‘‘OK’’ packet,
accompanied by a ‘‘compilation finished successfully’’
message.

- If all steps proceed without issues, the user can start
executing the uploaded program, and the OpenPLC
responds with an ‘‘OK’’ packet containing a status
code ‘‘302’’.

- Otherwise, the OpenPLC sends an error message with a
status code ‘‘500’’, and terminates the upload process.

III. VULNERABILITIES IN OPENPLC
While the OpenPLC Project has undoubtedly brought
significant advantages to researchers and engineers, it is
noteworthy that it currently lacks essential security measures.
This deficiency renders the entire project and, related systems
built upon it, vulnerable to various cyberattacks. In our effort
to point and address these vulnerabilities within theOpenPLC
software, we conducted a comprehensive investigation, and
reported all our findings in the following subsections.

A. ABSENCE OF ENCRYPTION
The OpenPLC software currently lacks encryption mech-
anisms to safeguard the confidentiality and integrity of
data exchanged between the user’s machine, ScadaBR,
and OpenPLC Runtime. Our investigation, conducted using
the Wireshark tool, revealed that various packets transmit
sensitive data in plain-text over the HTTP protocol. This
exposed critical information related to user programs,
credentials, accounts, and more, making the OpenPLC
Runtime vulnerable to several cyberattacks, including MitM,
eavesdropping, replay, unauthorized access, and control logic
injection attacks. Consequently, malicious adversaries with
access to the system’s network can intercept and manipulate
the transmitted packets between these stations with minimal
effort.

B. USER CREDENTIALS ARE SENT IN PLAINTEXT
After conducting a thorough analysis of the authentication
packets exchanged between the OpenPLC Runtime and the
operator’s machine, it became evident that user credentials
are transmitted in plaintext without any form of encryption,
as shown in figure 9.

Therefore, this vulnerability allows an attacker to easily
capture the required credentials from the ‘‘login’’ packets sent
from the legitimate user’s machine to the OpenPLC Runtime,
potentially compromising security.

Please note that both aforementioned vulnerabilities (i.e.,
absence of encryption and user credentials are sent in

VOLUME 12, 2024 11571



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 9. Login packet - user credentials are sent in plaintext.

plaintext) share the overarching concern of jeopardizing data
confidentiality. But the ‘‘absence of encryption’’ encom-
passes a broader range of potential vulnerabilities in data
transmission, while ‘‘user credentials sent in plaintext’’
zooms in on the specific risk related to authentication infor-
mation. Recognizing these differences is crucial for com-
prehensive threat analysis and the development of targeted
mitigation strategies. For instance, addressing ‘‘absence of
encryption’’ involves implementing cryptographic measures
across all data transmissions, whereas mitigating the risk of
‘‘user credentials sent in plaintext’’ concentrates on securing
authentication-related traffic, restricting the access to certain
system files, and other sources where attackers might be able
to sniff and steal the user credentials.

C. LACK OF INTEGRITY CHECK
Our analysis of the captured HTTP packets transmitted
between the user and the OpenPLC Runtime revealed a
critical security gap: the absence of integrity check or
anti-replay mechanisms to protect the control logic programs
from unauthorized tampering. Consequently, attackers have
the capability to inject their malicious programs into the
OpenPLC Runtime by replaying previously recorded packets
from older sessions.

In our given example, the user credentials are ‘‘helloplc’’
as a username, and ‘‘att@ck!’’ as a password. Subsequently,
an attacker can exploit these credentials to authenticate
himself with the OpenPLC Runtime and proceed to launch
further attack.

D. VULNERABLE OPENPLC.DB DATABASE
As previously discussed in Section II, the OpenPLC uses
a database called openplc.db to store critical information,
including user programs, settings, secondary devices, and
user credentials. Our research showed a concerning vul-
nerable: this database lacks access restrictions, making it
susceptible to unauthorized access by potential attackers, who
can exploit this security gap by creating customized scripts
such purposes, as shown in figure 10.
It is worth mentioning that the construction of the

openplc.db database relies on the SQLite15 Python library.
Therefore, an attacker can employ a python script to both
access and modify the data existing in the openplc.db. As a
result, we can conclude that all the information displayed
on the OpenPLC Runtime is accessible and susceptible

15https://docs.python.org/3/library/sqlite3.html

to manipulation scenarios. What exacerbates the situation
is that the exposed database is in plaintext and contains,
among many identifiers (IDs) and values, a very interesting
ID called user_id. This user_id is dedicated to providing
information (including operator credentials) about all the
accounts registered in the OpenPLC Runtime. Each account
is identified by a unique user_id, which always has the value
‘‘10’’ if the operator uses the default account i.e., ‘‘openplc’’
as the username, and ‘‘openplc’’ as password.

Our analysis showed that even if an operator initially uses
the default account and subsequently changes the username
and password to different values, the user_id value remains
‘‘10’’. This value is only changed if the operator completely
removes the default account from the OpenPLC Runtime and
registers an entirely new account. Therefore, if an attacker
gains access to the user_id value(s), he can potentially
access all the accounts registered in the OpenPLC Runtime.
This scenario is quite severe because attackers can exploit
the openplc.db database and change the operator account(s)
credentials at will, thereby denying the operator access to the
OpenPLC Runtime.

E. VULNERABLE UPLOAD PROCESS
Our analysis to the upload-program process revealed a signif-
icant security vulnerability in the OpenPLC software. During
this process, the software consistently generates a copy of
the uploaded program and automatically stores it in the
OpenPLC project folders, precisely in the Webserver. These
copies are associated with unique prog_ids. Notably, we have
observed that these copies, once stored in the Webserver,
cannot be removed or deleted manually and persist in the
folder forever. Even if an operator removes programs from
the OpenPLC Runtime dashboard, the corresponding copies
within the Webserver folder remain unaffected. This poses a
critical security risk as adversaries with appropriate attacking
tools can potentially access and read all programs uploaded
to the OpenPLC Runtime, including the currently running
one. It is important to note that these stored copies are
essentially ready-to-execute ST files. Attackers only need
to maliciously modify a copy and then re-upload it to the
OpenPLC Runtime using a patching tool, or they can replace
the currently running program with any other copy of an
old program stored in the Webserver. This attack scenario is
highly effective and not detectable using traditional control
logic detection methods, as outlined in [23], [25], [26],
and [27].

IV. CONTROL LOGIC INJECTION ATTACK
In accordance with the findings detailed in Section III,
we successfully performed a sophisticated stealthy control
logic injection attack against the OpenPLC, precisely against
OpenPLCRuntime component. Figure 11 depicts a high-level
overview of our control logic injection attack introduced in
this article. This attack consists of two primary phases:

- Authentication Bypass: This initial phase focuses on
circumventing the authentication mechanisms.

11572 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 10. Reading information from the openplc.db database.

- OpenPLC Runtime Infection: The second phase
involves infecting the OpenPLC Runtime.

A. AUTHENTICATION PYPASS
The OpenPLC Runtime is protected through a username and
password authentication. Thus, any potential adversary must
initially acquire the correct login credentials to gain access
to the OpenPLC Runtime and subsequently carry out further
actions. There are two primary methods by which this can be
achieved: through a typical replay attack, or by retrieving user
credentials from the openplc.db database.

1) TYPICAL REPLAY ATTACK
As OpenPLC currently lacks any encryption measures for
the data transferred via the HTTP protocol, it leaves a
vulnerability where an attacker can readily intercept user
credentials, including username and password, exchanged
during an authentication session. To this end, we utilized
our Wireshark tool to capture the ‘‘login’’ packet transmitted
from the operator to the OpenPLC Runtime, as shown in
figure 9.
In our given example, the user credentials are ‘‘hello’’

as a username, and ‘‘att@ck!’’ as a password. After that,
an attacker could potentially access to the OpenPLC Runtime
and carry out further malicious attacks. However, it is
important to note that this scenario comes with certain
limitations. To successfully obtain the correct credentials,
an attacker would need to be in a situation where the user
logs into the OpenPLC Runtime while the attacker already
has access to the target system and is actively monitoring
the network. In essence, this means that if the attacker
begins monitoring the network after the ‘‘login’’ packet
has been sent, he would not be able to intercept the user
credentials through any other HTTP packets. Consequently,
the attacker must patiently wait until the operator performs
another authentication to capture their credentials.

2) RETRIEVING USER CREDENTIALS FROM OPENPLC.DB
DATABASE
In Section II, we discussed that the OpenPLC relies on
a vulnerable database named openplc.db to store critical
data, including uploaded programs, settings, secondary
devices and user credentials. This database is susceptible to
unauthorized access as proved in Section III. As a result, there

is opportunity to bypass the previous scenario and obtain
user credentials without waiting for a ‘‘login’’ packet to be
sent. To address this issue, we developed a python script
capable of reading the openplc.db database. Remarkably,
we successfully extracted, among other information, the user
credentials as figure 10 shows. With this information in hand,
an attacker can authenticate himself, and engage in further
malicious actions by sending a crafted HTTP ‘‘login’’ packet,
containing the correct username and password. Furthermore,
the attacker can prevent the legitimate user from accessing
the OpenPLC Runtime by manipulating the user information
stored in the openplc.db. Thus, when a user attempts to
provide his own credentials to access the OpenPLC, there
will be no match between the provided and stored credentials.
This lack of authentication results in a denial of service
situation, preventing the legitimate user from accessing the
OpenPLC Runtime.

B. OPENPLC RUNTIME INFECTION
To modify the program running in the OpenPLC Runtime,
an attacker must first identify the currently executed program.
Subsequently, he proceeds to extract this program, make
alterations to it, and then compel the OpenPLC Runtime to
execute the malicious program. In the following, we illustrate
each step of our infection phase in more detail.

1) RETRIEVING THE USER PROGRAM (ST FILE)
Accessing the openplc.db database provides an opportunity
for attackers to obtain vital information concerning all
programs uploaded to the OpenPLC, as shown in figure 10.
Nonetheless, it is crucial for the attacker to identify the
specific program currently being executed by the OpenPLC
Runtime. Our investigations showed that the attacker can
disclose the name of the running program by intercepting spe-
cific packets exchanged between the user and the OpenPLC
Runtime. Precisely, this information can be obtained from
different packets. For instance, the response packets when the
user requested ‘‘users’’ packet to call the list of registered
users or ‘‘Modbus’’ packet that calls the list of secondary
devices. Figure 12 shows a response packet of the ‘‘users’’
request that reveals the name of the running program.

Our investigation revealed that the OpenPLC Runtime
employs an index called ‘‘active-program’’ to denote the
presently executing program (see Section II-A2). This index

VOLUME 12, 2024 11573



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 11. High-level overview of our attack scenario.

FIGURE 12. Users response packet contains the running program name.

FIGURE 13. Reading the content of the ‘‘active-program’’ Index.

possesses a single value, represented by the ST file name
of the program currently in operation, as can be seen in
figure 13.

By utilizing the data stored in the openplc.db, we can
retrieve the prog_id, allowing us to access the corresponding
program’s copy stored on the Webserver. It is important to

note that an attacker can retrieve any copy from theWebserver
by simply knowing the ST file name and its corresponding
prog_id. In our example, the currently active program is
identified by the prog_id ‘‘24’’, and has an associated ST file
name of ‘‘111227’’.

2) MANIPULATING THE USER PROGRAM
The attacker possesses the original program that the Open-
PLC Runtime, stored in an ST format. This ST file is
exclusively executablewithin theOpenPLCRuntime environ-
ment. Consequently, the attacker cannot access the high-level
source code, which is written in one of the IEC 61131-3
programming languages. As a result, the attacker must
alter the ST file in its currently format, either manually or
automatically as a part of our attack by applying a based-rules
modification approach [28]. The modification includes
overwriting the original program by inserting/removing
instructions, modifying set-points, altering operators within
equations, and changing the statuses of inputs and outputs.

11574 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 14. OpenPLC runtime - program list.

3) UPLOADING THE ATTACKER PROGRAM
Once we have successfully modified the program, the next
step involves uploading and executing the malicious program
within the OpenPLC Runtime. This can be achieved by
conducting a completely new upload-program process as
depicted in figure 8. However, simply using the upload
process ‘‘as-is’’ would expose our infection. When utilizing
this method, the OpenPLC Runtime generates a fresh copy of
the uploaded malicious program, assigning it a new prog_id
in the Webserver. Furthermore, observant user will easily
discern the presence of a new program in the ‘‘Program List’’,
complete with a new ST file name and date, as shown in
figure 14.
This holds true even if we were to re-upload the same

program to the OpenPLC Runtime i.e., each time there is
an upload-program process executed, the OpenPLC Runtime
adds a new program to the ‘‘Program List’’ with differ-
ent entries. Consequently, patching our modified program
through the upload-program process proves inadequate,
as our objective is to execute our attack as stealthy as possible.
Our attack strategy aims to obtain a copy of the current
program running on the OpenPLC Runtime (see figure 11).
This program has already been uploaded to the OpenPLC
Runtime by a legitimate user, meaning it possesses a specific
prog_id, ST file name, and an upload date. To achieve this,
we simply need to compile our modified program to generate
its ‘‘C file’’ version and then force the OpenPLC to switch
to ‘‘START’’ mode, thus executing the attacker program as
depicted in figure 15.
This scenario is feasible due to two facts. First, the

OpenPLCRuntime generates a new prog_id, ST file name and
upload date at the very beginning of the upload process and
before the compilation process starts, precisely after sending
‘‘upload-program-action’’, and the uploading file is copied
into the Webserver during the transmission of ‘‘upload-
program’’. Therefore, an attacker can skip these packets
since the program that he modified is already registered
in the OpenPLC Runtime, and has an assigned prog_id.
Secondly, the compilation of the program proceeds without
the need to inspect the arrival of previous packets to the
OpenPLC Runtime. For all this, compiling the modified
‘‘attacker’’ program is sufficient to update the user’s program.
Our attack tool initiates the process by first sending a

FIGURE 15. Sequence diagram of injecting the OpenPLC runtime.

FIGURE 16. Reload program packet.

‘‘reload-program’’ packet, as shown in figure 16. This
packet serves as the gateway to accessing the ‘‘Programs
Information’’ in the OpenPLC Runtime. Through this access,
we gain the capability to execute different operations, such
as launching, updating, or removing the currently running
program from the OpenPLC Runtime.

In our example, we have three programs labeled as ‘‘pro-
gram_1’’, ‘‘program_2’’ and ‘‘Original’’, with corresponding
prog_ids of 22, 23 and 24, respectively see figure 10. To craft
our ‘‘reload-packet’’, we just need to use the prog_id (called
also table_id) associated with the currently running program,
which, in this example, is ‘‘24’’. Once the attacker has chosen
the program he wishes to modify, the next step is to compile
the malicious program from its ‘‘ST file’’ format into ‘‘C
file’’. This conversion process is achieved by sending a
‘‘compile-program’’ packet that includes the original ST file
name, such as 111227.st in our example, see figure 17.
The compilation process begins by retrieving a copy of

the ‘‘111227.st’’ file from the Webserver. This copy has
already been tampered with by the attacker. Subsequently, the
OpenPLC Runtime compiles it into an executable ‘‘C file’’.
Once the compilation is completed successfully, OpenPLC
sends a final ‘‘OK’’ packet, containing a ‘‘compilation
finished successfully’’ message. It is worth mentioning that
the OpenPLC Runtime does not run automatically after

VOLUME 12, 2024 11575



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 17. Compile program packet.

FIGURE 18. Start PLC packet.

the compilation process concludes. Therefore, to trigger
the OpenPLC to commence its operations and execute the
injected malicious program, the attacker must take deliberate
action. Figure 18 shows a ‘‘start-plc’’ packet that the attacker
sends to initiate the OpenPLC and execute his malicious
program.

V. SECURITY ENHANCED OPENPLC AQUA
In Section III and IV, we demonstrated that the current
version of OpenPLC is susceptible to vulnerabilities that
enable interception, manipulation, and comprise of data
integrity transmitted over the network. In addition, attackers
can alter control logic programs executed by the OpenPLC
Runtime runs without detection by legitimate users. In this
section, we introduce a more secure OpenPLC software
(called OpenPLC Aqua), seamlessly integrated with robust
security solutions. These enhancements significantly bolster
the overall security and trustworthiness of the OpenPLC
project. Figure 19 provides a visual representation of the
internal architecture of our new OpenPLC Aqua software.

As can be seen from the figure, this OpenPLC version
incorporates five supplementary security features:

- Enhancing the Security ofWebserver.
- AES-128 Encryption.
- Whitelisting Function.
- SSL/TSL communication channels.
In the following subsections, we elaborate each security

feature in more detail.

A. ENHANCING THE SECURITY OF WEBSERVER
1) ROOT-USER TO ACCESS WEBSERVER
Considering the critical security vulnerabilities outlined in
Section III, especially pertaining to theWebserver, OpenPLC
Aqua has implemented substantial security measures. Access

to the Webserver is currently limited solely to authorized
users with root permissions, as depicted in Figure 20.

Consequently, only the root user has the capability to
read and write to the Webserver. This implies that if an
attacker somehow gains access to the Webserver, he would
need to provide the password of the user account on Linux.
Furthermore, because the script responsible for running the
OpenPLC service is owned by the root user, only a user
with root permissions can initiate the service. In other words,
a user without root permissions, such as an attacker (using
the username ‘‘rnrn0909,’’ in figure 20) cannot start the
service or access theWebserver without the Linux password,
as illustrated in Figure 21. It is worth mentioning that
the Webserver stores critical data associated with security
features, including keys for AES encryption, certificates
for SSL/TLS communication, and the openplc.db database,
among others. By necessitating users to install the service
with root permissions, OpenPLC Aqua can effectively limit
access to theWebserver. This measure ensures that all critical
data is securely stored, or at the very least, makes the task
more challenging for potential attackers.

2) AUTOMATIC REMOVAL OF PROGRAM COPIES
We discovered that OpenPLC retains copies of all uploaded
programs within the Webserver. These copies, which are in
the form of ready-to-execute ST files, pose a potential risk.
If unauthorized users manage to access the Webserver, they
could retrieve these programs and exploit them to manipulate
the OpenPLC Runtime, potentially replacing the currently
running program with an older one. The issue with the
OpenPLC software lies in the permanence of these copies;
even when user deletes a program from the user-dashboard,
the corresponding copies in the Webserver are not removed.
To mitigate this concern, we have enhanced the OpenPLC
Aqua security by incorporating a script that automatically
removes any copy from the Webserver when the user deletes
the associated program from the user-dashboard.

However, this solution has its limitations. The OpenPLC
Runtime initiates ST program execution by referencing the
name of the ST copy in the ‘‘active-program’’ index and
accessing the corresponding ST copy file in the Webserver.
Since the OpenPLC Aqua deletes copies alongside the
removal of the original program from the user-dashboard list,
the name of the copy persists in the ‘‘active-program’’ index.
Consequently, the ‘‘active-program’’ points to amissing copy
in the Webserver, resulting in errors during the OpenPLC
Runtime execution. To address this challenge, OpenPLC
Aqua is configured with a blank program (a ‘‘fake program’’)
specifically designed to assists the OpenPLC Runtime in
launching itself. It is important to note that this program is
not intended for execution on hardware controllers. Instead,
it continuously alerts the user to launch a proper program.
Moreover, if any user attempts to start the blank program in
the OpenPLC Aqua, the session will be immediately closed.
This adds more security to the software as it prevents any
attempt to abuse this blank program.

11576 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 19. Architecture of OpenPLC Aqua: parts highlighted in green color indicate the security
features added in OpenPLC Aqua.

FIGURE 20. Screenshot of a linux terminal indicating that OpenPLC Aqua is restricted to
running only with root permissions.

B. AES-128 ENCRYPTION
Our implementation of encryption in the OpenPLC Aqua
is designed to secure user credentials e.g., username and
password. We achieve this through customize AES-128
encryption algorithm, depicted in figure 22. The reasons
behind adopting AES-128 encryption in OpenPLCAqua over
AES-256 (which provides a higher level of security) are as
follows:

- Balancing Security and Performance:AES-128 offers
a good balance between security and computational
efficiency.

- Resource Constraints: In the context of ICS and
cyber-physical systems, where real-time response is
critical, resource constraints may influence the choice of
encryption strength. The use of AES-128 is a conscious

decision to minimize computational load, especially in
environments with limited processing power.

- Compatibility: Some legacy industrial components
may have limitations in processing AES-256 effi-
ciently. By selecting AES-128, we aim to ensure
broader compatibility across a wide-range of industrial
environments.

To secure plaintext messages (username and password),
we employed a process that divides them into 128- bits
chunks. In cases where the original message size is not a
multiple of 128 bits, we pad the last block with random bits to
create a complete 128 bit block. The Cipher Block Chaining
(CBC) is used then to handle these 128-bit blocks. At this
stage, we initiate the process with a random Initialization
Vector (IV) to serve as the starting pseudo-block. In our

VOLUME 12, 2024 11577



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 21. Screenshot of a Linux Terminal indicating that only root-user can
access the Webserver: SSL/TLS Certificates are highlighted in red box; AES key and
IV are highlighted in blue box; openplc.db database is highlighted in yellow box.

FIGURE 22. AES-128 Encryption Algorithm used in OpenPLC Aqua.

approach, we use a function called os.urandom from the
python library to generate two random 16 bytes values.

One of these values becomes a secret key (K), while the
other serves as the IV. Both K and IV are stored in the

Webserver. Please note that, once the OpenPLC Aqua is
installed, the access to the Webserver is restricted to only
users with root permissions as illustrated in Section V-A1.
However, when encrypting the password, we employ the IV to

11578 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

encrypt the initial block, while K is used to encrypt the entire
blocks. Conversely, for the username, we reverse this process.
K is utilized as an IV to encrypt the initial block, while the IV
functions as a K to encrypt the entire blocks. Once we have
calculated the ciphertexts for both username and password,
we encode them using the Base64 encoding algorithm. The
results of the encoding process are finally presented in ASCII
format.

C. WHITELISTING FUNCTION
In theOpenPLCAqua, we have implemented a novel function
that verifies both the content of ST files and the associated
Internet Protocol (IP) addresses whenever a new ST file
is uploaded. This security measure effectively thwarts any
attempts by suspicious users to maliciously upload ST files,
as shown in figure 23. At the beginning, when a trusted user
creates a new account through the user dashboard, their IP
address and username are automatically added to a whitelist.
Assuming that only the default account is registered on the
user dashboard, if the user of the default account tries to
upload a different program than what the OpenPLC Runtime
is currently executing, the OpenPLCAqua initiates a two-step
process.

First, it generates hashes for both the old and new programs
and compares them. If the hashed do not match, it proceeds
to check the IP address of the user attempting the upload.
If the user’s IP address is not found in the whitelist, the upload
process is promptly rejected, the session is closed, and the
suspicious user is automatically logged out. Conversely, if the
user’s IP address is on the whitelist, the OpenPLC Runtime
authorizes the upload, making the new program ready for
execution.

This approach furnishes a robust security advantage to
our software. For instance, even if the attacker somehow
gains access to the OpenPLC Runtime using legitimate
user-credentials and accounts, he would remain unable to
upload a malicious program, bolstering the overall security
of our system. However, to add additional security features
to this approach, we integrated our OpenPLC Aqua software
with three security measures that ensure the integrity of
scripts from malicious manipulations as follows:

- File Integrity Checks: OpenPLC Aqua incorporates
file integrity checks to detect any unauthorized modifi-
cation to the scripts. This involves cryptographic hashing
as well as checksum verification to ensure that only
authorized users can modify the OpenPLC Aqua scripts.

- Encrypted Storage: We implemented in the OpenPLC
Aqua an encryption mechanism (AES-128) to secure
the storage of OpenPLC scripts, ensuring that even if
an attacker gains access to the file-system, the content
remains confidential.

- Revision Control: OpenPLC uses a version control
system e.g., ongoing tracking to monitor changes to
scripts over time, allowing easy rollback in the event of
unauthorized modifications.

D. SSL/TLS COMMUNICATION CHANNEL
Our research on the last versions of OpenPLC has revealed
a vulnerability to replay attacks. In Section IV, we demon-
strated that adversaries equipped with appropriate attacking
tools can reproduce certain traffic captures (HTTP packets)
from previous communication sessions over the internet. This
allows them to gain access to OpenPLC based systems and
make malicious changes.

SSL/TLS, a secure communication protocol, offers a
robust solution for establishing secure channels over the
internet. It creates an encrypted connection between a
client (user) and a server (OpenPLC), ensuring that the
transmitted data remains confidential and resistant to
interception or exposure by unauthorized parties, a weak-
ness present in the current OpenPLC software. Therefore,
in the development of OpenPLC Aqua, we have imple-
mented the SSL/TLS handshake approach, as illustrated in
figure 24, to enhance confidentiality, integrity, and end-point
authentication.

Our handshake approach works as follow:
- The client (user) initiates the handshake by sending
a ‘‘Hello’’ message to the server (OpenPLC). This
message serves as a request to establish a secure
communication channel between the two parties. In this
message, the client also includes its cipher suites and the
compatible SSL/TLS version.

- The OpenPLC responds to the client’s ‘‘Hello’’ message
by sending back a random value generated by the server,
the chosen cipher suite, and the SSL certificate.

- The client, upon receiving the server’s response, verifies
the authenticity of the SSL certificate by checking
it against a trusted authority. Once authenticated,
the client extracts the server’s public key from the
certificate.

- With the server’s public key in hand, the client generates
an encrypted pre-primary key. This pre-primary key is
encrypted using the extracted server public key.

- The OpenPLC receives the encrypted pre-primary key
from the client and proceeds to decrypt it. This
decryption step validates the correctness of the extracted
key.

- After a successful verification, both the client and server
independently generate a shared session key using the
random values exchanged earlier and the pre-primary
key. This session key is used for encrypting all data
transmitted between the client and server.

- From this point forward, all data exchanged between
the client and server is secured through encryption and
decryption processes facilitated by the shared session
key.

VI. EVALUATION AND DISCUSSION
A. ASSESSING OPENPLC AQUA AGAINST ATTACKS
In order to evaluate the performance of our newly developed
OpenPLC Aqua software in comparison to existing versions

VOLUME 12, 2024 11579



W. Alsabbagh et al.: Investigating the Security of OpenPLC

FIGURE 23. Whitelisting approach in OpenPLC Aqua.

FIGURE 24. SSL/TLS communication process approach.

of OpenPLC software, we executed five distinct attack
scenarios on four different OpenPLC software variants:

OpenPLCV3, OpenPLC Neo, OpenPLC61850, AESI-PLC
and OpenPLC Aqua. All our results are listed in table 2.

11580 VOLUME 12, 2024



W. Alsabbagh et al.: Investigating the Security of OpenPLC

TABLE 2. Success of various attacks against different OpenPLC software
versions.

In our experimental investigations, it becomes evident that
the OpenPLC Aqua exhibits a significantly higher level of
security and resilience when compared to its older OpenPLC
versions. Our empirical findings demonstrate that unautho-
rized users are unable to glean any insights into registered
user accounts, user credentials, control logic programs, or any
other sensitive data. This heightened security is achieved by
implementing strict access controls on both the Webserver
and the openplc.db database within OpenPLC Aqua. To gain
access to these components, an external attacker would need
to acquire root permissions. Assuming, for instance, that an
adversary somehow managed to gain access to the database,
he would only obtain encrypted versions of usernames and
passwords. Hence, decrypting these ciphertexts would neces-
sitate further reverse engineering efforts, with the additional
challenge of deciphering the data without knowledge of the
encryption key. This added layer of security ensures that even
if access is breached, the attacker remains unable to decipher
the stored information.

Furthermore, the introduction of the whitelisting function
in our enhanced software serves as an effective deterrent
against unauthorized users, attempting to upload malicious
programs. We put this to the test by attempting to upload an
ST program from an attacker’s machine, resulting in Open-
PLC Aqua rejecting the upload request and subsequently
logging out the attacker from the OpenPLC Runtime. In stark
contrast to earlier OpenPLC versions that relied on the
HTTP protocol for data transmission between the OpenPLC
Runtime and user machines, OpenPLC Aqua employs secure
channels based on SSL/TLS. This strategic choice guarantees
both the integrity and confidentiality of data exchanged
between the various stations, providing an additional layer of
protection against potential threats.

B. COST OF ENHANCING SECURITY
In the following, we provide a comprehensive analysis of
the costs associated with integrating our four proposed
security measures in the new OpenPLC Aqua software:
AES-128 Encryption Process, Accessible restricted Web-
server, Whitelisting Function, and SSL/TLS communication
channels. The evaluation focuses on three critical aspects:
computational overhead, real-time Responsiveness, and Scal-
ability. To assess the impacts, we conducted performance
tests comparing the software processing speed and efficiency
before (OpenPLC) and after (OpenPLCAqua) the integration
of the four security measures. Our evaluations are elaborated
in the following subsection in detail.

1) COMPUTATIONAL OVERHEAD
The integration of our security measures in OpenPLC Aqua
software introduced computational overhead due to the
additional processing required for encryption and decryption
processes. However, the average increase in processing time
for these operations in OpenPLC Aqua was minor. Thus,
we can conclude that despite the overhead, the OpenPLC
Aqua maintained acceptable performance levels for typical
industrial control applications.

In addition, OpenPLC Aqua consumes a few kilobytes
(KB), less than 50 KB, to be executed since it includes
symmetric keys, certificate, a few lines of code to implement
security functions, etc. Considering the environment where
it will be used, we believe it is critical to reduce overhead,
as much as we can, to keep its performance. Therefore,
we utilized AES-128, and reversed the uses of K an IV
to encrypt both usernames and passwords which eventually
introduces encrypted user credential with less computational
overhead comparing to the overhead caused by using an
AES-256 encryption process.

2) REAL-TIME RESPONSIVENESS
Real-time responsiveness was assessed through simulation
scenarios mimicking real-world industrial control operations.
Negligible delays were observed in non-intensive crypto-
graphic operations. During uploading the program, slight
delays of 21.4 milliseconds were noticed, which may be
acceptable for many industrial applications.

3) SCALABILITY
We tested our OpenPLC Aqua software performance
under varying workloads. The new software demonstrated
satisfactory scalability even with the inclusion of the
security measures. We noticed that the OpenPLC Aqua
maintained stability and performance as the number of
connected devices increased. This proves that the OpenPLC
Aqua works effectively in various industrial applications
and can handle the increasing number of connected
devices i.e., it is reasonable for medium-scale automation
systems.

In conclusion, the implementation of our securitymeasures
in the OpenPLC Aqua software incurs manageable costs in
terms of computational overhead, real-time responsiveness,
and scalability. However, the new software introduced a
reasonable secure and efficient software-based PLC to
various industrial applications.

VII. CONCLUSION AND FUTURE WORKS
A. CONCLUSION
This article highlights significant security vulnerabilities
in the existing OpenPLC software, which its founder
overlooked during its initial release. Through our extensive
investigations, we have demonstrated that attackers can
compromise the authentication mechanism of the OpenPLC
Runtime, and replace the user program with a malicious

VOLUME 12, 2024 11581



W. Alsabbagh et al.: Investigating the Security of OpenPLC

one. Our attack approach is entirely stealthy, leaving no
trace of abnormal activity within the OpenPLC Runtime,
Webserver, or openplc.db database. In order to enhance
the security of the OpenPLC project, we have developed
OpenPLC Aqua, a software solution that addresses as many
disclosed vulnerabilities, in previous OpenPLC versions,
as possible by introducing four security features. Open-
PLC Aqua has undergone rigorous testing against various
cyberattacks, affirming its superior resilience and security
compared to the vulnerabilities identified in earlier software
versions.

B. FUTURE WORKS
The OpenPLC project still offers significant opportunities
for improvement to align with the stringent requirements
of ICS and automation systems, particularly in terms of
availability, security, and real-time performance. In the
following, we delineate four key directions for future research
initiatives.

1) MACHINE LEARNING-BASED ANOMALY DETECTION
Further works should focus on exploring the possibility of
integrating machine learning techniques for anomaly detec-
tion in OpenPLC environment. The founder of OpenPLC
introduced to use Intrusion Prevention System (IPS) with
unsupervised machine learning techniques on his Secure
OpenPLC. His work succeeded in detecting and blocking
Injection attack and Denial of Service (DoS) attack. Boateng
and Bruce [29] utilized OpenPLC to train their anomaly
detection model and tested various anomaly scenarios on
OpenPLC with their detection model. OpenPLC can play the
role to expand the research for PLC with advanced machine
learning skills. The researches in the future can develop
diversemodels based onmachine learning techniques that can
respond to more various attacks proactively, detecting novel
attacks or previously unseen pattern. As machine learning
techniques evolves fast, the research with new techniques can
become more active by using OpenPLC.

2) TECHNOLOGICAL ADVANCEMENTS
The research and industrial communities still lack experi-
mental studies in the direction of introducing technological
advancements in the realm of OpenPLC software. Such stud-
ies encompass developments in the integration the adoption
of secure-by-design principles, quantum-resistant crypto-
graphic algorithms and protocol to ensure the long-term
security in future OpenPLC implementations.

3) COLLABORATIVE EFFORTS AND STANDARDIZATION
We highly recommend collaborative efforts within the
research and industrial communities to establish standardized
security practices for OpenPLC based systems. This involves
encouraging information sharing, promoting test practices,
and fostering a community-driven approach to addressing
security challenges collectively.

4) HUMAN-CENTRIC SECURITY IN OPENPLC
ENVIRONMENTS
More examination for the human factors in OpenPLC
security, considering the impact of user behavior and
decision-making on system vulnerabilities. For instance,
investigate the design and implementation of user-aware
security mechanisms, such as adaptive access controls, user
training programs, and user-behavior analytics, to mitigate
the risk of human-induced security incidents in OpenPLC
based automation systems.

VIII. DEMO AND OPEN-SOURCE CODES
You can find the demonstration of our attack scenario in [30],
and the OpenPLC Aqua software test in [31]. Our attack code
is accessible on GitHub via [32], and for the open-source
version of our developed OpenPLC qua software, please refer
to [33].

REFERENCES
[1] W. Alsabbagh and P. Langendöerfer, ‘‘A new injection threat on S7-1500

PLCs–disrupting the physical process offline,’’ IEEEOpen J. Ind. Electron.
Soc., vol. 3, pp. 146–162, 2022, doi: 10.1109/OJIES.2022.3151528.

[2] W. Alsabbagh and P. Langendörfer, ‘‘Security of programmable
logic controllers and related systems: Today and tomorrow,’’
IEEE Open J. Ind. Electron. Soc., vol. 4, pp. 659–693, 2023, doi:
10.1109/ojies.2023.3335976.

[3] W. Alsabbagh and P. Langendörfer, ‘‘A stealth program injection attack
against S7-300 PLCs,’’ in Proc. 22nd IEEE Int. Conf. Ind. Technol. (ICIT),
vol. 1, Mar. 2021, pp. 986–993, doi: 10.1109/ICIT46573.2021.9453483.

[4] W. Alsabbagh, C. Kim, and P. Langendörfer, ‘‘Good night, and good
luck: A control logic injection attack on OpenPLC,’’ in Proc. IECON 49th
Annu. Conf. IEEE Ind. Electron. Soc., Singapore, Oct. 2023, pp. 1–8, doi:
10.1109/iecon51785.2023.10312570.

[5] S. Annaswamy. Soft PLCs: The Industrial Innovator’s Dilemma. Accessed:
Jan. 3, 2024. [Online]. Available: https://iot-analytics.com/soft-plc-
industrial-innovators-dilemma/

[6] E. V. Easwaran, R. Kushalkar, N. Tigadi, K. M. Moudgalya, A. Chipkar,
A. Zoitl, M. Akshai, and T. Alves, ‘‘Programmable logic controller: Open
source hardware and software for massive training,’’ in Proc. IECON 44th
Annu. Conf. IEEE Ind. Electron. Soc., Washington, DC, USA, Oct. 2018,
pp. 2422–2427, doi: 10.1109/IECON.2018.8592772.

[7] H. P. Guntaka, R. Kushalkar, N. Venkat, A. Chipkar, V. Easwaran, and
K. Moudgalya, ‘‘Modular hardware, open source software and training
material for PLC training,’’ in Proc. 10th Int. Conf. Control, Mechatronics
Autom. (ICCMA), Belval, Luxembourg, Nov. 2022, pp. 237–242, doi:
10.1109/ICCMA56665.2022.10011589.

[8] T. R. Alves, M. Buratto, F. M. de Souza, and T. V. Rodrigues, ‘‘OpenPLC:
An open source alternative to automation,’’ in Proc. IEEE Global
Humanitarian Technol. Conf. (GHTC), San Jose, CA, USA, Oct. 2014,
pp. 585–589, doi: 10.1109/GHTC.2014.6970342.

[9] T. Alves and T. Morris, ‘‘OpenPLC: An IEC 61,131–3 compliant open
source industrial controller for cyber security research,’’ Comput. Secur.,
vol. 78, pp. 364–379, Sep. 2018.

[10] K.-H. John and M. Tiegelkamp, ‘‘The programming languages of IEC
611313,’’ in IEC 611313: Programming Industrial Automation Systems:
Concepts and Programming Languages Requirements for Program-
ming Systems Decision-Making Aids. Berlin, Germany: Springer, 2010,
pp. 99–205.

[11] CVE-2021-31630. National Vulnerability Database. Accessed: Aug. 24,
2023. [Online]. Available: https://nvd.nist.gov/vuln/detail/CVE-2021-
31630

[12] M. M. Roomi, W. S. Ong, S. M. S. Hussain, and D. Mashima, ‘‘IEC
61850 compatible OpenPLC for cyber attack case studies on smart
substation systems,’’ IEEE Access, vol. 10, pp. 9164–9173, 2022, doi:
10.1109/ACCESS.2022.3144027.

[13] W. Alsabbagh, S. Amogbonjaye, D. Urrego, and P. Langendörfer,
‘‘A stealthy false command injection attack on modbus based SCADA
systems,’’ in Proc. IEEE 20th Consum. Commun. Netw. Conf. (CCNC),
Las Vegas, NV, USA, Jan. 2023, pp. 1–9, doi: 10.1109/CCNC51644.
2023.10059804.

11582 VOLUME 12, 2024

http://dx.doi.org/10.1109/OJIES.2022.3151528
http://dx.doi.org/10.1109/ojies.2023.3335976
http://dx.doi.org/10.1109/ICIT46573.2021.9453483
http://dx.doi.org/10.1109/iecon51785.2023.10312570
http://dx.doi.org/10.1109/IECON.2018.8592772
http://dx.doi.org/10.1109/ICCMA56665.2022.10011589
http://dx.doi.org/10.1109/GHTC.2014.6970342
http://dx.doi.org/10.1109/ACCESS.2022.3144027
http://dx.doi.org/10.1109/CCNC51644.2023.10059804
http://dx.doi.org/10.1109/CCNC51644.2023.10059804


W. Alsabbagh et al.: Investigating the Security of OpenPLC

[14] W. Alsabbagh, C. Kim, and P. Langendrfer, ‘‘No attacks are available:
Securing the openplc and related systems,’’ in INFORMATIK 2023
Designing Futures: Zukünfte Gestalten. Bonn, Germany: Gesellschaft Für
Informatik, Sep. 2023, pp. 2085–2096, doi: 10.18420/inf2023_206.

[15] T. Alves, T. Morris, and S.-M. Yoo, ‘‘Securing SCADA applica-
tions using OpenPLC with end-to-end encryption,’’ in Proc. 3rd
Annu. Ind. Control Syst. Secur. Workshop, Dec. 2017, pp. 1–6, doi:
10.1145/3174776.3174777.

[16] L. Xinxin, ‘‘AESI-PLC: Architecture for enhancing the security
and integrity of PLC RUNTIME,’’ Res. Square, Oct. 2023, doi:
10.21203/rs.3.rs-3500032/v1.

[17] C. Zheng, X. Wang, X. Luo, C. Fang, and J. He, ‘‘An OpenPLC-
based active real-time anomaly detection framework for industrial
control systems,’’ in Proc. China Autom. Congr. (CAC), Xiamen, China,
Nov. 2022, pp. 5899–5904, doi: 10.1109/CAC57257.2022.10055121.

[18] D. Formby, M. Rad, and R. Beyah, ‘‘Lowering the barriers to
industrial control system security with GRFICS,’’ in Proc. USENIX
Workshop Adv. Secur. Educ. (ASE). Baltimore, MD, USA: USENIX
Association, Aug. 2018. [Online]. Available: https://www.usenix.org/
conference/ase18/presentation/formby

[19] M. M. Roomi, W. S. Ong, D. Mashima, and S. S. M. Hussain,
‘‘OpenPLC61850: An IEC 61850 MMS compatible open source PLC for
smart grid research,’’ SoftwareX, vol. 17, Jan. 2022, Art. no. 100917, doi:
10.1016/j.softx.2021.100917.

[20] S. M. S. Hussain, T. S. Ustun, and A. Kalam, ‘‘A review of IEC
62351 security mechanisms for IEC 61850 message exchanges,’’ IEEE
Trans. Ind. Informat., vol. 16, no. 9, pp. 5643–5654, Sep. 2020, doi:
10.1109/TII.2019.2956734.

[21] MITRE ATTCK. Accessed: Jul. 11, 2023. [Online]. Available:
https://attack.mitre.org/2020

[22] T. Li, Y. Wang, C. Zou, Y. Tian, L. Zhou, and Y. Zhu, ‘‘Research on
DoS attack detection method of modbus TCP in OpenPLC,’’ J. Comput.
Commun., vol. 9, no. 7, pp. 73–90, 2021, doi: 10.4236/jcc.2021.97007.

[23] S. McLaughlin, S. Zonouz, D. Pohly, and P. McDaniel, ‘‘A trusted
safety verifier for process controller code,’’ in Proc. Netw. Distrib.
Syst. Secur. Symp., San Diego, CA, USA, 2014, pp. 23–26, doi:
10.14722/ndss.2014.23043.

[24] S. Fujita, K. Hata, A. Mochizuki, K. Sawada, S. Shin, and S. Hosokawa,
‘‘OpenPLC based control system testbed for PLC whitelisting sys-
tem,’’ Artif. Life Robot., vol. 26, no. 1, pp. 149–154, Feb. 2021, doi:
10.1007/s10015-020-00635-1.

[25] S. Zonouz, J. Rrushi, and S. McLaughlin, ‘‘Detecting industrial control
malware using automated PLC code analytics,’’ IEEE Secur. Privacy,
vol. 12, no. 6, pp. 40–47, Nov. 2014, doi: 10.1109/MSP.2014.113.

[26] T. Chang, Q.Wei,W. Liu, andY.Geng, ‘‘Detecting PLCprogrammalicious
behaviors based on state verification,’’ in Cloud Computing and Security
(Lecture Notes in Computer Science), vol. 11067, X. Sun, Z. Pan, and
E. Bertino, Eds. Cham, Switzerland: Springer, 2018, doi: 10.1007/978-3-
030-00018-9_22.

[27] Y. Xie, R. Chang, and L. Jiang, ‘‘A malware detection method using
satisfiability modulo theory model checking for the programmable logic
controller system,’’ Concurrency Comput., Pract. Exper., vol. 34, no. 16,
Jul. 2022, Art. no. e5724, doi: 10.1002/cpe.5724.

[28] W. Alsabbagh, ‘‘Investigating security issues in programmable logic
controllers and related protocols,’’ Ph.D. dissertation, Dept. Wireless Syst.,
Faculty MINT Mathematik, Informatik, Physik, Elektro und Information-
stechnik of the Brandenburg Univ. Technol. Cottbus-Senftenberg, Cottbus,
Germany, 2023.

[29] E. A. Boateng and J. W. Bruce, ‘‘Unsupervised machine learning
techniques for detecting PLC process control anomalies,’’ J. Cybersecur.
Priv., vol. 2, Sep. 2022, Art. no. 220244, doi: 10.3390/jcp2020012.

[30] Good Night, Good Luck. Accessed: Jul. 4, 2023. [Online]. Available:
https://www.youtube.com/watch?v=rEBeV982gWQ

[31] No Attacks Are Available—OpenPLC Aqua. Accessed: Aug. 23, 2023.
[Online]. Available: https://www.youtube.com/watch?v=knVTQfUdNfU

[32] A-Control-Logic-Injection-Attack-on-OpenPLC. Accessed: Oct. 11,
2023. [Online]. Available: https://github.com/rnrn0909/A-Control-Logic-
Injection-Attack-on-OpenPLC

[33] OpenPLC-Aqua. Accessed: Oct. 23, 2023. [Online]. Available:
https://github.com/rnrn0909/OpenPLC-Aqua

WAEL ALSABBAGH (Member, IEEE) received
the M.Sc. degree in automatic control and
computer engineering from Al-Baath University,
Homs, Syria, in 2015, and the Ph.D. degree in
computer science from the Technical University
of Cottbus, Cottbus, Germany, in 2023. Since
2018, he has been a Scientist with IHP—Leibniz-
Institut für Innovative Mikroelektronik, Frankfurt
(Oder), Germany. His research interests include
cyber-attacks and security, mitigation methods of

the attacks targeting industrial control systems (ICS), and supervisory control
and data acquisition (SCADA). He serves as a Technical Papers Reviewer
for many conferences and journals, including IEEE ACCESS, IEEE INTERNET
OF THINGS, and Computers & Security.

CHAERIN KIM received the B.S. degree in
information security from Konyang University,
Nonsan-si, Republic of Korea, in 2018. She is cur-
rently pursuing the M.S. degree in cyber security
with the Brandenburg University of Technology
Cottbus–Senftenberg, Cottbus, Germany. Since
2022, she has been a Research Assistant with
IHP—Leibniz-Institut für Innovative Mikroelek-
tronik, Frankfurt (Oder), Germany. Her research
interests include cyber-attacks and security solu-

tions related to programmable logic controllers and industrial control
systems.

PETER LANGENDÖRFER received the Diploma
and Ph.D. degrees in computer science. Since
2000, he has been with IHP—Leibniz-Institut
für Innovative Mikroelektronik, Frankfurt (Oder),
Germany. In IHP—Leibniz-Institut für Innovative
Mikroelektronik, he is leading the Wireless Sys-
tems Department. From 2012 to 2020, he was
the Chair of Security in Pervasive Systems
with the Brandenburg University of Technology
Cottbus–Senftenberg. Since 2020, he has been the

Chair of Wireless Systems with the Brandenburg University of Technical
Cottbus–Senftenberg. He has published more than 150 refereed technical
articles and filed 17 patents of which ten have been granted already. His
research interests include security for resource constraint devices, low-
power protocols, and efficient implementations of AI means and resilience.
He was the Guest Editor of many renowned journals, such as Wireless
Communications and Mobile Computing (Wiley) and ACM Transactions on
Internet Technology.

VOLUME 12, 2024 11583

http://dx.doi.org/10.18420/inf2023_206
http://dx.doi.org/10.1145/3174776.3174777
http://dx.doi.org/10.21203/rs.3.rs-3500032/v1
http://dx.doi.org/10.1109/CAC57257.2022.10055121
http://dx.doi.org/10.1016/j.softx.2021.100917
http://dx.doi.org/10.1109/TII.2019.2956734
http://dx.doi.org/10.4236/jcc.2021.97007
http://dx.doi.org/10.14722/ndss.2014.23043
http://dx.doi.org/10.1007/s10015-020-00635-1
http://dx.doi.org/10.1109/MSP.2014.113
http://dx.doi.org/10.1007/978-3-030-00018-9_22
http://dx.doi.org/10.1007/978-3-030-00018-9_22
http://dx.doi.org/10.1002/cpe.5724
http://dx.doi.org/10.3390/jcp2020012

