
A Remote Attack Tool Against Siemens S7-300
Controllers: A Practical Report

Wael Alsabbagh and Peter Langendoerfer

Abstract

This paper presents a series of attacks against Siemens S7-300 programmable logic
controllers (PLCs), using our remote IHP-Attack tool. Due to the lack of integrity
checks in S7-300 PLCs, such controllers execute commands whether or not they are
delivered from a legitimate user. Thus, they were exposed to various kind of cyber-
attacks over the last years such as reply, bypass authentication and access control
attacks. In this work, we build up our tool to carry out a series of attacks based on
the existing reported vulnerabilities of S7-300 PLCs in the research community. For
real world experimental scenarios, our tool is implemented on real hardware/software
used in industrial settings (water level control system). IHP-Attack consists of many
functionalities as follows: PNIO Scanner to Scan the industrial network and detect
any available PLCs/CPs, etc. Inner Scanner to collect critical data about the target
PLC’s software blocks. Authentication Bypass to check whether the PLC is password
protected, and compromise the PLC. Our tool also shows that once an adversary reaches
the target, he is capable of carrying out severe attacks e.g. replay and control hijacking
attacks against the compromised controller. All the functions used in our tool are
written in Python and based on powerful libraries such as Python-Snap7 and Scapy.
The attacks performed in this work generate a very small traffic overhead and a quite
short attack time which make them hard to detect by the workstation. We eventually
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found that deploying traditional detection methods is not sufficient to secure the system.
Therefore, we suggest some possible mitigation solutions to secure industrial systems
based on S7-300 PLCs from such attacks.

Keywords

Programmable Logic Controller (PLC) · Industrial Control System (ICS) · Physical
Attacks · Cyber Attacks · Injecting

1 Introduction

Programmable Logic controllers (PLCs) in industrial control systems (ICSs) are directly
connected to physical processes such as production lines, electrical power grids and
other critical plants. They are equipped with control logic that defines how to control
and monitor the behavior of the processes. Thus, their safety, durability, and predictable
response times are the primary design concerns. Unfortunately, the majority of industrial
controllers are not designed to be resilient against cyber-attacks. Meaning that, if a PLC is
compromised, then the physical process controlled by the PLC is also compromised which
could lead to a disastrous incident. In principle, an adversary first infiltrates into an ICS
network to communicate with the targetable device, or gains physical access of the PLC
in purpose to run attacks against the target. The control logic defines how a PLC controls
a physical process, but unfortunately, it is vulnerable to malicious modifications because
PLCs either do not support digital signatures for control logic, or the ICS operators do
not use/configure them. A good example of such malicious modifications is Stuxnet [1].
This malware targets Siemens S7-300 PLCs that are specifically connected with variable
frequency drives [2]. It infects the control logic of the PLCs to monitor the frequency of
the attached motors, and only launches an attack if the frequency is within a certain normal
range (i.e. 807 Hz and 1210 Hz). The attack involves disrupting the normal operation of
the motors by changing their motor speed periodically from 1410 Hz to 2 Hz to 1064 Hz
and then over again.

For the purposes of our discussion, we investigate how adversaries can leverage exposed
PLCs based on different existing vulnerabilities. We carry out all the attack scenarios
presented in this work, using our IHP-Attack tool that launches a series of attacks aiming
to cause physical harm on the control process. Our first two attacks employ reconnaissance
to discover targetable PLCs available on the industrial network and also to collect critical
data about the target’s software blocks. Then, we show how to bypass the authentication
in case the target is password protected. Afterwards, we perform three replay attack
scenarios based on old packets captured between the TIA Portal and the PLC: (setting
a new)/(updating the current) password, clearing the software blocks, and turning on/off
the device. These attacks prevent the user from reaching the PLC, causing Denial-of-
Service situation as well as hardware/software errors. We also show that once we bypass
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the authentication, the PLC is prone to various attacks e.g. we managed to upload the
machine Byte-code that the target device runs, and then retrieved the source-code by
mapping the Byte-code to the corresponding STL instructions, afterwards we modified
the current machine code before pushing the infected code back into the PLC.

The contribution of this paper is designing a new attack chain for exploiting S7-300
PLCs. We used the previous methods as well as add new approaches to study the impact
of different scenarios against PLCs. The attacks are performed successfully on real ICS
hardware/software used in industrial example application given in §3. The rest of the paper
is organized as follows. We begin in section §2 with related work to ours, then in §3 we
describe our experimental set-up, and illustrate the attack details performed in §4. In §5,
we suggest some possible mitigation solutions to secure our systems and conclude this
paper in §6.

2 Related Work

The information of control logic vulnerabilities come from several sources: the ICS-
CERT [10], the National Vulnerability Database (NVD) [13], and the exploit database
[14] created by Offensive security. However, researchers have found various types of
vulnerabilities in performing different attack scenarios e.g. ICSA-11-223-01A [15] allows
an adversary to program and configure the control logic programs in a series of Siemens
controllers. This vulnerability is caused by a potential to expose the product’s password
used to restrict unauthorized access to Siemens controllers. Based on this vulnerability
some previous works such as [3, 16–18] managed successfully to bypass the authentication
of Siemens PLCs. Our work presents an S7 authentication bypass method based on the
Scapy library as we show later on in section §4.3. CVE-2019-10,929 [19] shows also that
an adversary in a Man-in-the-Middle position is able to modify network traffic exchanged
on port 102/TCP to SIMATIC controllers. This is caused by certain properties in the
calculation used for integrity protection. If control logic programs are communicating
through this port, it is possible to stealthy change the code without being noticed. We,
in this paper, show also that an attacker is capable of retrieve, modify and inject his own
code into the PLC. Beresford introduced one of the most cited SCADA attack descriptions
in USA Black Hat 2011 [3]. He demonstrated how credentials can be extracted from
remote memory dumps. In addition, he showed how to start and stop PLCs through reply
attacks. Our work differs in that we present more complex attacks targeting the PLCs, i.e.
altering the logic program, and removing software blocks, which eventually lead to serious
damages. A work done by Langner “A Time bomb with fourteen bytes” [4] described how
to inject rogue logic code into PLCs. Another similar attack to Langner’s was presented
in Black Hat USA 2013 by Meixell and Forner [5]. The authors presented different ways
of exploiting PLCs, presenting how to remove safety checks from logic code. A PLC
malware paper was published by McLaughlin [6] proposed a basic mechanism for dynamic
payload generation. His approach is based on symbolic execution that recovers Boolean
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logic from PLC logic code. From this, he tries to determine unsafe states for the PLC
and generates code to trigger one of these states. McLaughlin published a follow up paper
[7], which extended his previous approach in a way that automatically maps the code
to a predefined model by means of model checking. With his model, he can specify a
desired behavior and automatically generate attack code. We also prove in one of our
experiments that an attacker might also take the control away based on mapping the code
and without adding any external instructions or functions to the original machine code.
In 2019, a group of researchers present an autonomous full attack-chain on the control
logic of a PLC [8]. They introduced a malicious logic in a target PLC automatically.
Their tool was designed to target only M221 PLC introduced by Schneider Electric.
Ours introduces not only injection attacks but also other types, targeting the control
logic and software blocks. In 2015, a tool called PLCinject was presented in Black Hat
USA [9]. The authors developed a prototypical port scanner and proxy that runs in a
PLC in order to inject the attacker’s code to the existing logic code of the PLC. They
analyzed and looked at timing effects and found that augmented code is distinguishable
from non-augmented code. In contrast, we present not only a network scanner, but also
a scanning in-depth method to collect very critical data. Furthermore, we managed to
modify the user program without any external functions. A Ladder Logic Bomb malware
written in ladder logic or one of the compatible languages was introduced in [11]. Such
malware is inserted by an attacker into existing control logic on PLCs. This scenario
requires from an attacker to be familiar with the programming languages that the PLC
is programmed with. We showed that, an attacker still can compromise the PLC without
any prior knowledge of neither the user program, nor the language that the code is written
in. A recent work presented a reverse engineering-attack called ICSREF [20], which can
automatically generate malicious payloads against the target system, and does not require
any prior knowledge of the ICS as ours [12]. demonstrated common-mode failure attacks
targeting an industrial system that consists of redundant modules for recovery purpose.
These modules are commonly used in nuclear power plant settings. The authors used DLL
hijacking to intercept and modify the command-37 packets sent between the engineering
station and the PLC, and could cause all the modules to fail.

3 Experimental Set-up

In this section, we describe our experimental set-up, starting with the process to be
controlled and presenting the equipment used afterwards.

3.1 The Physical Process to Be Controlled

In our experiments, we are using the following application example (2-PLCs.application).
There are two aquariums filled with water that is pumped from one to the other until a
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2-PLCs.application
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Fig. 1 Example application for our control process

certain level is reached and then the pumping direction is inverted see Fig. 1. The two PLCs
are connected via S7communication, and exchanging data over the network to control the
water level in each aquarium. The control process in this set-up is cyclically running as
follows:

– PLC.1 (S7 315-2DP) reads the input signals coming from the sensors 1, 2, 3 and 4 (see
Fig. 1). The two upper sensors (Num. 1, 3) installed on both aquariums are reporting to
PLC.1 when the aquariums are full of water, while the two lower sensors (Num. 2, 4)
are reporting to PLC.1 when the aquariums are empty.

– After that, PLC.1 sends the sensors’ readings to PLC.2 (S7 315-2PN/DP) via the S7
communication using IE-CP (CP 343-1 Lean).

– Then PLC.2 powers the pumps on/off depending on the sensors’ readings received from
PLC1.

3.2 Hardware Equipment

In our testbed we have the following components: legitimate user, attacker machine,
PLCs, Communication processor, sensors and pumps which are described in detail in the
following:
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1. Legitimate User – It’s a device that is connected to the PLC/CP using the TIA Portal
software. Here, we use version 15.21 and Windows 72 as an operating system.

2. Attacker Machine – it’s a device that sneakily connects to the system without
appropriate credentials. In our experiments, the attacker uses operating system LINUX
Ubuntu 18.04.1 LTS3 running on a Laptop.4

3. PLCs S7-300 – as mentioned before, we use Siemens products in our experiments
and, particularly CPUs from the 300 family. The PLCs used in this work are S7 315-2
PN/DP,5 and S7 315-2 DP.6

4. CP 343-1 Lean – is an industrial Ethernet Communication Processor (CP). In addition
to the communication with other Ethernet stations, the CP can connect external I/O
modules i.e. PROFINET IO-controller or IO-Devices.7

5. Four capacitive proximity Sensors - in our testbed, these are four sensors from Sick,
Type CQ35-25NPP-KC1,8 with a sensing range of 25 mm and electrical wiring DC
4-wire.

6. Two Pumps – here, two DC-Runner 1.1 from Aqua Medic9 with transparent pump
housing 0–10 v connection for external control, maximum pumping output 1200 I/h
and maximum pumping height: 1.5 m.

3.3 Attacker Model and Attack Surface

With regard to the types of attacks we consider, we assume that the attacker has already
access to the network and is capable to send packets to the PLCs via port number 102
on S7 315-2PN/DP CPU, using our tool. We also assume that the attacker has no TIA
Portal software installed nor any prior knowledge about the actual process controlled by
the PLCs, how the PLCs are connected, which communication protocols the PLCs use,
or the logic program running on each. In this work, the attack surface is a combination of
device design and software implementation; more precisely, it is the implementation of the
network stack, PLC specific protocols and PLC operating system.

1 https://support.industry.siemens.com/cs/document/109752566/simaticstep-7-and-wincc-v15-trial-
download-?dti=0&lc=en-US.
2 https://www.microsoft.com/de-de/software-download/windows7.
3 https://ubuntu.com/download/desktop.
4 https://www.dell.com/support/home/de/de/debsdt1/productsupport/product/latitudee6510/
overview.
5 https://support.industry.siemens.com/cs/pd/480032?pdti=td&dl=en&lc=en-WW.
6 https://support.industry.siemens.com/cs/pd/155410?pdti=td&dl=en&lc=en-DE.
7 https://mall.industry.siemens.com/mall/en/si/Catalog/Product/6GK73431CX10-0XE0.
8 https://www.sick.com/de/en/proximity-sensors/capacitiveproximitysensors/cq/cq35-25npp-kc1/p/
p244267.
9 https://www.aquariumspecialty.com/aqua-medic-dc-runner-1-2pump.html.

https://www.microsoft.com/de-de/software-download/windows7
https://ubuntu.com/download/desktop
https://www.dell.com/support/home/de/de/debsdt1/productsupport/product/latitudee6510/overview
https://www.dell.com/support/home/de/de/debsdt1/productsupport/product/latitudee6510/overview
https://support.industry.siemens.com/cs/pd/155410?pdti=td&dl=en&lc=en-DE
https://mall.industry.siemens.com/mall/en/si/Catalog/Product/6GK73431CX10-0XE0
https://www.sick.com/de/en/proximity-sensors/capacitiveproximitysensors/cq/cq35-25npp-kc1/p/p244267
https://www.sick.com/de/en/proximity-sensors/capacitiveproximitysensors/cq/cq35-25npp-kc1/p/p244267
https://www.aquariumspecialty.com/aqua-medic-dc-runner-1-2pump.html
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4 Attack Details, Implementation and Results

As a consequence of the existing reported vulnerabilities, an attacker might carry out
several attacks targeting industrial settings. In this section, we detail our attack scenarios
that the IHP-Attack tool allows to perform against the example application given in section
§3. Please note that, in this work, we utilize well-known libraries such as Scapy10 and
Python-snap711 as well as information that is publicly available on the Internet.

4.1 Reconnaissance Attack

The very early step that an attacker aims to is discovering the local switched network to get
an overview of targetable PLCs in the network. In purpose to collect data of the available
devices in our system, a function called PNIO Scanner based on the PROFINET DCP
identify-response packets was used by us. Technically, this function sends a DCP identify
request to the initiated interface (eno1 in our case), and waits for the answers from all
found devices (PLCs, IE CPs... etc.). Then it sniffs the responses for a predefined time
interval of 5 seconds and finally saves all results of the sniffing in a python dictionary for
a further use. The output of executing our PNIO scanner function is shown in Fig. 2 and
can be broken down into the following steps:

1. Get local IP, port and subnet
2. Calculate IP addresses of the subnet
3. Set up TCP connection
4. Send DCP identity request
5. Receive DCP response
6. Save responses in a Python response file
7. Stop scanning and disconnect TCP connection

4.2 Scanning the PLC In-depth

After an attacker run a successful scan, all IP and MAC addresses of the targets are known.
The next step is to get an insight view of the target device. So, the attacker starts collecting
data of the controller’s software blocks, using queries and running scripts to find out which

10 https://pypi.org/project/scapy/.
11 https://pypi.org/project/python-snap7/.

https://pypi.org/project/scapy/
https://pypi.org/project/python-snap7/
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Fig. 2 The output of executing PNIO Scanner function

software blocks the PLC has, the complexity of the software program run, the size of the
logic program, etc. In this work, a dedicated function called Inner Scanner was used in
our tool to gather critical data of the target. We present the python core of this function
in algorithm 1. Fig. 3 shows the execution of our function. The attacker gets the total
list of the PLC’s software blocks, the number of blocks, the size of each block, etc. This
phase helps the adversary to obtain sufficiently a deep knowledge of the target PLC from
software point of view, and to then use these collected data to run further attacks, targeting
the PLC software block(s) as we show in the next subsections. Please note that, knowing
the size of the machine code (OB) and keeping the size of the infected code the same as
the original one, might make any potential attack to be hardly detectable.
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Fig. 3 The output of executing Inner Scanner function
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4.3 Authentication Bypass Attack

Siemens PLCs might be password protected to prevent unauthorized access and tampering
of the logic program run. Thus, the user is not allowed to read/write from and to the con-
troller without knowing the 8 characters password that the PLC is protected with. However,
we have two possibilities to bypass the password. Either by extracting the hash of password
then pushing it back to the PLC, or by using a representative list of (plain-text password,
encoded-text password) pairs to brute-force each byte offline. In this work, we use our
function shown in Algorithm. 2 to check if the target PLC is password protected, then
brute-force the connection to the PLC, using the list “s7_pass” created by us. An intere-
sting fact is that we managed successfully to connect to the PLC, and disable the password
protection to be able to use Snap7 library without an authentication in further attacks.
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As a consequence of compromising the password of the protected controller, several
concrete attacks could be carried out on the exposed PLC, ranging from simple replay
to more complicated attacks. In the following we show potential attack scenarios that an
adversary might perform to take the control of the device, once he reaches the PLC.

4.4 Replay Attacks

A typical replay attack on the PLC consists in recording a sequence of packets related to
a certain legitimate command/function sent by the workstation software, and then pushing
these captured packets back to the target device at a later time without authorization. This
clearly might cause a significant damage to any industrial system in case an attacker
managed to access the PLC and to perform any sort of the following replay attacks.
Algorithm. 3 shows the core of the our python script, using Scapy features to run replay
attacks by replacing the corresponding captured packets in each attack.
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4.4.1 Set/Update the password of PLCs
The PLC password is normally set and updated only from the configuration software in
the engineering station. Furthermore, in case of updating a current password, the old one
must be supplied first before any changes are successfully applied. But due to the PLC
access control vulnerability, we can set a new password in case the PLC is not password
protected, or update the current one in case it is. Technically, when a password is written on
the PLC, it’s actually embedded in the SDB block. Precisely, in the block number 0000 as
shown in Fig. 4. Therefore, before any function or command is executed, the load process
first checks this block in the SDB to see if a password is already set or not. We have here
two cases:

– Setting a new password for the first time. In this scenario, we recorded a password
setting packet sequence used in an old traffic session between TIA Portal software and
a PLC, then we replayed the captured packets during the load process. For this sort of
attack, we need first to filter the recorded packets keeping only the packets which are in
charge of overwriting block 0000 and ignoring the rest of the packets to avoid changing
the current configuration.

– Updating an old password with a new one. In case the memory block 0000 contains
already a password, our experiments showed that we actually cannot overwrite it by a
new one by replaying recorded packets as done in the first case. This is due to the fact
that the PLC keeps sending a FIN packet whenever we attempt to overwrite the SDB. To
overcome this problem, we first cleared the content of block 0000 and then replayed the
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Table 1 The impact achieved by clearing certain PLC’s software blocks

Software Block The resulted impact

Organization Block (OBs) Erase the logic program that the CPU runs

Functions (FCs) The CPU turns to Software Error Mode

Function Blocks (FBs) The CPU turns to Software Error Mode

Data Blocks (DBs) The CPU turns to Software Error Mode

System Functions (SFCs)
System Functions Blocks (SFBs)
System Data Blocks (SDBs)

The CPU turns to Hardware Error Mode
The CPU turns to Hardware Error Mode
The CPU turns to Hardware Error Mode

same packets used in the previous scenario (setting a new password). Since there’s no
legitimate command to just clean block 0000, we basically used a sequence of packets
to delete different blocks and modified them to satisfy our need (delete block 0000).
Based on this method, we managed successfully to update the password even without
knowing the old one. This prevents the engineering software of accessing the PLC.

4.4.2 Clear PLC’s Memory Blocks
The key when updating a password was to clear the content of block 0000 of the SDB
block. This concept can be generalized to clear other memory blocks as well. This kind of
attack has a significant harm on industrial systems, as an attacker can use some features
provided by the Python-Snap7 library to clear different memory blocks e.g. OBs, FBs,
DBs, etc. Table 1 presents the impact resulting from clearing each block of our target
separately.

4.4.3 Start/Stop the PLC
This is a very typical replay attack performed against PLCs already published a decade
ago [3]. However, our tool is capable of turning on/off an S7-300 PLC based on already
captured packets between the PLC and the TIA Portal during executing Start/Stop CPU
commands. The corresponding packets to start/stop the device are as follows:

CPU_Start_payload = “0300002502f080321000005000014000028000000000000fd0000
09505f50524f4752414d”

CPU_Stop_payload = “0300002102f0803201000006000010000029000000000009505f5
0524f4752414d”

4.5 Control Hijacking Attack

The lack of authentication measures in the S7-300 PLC communication protocols might
expose such controllers also to other sort of threats called control hijacking attack. Such
an attack is defined as one when an adversary targets the logic program running in the
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PLC, attempting to modify the original machine code (e.g. changing the current status
of inputs/outputs), or add his own malicious code(s) to the original one i.e. injecting a
function or instructions to the user program which will be executed during the normal
execution process. Such scenarios cause a significant physical harm on the target system.

Any control logic program downloaded to a Siemens PLC is typically divided into
several blocks. An interesting fact for attackers is that the running code is not inspected
by the device before the execution. Meaning that, if an attacker managed to download
his infected code, the CPU executes this code anyway without any checking mechanism
deployed to inspect whether this code is malicious or legitimate. This allows attackers to
take advantage of this vulnerability to exploit the control logic program. Technically, for
a simple program (like ours), the entire machine code executed in a CPU is stored in the
Organization Block (OB1). In this work, we present four phases that our tool goes through
to steal the Byte-code, map the Byte-code version to the Source-code one, modify a pair
of instructions, and finally push the infected code back to the target as follows:

Phase I: Uploading the Byte-Code The very early step is to request the machine code
from the PLC. This step is easy to be done by using the function “full_upload (type, block
number)” from Python-snap7 library. Please note that if the PLC is password protected
against read/write, the PLC will refuse to upload its own code without verifying the
user password. But indeed, an adversary can overcome this challenge by removing the
password before executing this function e.g. clearing the block 0000. For our example
application, we managed to upload the content of our one-block program on the attacker
machine by replacing the abovementioned function’s parameters with the corresponding
block name and number i.e. we set the parameters on OB and 1 respectively. We show in
Fig. 5 the output of executing this function on our PLC attacked and for only one-block
program (OB1).

Fig. 5 The Byte-code executed in our tested PLC
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Phase II: Mapping the Bytecode to STL Source Code In the next step, we should
identify the Byte-code set and the corresponding STL instruction set of the user program
running in the PLC. For achieving that, we used a similar offline division method as
the one presented in [21] to extract all the instructions used in our program one by one
as follows: We opened the TIA Portal software, and programmed our target PLC with
a certain code has 10 times the same instruction. Here, we used the instruction NOP
0 which has no effect on the program. After that, we uploaded the Byte-code from the
PLC on the attacker machine. This uploaded code contains the representation of 10 NOP
0 instructions as shown in Fig. 6a. We could identify that each NOP 0 instruction is
represented as OxF000 in the Byte-code. Afterwards we opened the normal program (used
in our example application) in the TIA Portal software and inserted NOP 0 before and after

(a)   NOP instruction and the corresponding Bytecode

(b)   Inserting NOP instructions in the Bytecode

Instructions

NOP 0
NOP 0
NOP 0
NOP 0
NOP 0
NOP 0
NOP 0
NOP 0
NOP 0
NOP 0

Bytecode

Compiling
707001010208.......................
...............................................
F000F000F000F000F000F00
0F000F000F000F000F000F0
00F000...................................
...............................................

BytecodeInstructions

NOP 0;
%I4.0;
NOP 0;
%Q4.7;
NOP 0;
%I5.6;
NOP 0;
%Q5.6;
NOP 0;
%I5.1

·
·

Compiling 707001010208........................
...............................................
F000C004F000DF84F000E60
5F000DE05F000C105F000. . .
...............................................
...............................................

%I0.4

%Q5.6 %I5.1

%I5.6%Q4.7

Fig. 6 An example of NOP division method
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Fig. 7 The mapping process of the machine Byte-code to STL Source-code

each instruction, and then downloaded the new program to the PLC. We finally uploaded
the new Byte-code on the attacker machine, and identified each Hex-byte representing each
instruction as shown in Fig. 6b. After extracting all instructions with the corresponding
Hex-Bytes, we created a small Mapping Database of pairs: Hex-Bytes to its corresponding
STL instruction, and used this mapping Database to convert the original machine Bytecode
to its STL source code online. However, although our mapping database is very limited to
only the instructions used in our program, this method could be developed to map all Hex-
Bytes to their STL instructions for any logic control program. Fig. 7 presents the online
mapping process, which takes the content of the code block (OB1) as input and utilizes
the created Mapping-Database to retrieve the STL logic program.

Phase III: Modifying the Control Logic After a successful mapping for the control
logic, an attacker now has sufficient knowledge of the control process running in the PLC,
and all needed to corrupt the system is as easy as replacing one or more instructions with
new ones. In our case, our program has two outputs (2 pumps) and by modifying any
input status that a pump reads will corrupt the physical process and make the system work
incorrectly e.g. for aquarium.1 in our example application, swapping the low sensor switch
%I4.4 (Normal-opened) with the high sensor switch %I4.3 (Normal-closed) will confuse
the process as pump1 turns off and on before the water reaches the required levels. This
leads to a physical damage in a real industrial system. Please note that in this scenario,
the infected code size remains the same as the original one (130 KB) as we just swapped
instructions without adding any new ones. We found this attack scenario doesn’t cause an
increase in both the code size as well as the cycle time when executing the attacker code.

Phase IV: Downloading the Modified Code The final step an attacker needs to do is
to replace the original code with the infected one created in the previous step. As for the
upload operation, conversely we are able to download the infected code from the attacker
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Fig. 8 Modifying the PLC’s Byte-code

machine by using the function “Cli_download (type, block number)” from the Pyhton-
Snap7 library. An attacker might skip the first three phases and just replaces the original
machine code with a totally new one even without knowing the program that the PLC runs.
This holds true just in case there are no security means implemented by the IT supervisors.
However, our method can cope with such protection mechanisms. Fig. 8 shows both the
original and infected Byte-code captured by Wireshark.12

5 Possible Mitigation Solutions

Our attacks showed that S7-300 PLCs are prone to different sorts of threats, so in order
to secure industrial systems and protect the PLCs against cyber-attacks, we suggest some
possible solutions to mitigate the impact of the abovementioned attacks. A PLC guard
presented in [22] could be a possible solution. It intercepts and investigate any traffic
targeting programmable controllers. To infer anomalies, code which is intended to be
executed is compared to various safe baseline specimens by executing functional code
comparisons and assembly matching techniques. This allows the operator to approve
or reject the transfer, using a trusted device that is significantly harder to subvert by
attackers. Another possible solution could be the one presented in [23]. It is a detection
mechanism against PLC payload attacks based on runtime behavior. This allows the
operator to monitor the PLC firmware. Implementing such an approach in ICS, can identify
a wide variety of PLC payload attacks, and therefore effectively detect any possible
attacks running against PLCs. Siemens also provides a special hardware module called
SCALANCE to secure industrial control systems. This module uses network segmenting
mechanism to issue access authentications and permit data traffic between only defined
participants. So in case we place this module between a PLC and other devices, it will

12 https://www.wireshark.org/

https://www.wireshark.org/
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mitigate the effect of any potential cyber-attacks. However, such approach is not yet widely
deployed in ICSs for budget and practical considerations.

6 Conclusion and Future Work

In this paper, Our IHP-Attack tool showed that an attacker is capable of compromising S7-
300 controllers in different ways. Starting from scanning the network to find out if there
is any available controller, then collecting critical data about the target PLC’s software
blocks. Although Siemens protects their devices with an 8 characters password, an attacker
could bypass the authentication, and even change the password without any knowledge
of the old one, preventing the legitimate user from reaching the PLC. We also showed
that once an attacker reaches the PLC, he is able to perform series of attacks e.g. replay,
and control hijacking. Our experiments proved that our industrial systems based on S7-
300 controllers are in need to be defended against different cyber-attacks. Therefore,
implementing security means is highly requested. For this reason we suggested some
possible mitigation solutions to face potential cyber-criminal activities. In the future, we
aim to develop our tool by adding some features e.g. generalizing our compiling method
to retrieve the source code of any user program that PLC run, retrieving the plain-text
of Password, and targeting modern SIMATIC controllers such as S7-1200, and S7-1500.
These new controllers are more robust then S7-300/S7-400 and use S7Comm Plus protocol
that has Anti Replay Mechanism, and more protection means to detect different cyber-
attacks which will be our future challenges.
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