
Received 6 December 2021; revised 22 January 2022; accepted 6 February 2022. Date of publication 14 February 2022;
date of current version 2 March 2022. The review of this paper was arranged by Associate Editor Yang Shi.

Digital Object Identifier 10.1109/OJIES.2022.3151528

A New Injection Threat on S7-1500 PLCs -
Disrupting the Physical Process Offline

WAEL ALSABBAGH 1,2 (Member, IEEE), AND PETER LANGENDÖERFER 1,2

1IHP – Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
2Brandenburg University of Technology Cottbus-Senftenberg, 03046 Cottbus, Germany

CORRESPONDING AUTHOR: WAEL ALSABBAGH (e-mail: Alsabbagh@ihp-microelectronics.com)

This work was supported by the Open Access Fund of Leibniz Association.

ABSTRACT Programmable Logic Controllers (PLCs) are increasingly connected and integrated into the
Industrial Internet of Things (IIoT) for a better network connectivity and a more streamlined control process.
But in fact, this brings also its security challenges and exposes them to various cyber-attacks targeting the
physical process controlled by such devices. In this work, we investigate whether the newest S7 PLCs are
vulnerable by design and can be exploited. In contrast to the typical control logic injection attacks existing
in the research community, which require from adversaries to be online along the ongoing attack, this article
introduces a new exploit strategy that aims at disrupting the physical process controlled by the infected PLC
when adversaries are not connected neither to the target nor to its network at the point zero for the attack. Our
exploit approach is comprised of two steps: 1) Patching the PLC with a malicious Time-of-Day interrupt block
once an attacker gains access to an exposed PLC, 2) Triggering the interrupt at a later time on the attacker
will, when he is disconnected to the system’s network. For a real attack scenario, we implemented our attack
approach on a Fischertechnik training system based on S7-1500 PLC using the latest version of S7CommPlus
protocol. Our experimental results showed that we could keep the patched interrupt block in idle mode and
hidden in the PLC memory for a long time without being revealed before being activated at the specific date
and time that the attacker defined. Finally, we suggested some potential security recommendations to protect
industrial environments from such a threat.

INDEX TERMS Programmable logic controllers, industrial control systems, injection attack, time-of-day
block, offline attack.

I. INTRODUCTION
Industrial Control Systems (ICSs) are used to automate
critical control processes such as production lines, electrical
power grids, oil and gas facilities, petrochemical plants, and
others. Each ICS environment consists of two main sites:
a control site and a field site. Fig. 1 shows a typical ICS
environment. The control center runs ICS services such as
Human Machine Interfaces (HMIs) and engineering worksta-
tions. The field site has sensors, actuators, and Programmable
Logic Controllers (PLCs) that are installed locally to monitor
and control physical processes. The engineering workstation
is used to configure and program PLCs. It has a PLC vendor-
specific programming software to write control logic that de-
fines how the PLC should control and maintain the physical
process at a desired state. PLCs are offered by several vendors

such as Siemens, Allen-Bradley, Mitsubishi, Schneider and
Modicon. Each has its own proprietary firmware, program-
ming language, communication protocols and maintenance
software.

In the past, when PLCs were first introduced, it was un-
common for them to be connected to the outer world and they
were often running independently i.e., the PLC-based ICS
environments were air-gapped. This separation is no longer
possible due to new demands such as maximizing the profits,
minimizing the costs, and achieving a better efficiency [1].
Therefore, it is not surprising that most of modern ICS en-
vironments are increasingly connected to corporate networks
and no longer controlled/monitored on-site. Unfortunately,
this higher connectivity has also enlarged the attack surface,
and brought its security challenges allowing attacks that were

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

146 VOLUME 3, 2022

https://orcid.org/0000-0001-5235-0262
https://orcid.org/0000-0002-6209-9048
mailto:Alsabbagh@ihp-microelectronics.com

FIG. 1. An example of an industrial control system environment.

not existing in the times of the air-gapped industrial plants.
Stuxnet [12], which targeted the Iranian uranium enrichment
in 2010, played an important role in increasing awareness of
security for industrial control systems. This attack showed
that no plant is resilient to cyber-attacks and that PLCs could
be potentially hacked causing disastrous damages. But since
then, several other ICS have been successfully attacked, for
example the Ukrainian power grid [17], the German steel
Mill [22], TRITON [16], etc.

In this work, we show that modern PLC-based ICS envi-
ronments are not fully protected against control logic injec-
tion attacks, and that these systems are still quite far from
being completely secure. To this end, we present a new at-
tack strategy that allows malicious adversaries to disrupt the
physical process controlled by PLCs offline i.e., without being
connected to the target or to its network at the point zero for
the attack. The main focus of our investigations is on Siemens
devices, precisely the latest PLC models i.e., devices from S7-
1500 family, and the latest version of S7CommPlus protocol
i.e., S7CommPlusV3. Our attack approach is structured into
two main phases:

1) Patching the control logic program of a PLC with an
interrupt, precisely with Time-of-Day (ToD) interrupt
block using the specific Organization Block 10 (OB10).
This is done online i.e., when the adversary has access
to the target device. During this phase, the patch has
no impact, neither on the physical process nor on the
execution process of the control logic program i.e., the
patch is in the idle mode.

2) Activating the patch injected in the target later at a
certain date and time. This is done offline i.e., without

the need of being connected to the target PLC at the
point zero for the attack.

To conduct experiments for proving the research, a Fis-
chertechnik training industry plant1 controlled by an S7-1500
PLC was used to test our attack approach. Our new threat
is network based, and can be successfully conducted by any
attacker with network access to any S7-1500 PLC with a
firmware V2.9.2 or lower.

A. MOTIVATION
The objective of this article is to introduce a new control
logic injection on cryptographically secured PLCs that use
sophisticated protection methods. The intention of discussing
this new type of attack is to raise awareness for sophisticated
attacks and to assist in determining new vulnerabilities and
weaknesses existing in PLCs as they are running in millions
of critical industrial plants, and play a major point of in-
teracting between the cyber and physical world. Our main
focus is to understand the attack vectors in the first place,
and show the security research community, engineers, and
industrial vendors what the consequence of the vulnerabilities
would be if they are exploited. To conduct a real-world attack
scenario, we chose a device from Siemens S7-1500 family.
Our selection is based on two factors. First, Siemens is the
leading provider of industrial automation components and
their SIMATIC families have approximately 30-40% of the
industry market [23]–[25]. Secondly, Siemens claimed that its
newest PLCs generation is well-secure against various attacks,

1https://www.fischertechnikwebshop.com/de-DE/fischertechnik-
lernfabrik-4-0-24v-komplettset-mit-sps-s7-1500-560840-de-de

VOLUME 3, 2022 147

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

and their new developed S7CommPlus protocol supports im-
proved security measures like an advanced anti-replay mech-
anism and a sophisticated integrity check. These two factors
motivated us to show how the most secure PLCs in Siemens
SIMATIC lines can be exploited by external adversaries, and
how attackers can confuse the physical process even without
being connected to the victim devices. This could lead to dis-
astrous damages to the plants employing such compromised
devices.

The major benefit of our attack strategy is that, the time
running the attack and the point in time, when it shall hit
the victim can be fully decoupled. For example, if motivated
adversaries want to collapse a certain system at a specific
date/time e.g., the day before elections, or the day before
going to the stock market to harm a country or a company
respectively, they have sufficient time to inject their malicious
code very well in advance, and do not need to be successful
with the attack just at the right time.

B. PROBLEM STATEMENT
Most of the injection attacks have two critical challenges: First
is that the typical injection attacks are designed to gain access
to the target or its network in very specific circumstances i.e.,
when the security measure implemented is absent or disabled
for a certain reason [2], [3], [5]–[7], [9]–[11], [13], [18], [29],
[30], [34] for example, the security mean is being updated, the
ICS operator is running some maintenance processes, other
devices are being removed/replaced/added to the network, etc.
The system is at high risk to get a malicious infection during
these critical phases, but it is not operating in its normal state
i.e., the physical process is more likely to be temporally off.
Hence, if attackers manage successfully to gain access to the
target device during these times, and perform their attacks
right after that, they will, pretty likely, not impact the physical
process. The second challenge is that after the ICS operator
is done with the ongoing maintenance processes, he usually
reactivates the security measure before re-operating the sys-
tem once again. This allows him to reveal and prevent any
attempt to inject the PLC if the attacker is still connected to
the network. Our attack approach overcomes both challenges
by patching the PLC with a malicious block at that point
in time at which the attacker accesses the network success-
fully, keeping the infection hidden in the PLC’s memory, and
lunching the attack at a later time on his will. This ensures
that the attack is not being performed when the system is
not operating normally or being detected by an introduced or
reactivated security measure. It is also important to highlight
that ICS operators are still able to reveal any infection or
modification in the control logic program, by uploading and
comparing both programs the one running on the PLC and the
one running in the engineering software [10]. In this article,
we also overcome this challenge by exploiting a vulnerability
existing in the newest S7CommPlus protocol (explained in
Section V) to hide the infection from the ICS operator i.e.,
who will always be shown the original code that runs on his
engineering software whilst the PLC runs the attacker’s code.

C. ATTACKER MODEL
Assumption: Our attacker model assumes that an attacker has
access to the level-3 network of the Purdue Model 2 (i.e.,
control center network). This assumption is based on real-
world ICS attacks e.g., TRITON [16] and Ukraine power
grid attack [17] that gained access to the control center via
a typical IT attack vector such as infected USB stick and
social engineering attack. We also assume that the attacker
has access to the PLC and its respective engineering software
along with a packet-sniffing tool such as Wireshark.3 After the
level-3 network access, an attacker can make use of software
and libraries to communicate with the target PLC over the
network. As our assumptions have already been reported to
hold true in reports on real world attacks, we are convinced
that our attack is a realistic one.

Attacker’s goal: The attacker’s goal is as follows: disrupting
the physical process at a time when he is completely offline,
i.e., without being connected to the target or its network at
the point zero for the attack, while the physical process of the
target network is controlled by the infected PLC. In order to
ensure achieving the overall goal, the injection may not be
revealed by the ICS operator in the time between infecting the
PLC and the attack launch date. In this work, we assume that
an attacker achieves these goals if the following three tasks
are accomplished:

1) patching the malicious code when the attacker is con-
nected to the target’s network.

2) keeping this infection hidden in the PLC’s memory
without being revealed.

3) disrupting the physical process at a later time when the
attacker is completely offline of the target’s network.

Attacker’s capabilities: The attacker can employ one or
more of these capabilities to achieve the goals mentioned
earlier:

1) Eavesdropping: read any messages between two com-
municating parties.

2) Fabrication: initiate conversation with any other party
and compose/send a new message.

3) Interception: intercept messages, and block or mod-
ify/resend them.

D. CONTRIBUTIONS
In this article, we take the attack approach presented in our
former paper [10] one step further in the direction of ex-
ploiting PLCs offline, and extend our experiences to involve
the modern S7-1500 PLCs that use S7CommPlusV3 protocol.
Our main contributions in this article are summarized as fol-
lows:

1) Extending our control logic injection attack approach
presented in [10] from S7-300 to S7-1500 PLCs.

2) Hiding the malicious interrupt code in the PLC’s mem-
ory until the very moment determined by the attacker.

2https://www.goingstealthy.com/the-ics-prude-model/
3https://www.wireshark.org/

148 VOLUME 3, 2022

3) Disrupting the physical process controlled by the com-
promised PLC offline i.e., when the attacker is not con-
nected to the target or its network.

4) Demonstrating our attack using a real Siemens S7-
1512SP controlling a Fischertechnik training factory.

5) Revealing two new vulnerabilities in the integrity
protection method that S7-1500 PLCs and their
S7CommPlus protocol use.

The rest of this work is organized as follows. Section II
provides an overview of control logic injection attacks and
related work. Section III presents the technical background,
followed by the description of the protection mechanism of
the latest S7CommPlus protocol in Section IV. Our attack
approach is presented and explained in details in Section V. In
Section VI, we evaluate and discuss the impact of our attack,
as well as suggest some possible mitigation methods. Finally,
we conclude our work in Section VII.

II. OVERVIEW AND RELATED WORK
One of the recent threats targeting ICSs is the control logic in-
jection attack. Such an attack involves modifying the original
control logic running on a target PLC by engaging its engi-
neering software, typically employing the man-in-the-middle
approach [3]–[5], [9], [10], [13], [30]–[32]. The main vulnera-
bility exploited in this type of attacks is the lack of authentica-
tion measures in the PLC protocols. ICS vendors responded to
this threat by providing their PLCs with passwords to protect
the control logic from unauthorized access i.e., whenever an
ICS supervisor attempts to access the control logic running
in a PLC, the device first requires an authentication to allow
him to read/write the code. This is normally done via propri-
etary authentication protocol. But, this solution is not fully
preventing the controllers from being compromised. Previous
academic efforts [2]–[5], [9], [35] managed successfully to
bypass the authentication and to access the control logic in
different password-protected PLCs. The authors of the above-
mentioned papers discussed two prime ways to bypass the
authentication: either by extracting the hash of the password
and then pushing it back to the PLC (known as a replay
attack), or using a representative list of “plain-text password,
encoded-text password” pairs to brute-force each byte offline.
Overall, protecting the control logic by password authenti-
cation only failed. Attackers are still capable of accessing
the PLCs’ program and manipulating the physical processes
controlled by the exposed devices.

In the research community there are two types of control
logic injection attacks: traditional control logic injection and
firmware injection. However, infecting a PLC firmware would
be a challenging task in a real ICS environment as most
PLC vendors protect their PLCs from unauthorized firmware
updates by cryptographic methods e.g., digital signature, or
allowing firmware updates only by local access (e.g., SD cards
and USB). This work does not cover a firmware injection and
only focuses on the traditional control logic injection attack.
In the following, we classify the existing injection attacks
aiming at disrupting the physical process into two groups.

FIG. 2. Disrupting the physical process online.

A. DISRUPTING THE PHYSICAL PROCESS ONLINE
The attacks in this group are designed to modify the original
control logic program by engaging its engineering software.
The physical process controlled by the infected device is im-
pacted right after the malicious code is successfully injected.
Fig. 2 shows the attack sequence.

The most well-known attack representing this kind is the
one that was conducted on Iranian nuclear facilities in 2010,
named as Stuxnet to sabotage centrifuges at a uranium enrich-
ment plant. The Stuxnet attack [12], [20], [21] used a windows
PC to target Siemens S7-300 and S7-400 PLCs that were con-
nected to variable frequency drives. It infects the control logic
of the PLCs to monitor the frequency of the attached motors,
and launches an attack if the frequency is within a certain
range (i.e., 807 Hz and 1,210 Hz). More recent examples of
such attacks on ICS occurred in Ukraine [17], [19]. These
attacks targeted the electrical distribution grid causing wide-
spread blackouts. In 2014, the German federal office for infor-
mation security also announced a cyber-attack at an unnamed
steel mill [22]. The hackers manipulated and disrupted control
systems to such a degree that a blast furnace could not be
properly shot down, resulting in a massive damage. McLaugh-
lin [45] conducted a control logic injection attack on a train
interlocking program. The malicious program he introduced
was reverse engineered using a format program. With the
help of the decompiled program, he extracted the field-bus ID
that indicated the PLC vendor and model, and then retrieved
clues about the process structure and operations. Afterwards
he designed his own program that generates unsafe behaviors
for the train e.g., causing conflict states for the train signals.
As a real attack scenario, he targeted timing-sensitive signals
and switches. In a follow up work, McLaughlin et al. [46]
implemented SABOT. It required a high-level description of
the physical process, for example, “the plant contains two in-
gredient valves and one drain valve”. Such information could
be got from public channels, and are similar for processes
in the same industrial sector. With this information, SABOT
generates a behavioral specification for the physical processes
and used incremental model checking to search for a mapping
between a variable within the program, and a specified physi-
cal process. Using this map, SABOT compiled a dynamic pay-
load customized for the physical process. Both studies were
limited to Siemens PLCs, without illustrating many details
on reverse engineering. Valentine [48] introduced attacks that
could install a jump to a subroutine command, and modify
the interaction between two or more ladders in a program.
This could be disguised as an erroneous use of scope and
linkage by a novice programmer. In 2015, Klick et al. [6]

VOLUME 3, 2022 149

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

presented the injection of malware into the control logic of
a SIMATIC PLC, without disrupting the service. The authors
showed that a knowledgeable adversary with access to a PLC
can download and upload code to it, as long as the code
consists of MC7 bytecode. In a follow on work, Spenneberg
et al. [7] introduced a PLC worm. The worm spreads inter-
nally from one PLC to other target PLCs. During the infection
phase, the worm scans the network for new target PLCs. A
Ladder Logic Bomb malware written in ladder logic or one
of the compatible languages was introduced in [8]. Such a
malware is inserted by an attacker into existing control logic
on PLCs. A group of researchers [9] demonstrated a remote
attack on the control logic of PLCs. They were able to infect
the PLC and to hide the infection from the engineering soft-
ware at the control center. They implemented their attack on
Schneider Electric Modicon M221, and its vendor-supplied
engineering software SoMachine-Basic. Senthivel et al. [18]
presented three control logic injection attacks where an at-
tacker interferes with engineering operations of downloading
and uploading PLC control logic. In the first attack scenario,
an attacker, placed in a man-in-the-middle position between
a target PLC and its engineering software, injects malicious
control logic to the PLC and replaces it with original control
logic to deceive the engineering software when the uploading
operation is requested. The second scenario that their paper
presented is very similar to the first scenario but differs in
that an attacker uploads malformed control logic instead of the
original control logic to crash the engineering software. The
last scenario does not require a man-in-the-middle position, as
the attack just injects crafted malformed control logic to the
target PLC. Lei et al. [31] demonstrated a spear that can break
the security wall of the S7CommPlus protocol that Siemens
SIMATIC S7-1200 PLCs utilize. The authors first used the
Wireshark software to analyze the communications between
the TIA Portal software and S7 PLCs. Then, they applied the
reverse debugging software WinDbg 4 to break the encryption
mechanism of the S7CommPlus protocol. Afterwards, they
demonstrated two attacks. First a replay attack was performed
to start and stop the PLC remotely. In the second attack sce-
nario, the authors manipulated the input and output values of
the victim causing a serious damage for the physical process
controlled by the infected PLC. In 2021, researchers in [3]
also showed that S7-300 PLCs are vulnerable to such attacks
and demonstrated that exploiting the control logic running in
a PLC is feasible. After they compromised the security mea-
sures of PLCs, they conducted a successful injection attack
and kept their attack hidden from the engineering software
by engaging a fake PLC impersonating the real infected de-
vice. Researches behind Rogue7 [30] were able to create a
rogue engineering station which can masquerade as the TIA
Portal to S7 PLCs, and to inject any messages favorable to
the attacker. By understanding how cryptographic messages
were exchanged, they managed to hide the code in the user
memory, which is invisible to the TIA Portal engineering

4http://www.windbg.org/

FIG. 3. Disrupting the physical process offline.

station. In [44], a group of security researchers analyzed the
anti-replay mechanism that the new S7 PLCs used, and man-
aged successfully to steal an existing communication session
and to make unauthorized changes to the PLC states. As a part
of their experiments, they identified specific bytes necessary
to craft valid network packets, and demonstrated a successful
replay attack on S7 PLCs.

All the attacks mentioned above are limited and require that
attackers are connected to the target at the point zero for the
attack, which increases the possibility of being revealed by the
ICS operators beforehand, or detected by security measures.

B. DISRUPTING THE PHYSICAL PROCESS OFFLINE
The attacks in this class are quite similar to the ones men-
tioned in the prior class, but differs in that an adversary does
not aim at attacking the physical process right after gaining
access to the target device. Meaning that, he patches his ma-
licious code once he accesses an exposed PLC, then closes
any live connection with the target keeping his patch inside
the PLC’s memory in idle mode. Afterwards, he activates his
patch and compromises the physical process at a later time he
wishes even without being connected to the system network
(see Fig. 3).

To the best of our knowledge, only a few academic ef-
forts discussing this new threat were published. Serhane
et al. [47] focused on Ladder logic code vulnerabilities and
bad code practices that may become the root cause of bugs
and subsequently be exploited by attackers. They showed that
attackers could generate uncertainly fluctuating output vari-
ables e.g., performing two timers to control the same output
values could lead to a race condition. Such a scenario could
result in a serious damage to the devices controlled, similar
to Stuxnet [12]. Another scenario that the authors pointed out
is that skilled adversaries could also bypass some functions,
manually set certain operands to desired values, and apply
empty branches or jumps. In order to achieve a stealthy modi-
fication, attackers could use array instructions or user-defined
instructions, to log insert critical parameters and values. They
also discussed that attackers could apply an infinite loop via
jumps, and use nest timers and jumps to only trigger the attack
at a certain time. We, in our former paper [10], presented
a novel approach based on injecting the target PLC with a

150 VOLUME 3, 2022

FIG. 4. A typical S7 PLC Architecture.

Time-Of-Day interrupt code, which interrupts the execution
sequence of the control logic at the time the attacker sets.
Our evaluation results proved that an attacker could confuse
the physical process even being disconnected from the target
system. Although our research work was only tested on an
old S7-300 PLC, and was just aiming at forcing the PLC to
turn into stop mode, the attack was successful and managed to
interrupt executing the original control logic code running in
the patched PLC. Such attacks are severer than the online ones
as the PLC keeps executing the original control logic correctly
without being disrupted for hours, days, weeks, months and
even years until the very moment determined by the attacker.
The only realistic way to reveal this kind of attack is that
the ICS operator requests the program from the PLC and
compares the online code running in the infected device with
the offline code that he has on the engineering station. But in
this work, we overcome this challenge as illustrated later in
Section V.

III. TECHNICAL BACKGROUND
In this section, we outline the architecture of a standard S7
PLC and its operating system, engineering software, user pro-
gram, Time-of-Day interrupt, and S7Communication proto-
cols.

A. SIMATIC S7 PLC ARCHITECTURE
Siemens produces several PLC product lines in the SIMATIC
S7 family e.g., S7-300, S7-400, S7-1200, and S7-1500. All
have the same architecture. Fig. 4 depicts a standard archi-
tecture of an S7 PLC that includes input and output modules,
power supply, and memory such as Random Access Mem-
ory (RAM) and Electrically Erasable Programmable Read-
only Memory (EEPROM). The firmware, known as Operating
System (OS), as well as the user-specific program is stored
in the EEPROM. Input and Output devices such as sensors,
switches, relays, and valves are connected with the input and
output modules. The PLC is connected to a physical process;
the input devices provide the current state of the process to

FIG. 5. Overview of program execution, extracted from [43].

the PLC, which the PLC processes through its control logic,
and controls the physical process accordingly via the output
devices.

The control logic that an S7 PLC runs is programmed and
compiled into a lower representation of the code i.e., to MC7
or MC7+ bytecode for S7-300/S7-400 or S7-1200/S7- 1500
PLCs respectively. After the code being compiled by the engi-
neering station, its blocks, in MC7/MC7+ format, are down-
loaded and installed into the PLC via Siemens’ S7Comm or
s7CommPlus protocol for S7-300/S7-400 or S7-1200/S71500
PLCs respectively. Then, the MC7/MC7+ virtual machine in
the S7 PLC will dispatch the code blocks, interpret and exe-
cute the bytecode.

B. OPERATING SYSTEM (OS)
Siemens PLCs run a real time OS, which initiates the cycle
time monitoring. Afterwards, the OS cycles through four steps
as shown in Fig. 5. In the first step, the CPU copies the values
of the process image of outputs to the output modules. In the
second step, the CPU reads the status of the input modules and
updates the process image of input values. In the third step,
the user program is executed in time slices with a duration
of 1 ms (ms). Each time slice is divided into three parts,
which are executed sequentially: The operating system, the
user program and the communication. The number of time
slices depends on the complexity of the current user program
and the events interrupting the execution of the program.

In normal operation, if an event occurs, the block currently
being executed is interrupted at a command boundary and a
different organization block that is assigned to the particular
event is called. Once the new organization block has been
executed, the cyclic program resumes at the point at which
it was interrupted. This holds true as the maximum allowed
cycle time (150 ms by default) is not exceeded. In other words,
if there are too many interrupt OBs called in the main OB1,
the entire cycle time might be extended more than it is set
in the PLC hardware configuration. Exceeding the maximum
allowed execution cycle generates a software error, and the
PLC calls a specific block to handle this error i.e., OB80.

VOLUME 3, 2022 151

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

FIG. 6. S7 PLC’s user program blocks.

There are two ways to handle with this error: 1) PLC turns
to a stop mode if the OB80 is not loaded in the main program,
2) PLC executes the instructions that OB80 is programmed
with e.g., an alarm.

C. ENGINEERING SOFTWARE
Siemens provides their Total Integrated Automation (TIA)
Portal software to engineers for developing PLC programs.
It consists of two main components. The STEP 7 as develop-
ment environment for PLCs and WinCC to configure Human
Machine Interfaces (HMIs). Engineers are able to program
PLCs in one of the following programming languages: Ladder
Diagram (LAD), Function Block Diagrams (FBD), Structured
Control Language (SCL), and Statement List (STL).

D. USER PROGRAM
S7 PLC programs are divided into the following units: Or-
ganization Blocks (OBs), Functions (FCs), Function Blocks
(FBs), Data Blocks (DBs), System Functions (SFCs), System
Function Blocks (SFBs) and System Data Blocks (SDBs) as
shown in Fig. 6.

OBs, FCs and FBs contain the actual code, while DBs pro-
vide storage for data structures, and SDBs for the current PLC
configurations. The prefix M, memory, is used for addressing
the internal data storage. A simple PLC program consists of at
least one organization block called OB1, which is comparable
to the main () function in a traditional C program. In more
complex programs, engineers can encapsulate code by using
functions and function blocks. The only difference is an ad-
ditional DB as a parameter for calling an FB. The SFCs and
SFBs are built into the PLC. However, the operating system
calls OB cyclically and with this call it starts cyclic execution
of the user program.

E. TIME-OF-DAY (TOD) INTERRUPTS
A Time-of-Day (TOD) interrupt is executed at a configured
time, either one-time or periodically depending on the needs
of interrupt e.g., every minute, hourly, daily, monthly, yearly,
and at the end of the month. A CPU 1500 provides 20 organi-
zation blocks with the numbers OB10 to 0B17 and after OB
123 for processing a TOD interrupt.

To start a TOD interrupt, a user must first set the start time
and then activate the interrupt. He can carry out both activities

separately in the block properties, automatic configuration, or
also with system functions, manual configuration. Activating
the block properties means that the Time-of-Day interrupt is
automatically started. However, in the following we illustrate
both ways briefly:

1) Automatic configuration: The user adds an organization
block with the event class Time-of-Day and enters the name,
programming language, and number. He programs the OB10
with the required instructions to be executed when the inter-
rupt occurs.

2) Manual configuration: In this method, the user uses sys-
tem function blocks to set, cancel, and activate a Time-of-Day
interrupt. He sets the necessary parameters for the interrupt
in the main OB1, by using system function blocks while
the interrupt instructions to be executed are programmed in
OB10. [49] provides technical details to set and program
Time-of-Day interrupts in S7-1500 PLCs.

F. S7COMMUNICATION PROTOCOLS
The S7 protocol defines an appropriate format for exchanging
S7 messages between devices. Its main communication mode
follows a client-server pattern: the HMI or TIA Portal device
(client) initiates transactions and the PLC (server) responds
by supplying the requested data to the client, or by taking the
action requested in the instruction. Siemens provides its PLCs
with two different protocol flavors: the older SIMATIC S7
PLCs implement an S7 flavor that is identified by the protocol
number 0x32 (S7comm), while the new generation PLCs im-
plement an S7 flavor that is identified by the protocol number
0x72 (S7CommPlus). The newer S7CommPlus protocol has
three sub-versions: S7CommPlusV1, S7CommPlusV2, and
S7CommPlusV3.

In this article, we only focus on the S7CommPlusV3 Pro-
tocol that is used in the newer versions of the TIA Portal
from V13 on, and in the newer PLC S7-1500 firmware e.g.,
V1.8, 2.0, etc. This protocol requires that both the TIA Por-
tal and the PLC support its features, and has more complex
integrity protection mechanisms as illustrated in the next sec-
tion. S7CommPlusV3 protocol is considered as the most se-
cure protocol compared to the older S7CommPlus versions,
i.e., S7CommPlusV1 and S7CommPlusV2.

IV. S7COMMPLUSV3 PROTOCOL
The S7CommPlusV3 protocol is used only by the newer ver-
sion of the TIA Portal, and the S7-1500 PLCs. It supports var-
ious operations that are performed by the TIA Portal software
as follows:

1) Start/Stop the control program currently loaded in the
PLC memory.

2) Download a control program to the PLC.
3) Upload the current control program from the PLC to the

TIA Portal.
4) Read the value of a control variable.
5) Modify the value of a control variable.
The above-mentioned operations are translated by the TIA

Portal software to S7CommPlus messages before they are

152 VOLUME 3, 2022

FIG. 7. The S7 Session Key Establishment Mechanism.

transmitted to the PLC. The PLC acts then on the messages
it receives, executes the control operations, and responds back
to the TIA Portal accordingly. The messages are transmitted in
the context of a session, each session has a session ID chosen
by the PLC. A session begins with a four-message handshake
used to select the cryptographic attributes of the session in-
cluding the protocol version and keys. After the handshake,
all messages are integrity protected using a cryptographic
protection mechanism as illustrated in the next subsection.

A. THE S7 INTEGRITY PROTECTION MECHANISM
Siemens integrated cryptographic protection in its newer S7
proprietary protocol in order to protect its PLCs from unau-
thorized access. The new mechanism uses two main modules:

1) A session key exchange protocol that the two parties
(PLC and TIA Portal) use to establish a secret shared key in
each session.

2) Per-fragment message protection that calculates a
Message Authentication Code (MAC) value.

1) S7 KEY EXCHANGE PROTECTION
Siemens improved its S7CommPlus protocol by replacing
the key generation process in the prior version, i.e., the
S7CommPlusV2, by a more complex process in the newer
version S7CommPlusV3. The new mechanism involves a new
key exchange technique, that uses elliptic-curve public-key
cryptography [33] as depicted in Fig. 7.

FIG. 8. The Structure of the SecurityKeyEncriptedKey BLOB Data.

The first request message is a Hello message that the TIA
Portal sends to initialize a new session. Then, the PLC re-
sponds back with sharing its firmware version, model, Session
ID, and specific 20-bytes known as PLC_Challenge. The PLC
firmware version determines the elliptic-curve public-key pair
to be used in the key exchange. After the TIA Portal receives
the second message from the PLC, it activates a derivation
algorithm to randomly select a key Derivation Key (KDK),
and to generate the session key from the PLC_Challenge and
the selected KDK. Afterwards, the TIA Portal transmits the
key encrypted using Elliptic-Curve Cryptography (ECC) to
the PLC over the third message. The third message contains,
among other things, two main parts:

a) A data structure called SecurityKeyEncryptedKey shown
in Fig. 8, which contains the selected key encrypted with
the PLC’s public key.

b) Two 8-bytes key fingerprints (additional key), of the
PLC public key ID and the selected key, respectively.

Finally, the PLC verifies the third message. If this is done
successfully, it returns OK in the fourth message, and from
this point on, all the following messages in the session are
integrity protected with the derived Session Key.

2) PER-FRAGMENTATION MESSAGE PROTECTION
When the TIA Portal downloads/uploads the control logic
program to/from an S7-1500 PLC, the assigned S7CommPlus
messages are fragmented to many small fragments sent over
the TCP/IP packets. All messages exchanged between the
two parties are integrity protected HMAC-SHA256 [27]. This
integrity protection is applied at the fragment level. Meaning
that, it replaces the signal MAC value at the end of each
message, and a cryptographic digest is placed at each frag-
ment between the fragment header and the fragment data as
shown in Fig. 9. [27] presents more technical details about
this protection mechanism.

Although fragmenting the S7 messages was more chal-
lenging for attackers, they eventually overcame this protec-
tion mechanism and compromised the PLCs using this tech-
nique. The vulnerability reported in [28] shows that attackers

VOLUME 3, 2022 153

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

FIG. 9. S7CommPlus message with integrity protection at fragment level.

could implement man-in-the-middle approach and managed
successfully to modify the network traffic exchanged on port
102/TCP due to the certain properties in the calculation used
for this integrity protection.

B. S7COMMPLUS DOWNLOAD MESSAGES - OBJECTS AND
ATTRIBUTES
S7 is a request response protocol. Each request message con-
sists of a request header, and a request set. The header con-
tains a function code, which identifies the requested operation
e.g., 0x31 for a download message (see Fig. 9). A single
S7CommPlus message might contain multiple objects, each
containing multiple attributes. All objects and attributes have
unique class identifiers. However, the CreateObject request
builds a new object in the PLC memory with a unique ID (in
our example, 0x04ca). The program download message then
creates an object of the class ProgramCycleOB. This object
contains multiple attributes, each one having values dedicated
to a specific purpose. For instance, the FunctionalObject.Code
contains the binary executable code that the PLC runs i.e., the
compiled program in the PLC’s machine language (MC7+).
The Block.AdditionalMac is used as an additional MAC value
in the integrity process, and both Block.OptimizedInfo and
Block.BodyDescription are equivalent to the program written
by the ICS operator which are stored in the PLC and can be
later uploaded, upon request, to a TIA Portal project.

From the security point of view, these attributes are critical
data that is transmitted over the S7CommPlusV3 protocol.
Meaning that, if an attacker can intercept the S7 packets con-
taining these attributes, and manage successfully to modify

them independently, he is able to cause a source-binary in-
consistency as explained in detail in the next section.

V. ATTACK DESCRIPTION
As in any typical injection attack, we patch our malicious
code, Time-of-Day interrupt block OB10, in the original con-
trol logic of the target PLC. The CPU checks whether the
condition of the interrupt is met in each single execution cycle.
Meaning that, the attacker’s interrupt block will be always
checked but only executed if the date and time of the CPU’s
clock match the date and time set by the attacker. Hence, we
have two cases:

1) The date of CPU’s clock matches the date set in the
OB10 (the date of the attack). The CPU immediately
halts executing OB1, stores the breaking point’s location
in a dedicated register, and jumps to execute the content
of the corresponding interrupt block OB10.

2) The date of the CPU’s clock does not match the date
set in OB10. The CPU resumes to execute OB1 af-
ter checking the interrupt condition without activating
the interrupt and without executing the instructions in
OB10.

Our attack approach presented in this paper is comprised
of two main phases: the patching phase (online phase), and
the attack phase (offline phase). Please note that, getting the
IP address, MAC address, and model of the victim PLC is
an easy task by running our PN-DCP protocol based scanner
presented in [5] or other network scanners that can obtain all
the information that the attacker needs to communicate with
the target device.

154 VOLUME 3, 2022

FIG. 10. High-level overview of the patching phase.

A. PATCHING PHASE
Fig. 10 shows a high-level overview of this phase. We aim
at injecting the PLC with our malicious instructions pro-
grammed in the interrupt block OB10. This phase consists of
four steps:

a) Uploading and downloading the user’s program.
b) Modifying and updating the control logic program.
c) Crafting the S7CommPlus download message.
d) Pushing the attacker’s message to the victim PLC.
To patch the target PLC, we utilize our MITM station which

has two main components:
1) A TIA Portal: to retrieve and modify the current control

logic program that the PLC runs.
2) A PLCinjector: to download the attacker’s code to the

PLC. In this work, we developed a python script based on the
Scapy5 library for this purpose.

For a realistic scenario, there are two possible cases that an
attacker might encounter after accessing the network.

1) CASE_1: INACTIVE S7 SESSION
In this scenario, the legitimate TIA Portal is offline, and only
communicates with the PLC if an upload process is required.

Step 1. Uploading & Downloading the User’s Program: In
this step, we aim at obtaining the decompiled control logic
program that the PLC runs, and the S7CommPlus message
that the TIA Portal sends to download the original user pro-
gram into the PLC. For achieving these goals, we open first
the attacker’s TIA Portal and establish a connection with the
victim PLC directly. This is possible due to a security gap in

5https://scapy.net/

the S7-1500 PLC design. In fact, the PLC does not introduce
any security check to ensure that the currently communicating
TIA Portal is the same TIA Portal that it communicated with
in an earlier session. For this, any external adversary provided
with a TIA Portal on his machine can easily communicate
with an S7 PLC without any effort.

After successfully establishing the communication, we up-
load the control logic program on the attacker’s TIA Portal.
Then we re-download it once again to the PLC and sniff the
entire S7CommPlus messages flow exchanged between the
attacker’s TIA Portal and the victim PLC using the Wireshark
software. At the end of this step, the attacker has the program
on his TIA Portal, and all the captured download messages
saved in a Pcap file for a future use (explained in step 3).

Step 2. Modifying & Updating the PLC’s Program: After
retrieving the user program that the target PLC runs, the at-
tacker’s TIA Portal displays it in one of the high-level pro-
gramming languages that it was programmed with (e.g., SCL).
Based on our understanding to the physical process controlled
by the PLC, we configure and program our Time-of-Day
interrupt block OB10 to force certain outputs of the system to
switch off once the interrupt is being activated (shown later
in Fig. 13). Although our malicious code differs from the
original code with only an extra small size block (OB10), it is
sufficient to confuse the physical process of our experimental
set-up.

The easiest way to update the program running in the PLC
is to use the attacker’s TIA Portal. When we downloaded the
modified control logic, the PLC updated its program success-
fully. But, the ICS operator could easily reveal the modifica-
tion by uploading the program from the infected PLC, and

VOLUME 3, 2022 155

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

FIG. 11. Closing the online session using MITM Approach.

FIG. 12. Experimental Set-up.

comparing the offline and online programs running on his
legitimate TIA Portal and the remote PLC respectively.

Step 3. Crafting the S7CommPlus Download Message: To
hide our infection from the legitimate user, we first recorded
the S7CommPlus messages exchanged between the attacker’s
TIA Portal and the PLC while downloading the modified pro-
gram. As mentioned earlier in Section IV.B, each download
message has objects and attributes see Fig. 9. The Program-
CycleOB object is dedicated to create a program cycle block
in the PLC’s memory and has three different attributes:

a) Object MAC: donated with the item value ID:
Block.AdditionalMac.

b) Object Code: donated with the item value ID: Function-
alObject.code.

c) Source Code: donated with the item value ID:
Block.BodyDescription.

The Object Code is the code that the PLC reads and pro-
cesses, whilst the Source Code is the code that the TIA Portal

FIG. 13. The malicious instructions in OB10.

decompiles, reads, and displays for the user. Therefore, all
what is required to show the user the original code is to
modify the S7CommPlus message that the attacker sends; by
replacing the Source Code attribute of the ProgramCycleOB
object of the attacker’s program with the Source Code attribute
of the ProgramCycleOB object of the original program. Our
investigation showed that the newest model of the SIMATIC
PLCs has a serious design vulnerability. The PLC checks the
session freshness by running a precaution measure. Hence, it
can detect any manipulation and refuses to update its program
in case the attributes do not belong to the same session. But
surprisingly, this holds true only for the Object MAC and the
Object Code attributes. Meaning that, to make the PLC ac-
cept the crafted message, our crafted S7CommPlus download
message must always have the Object MAC and the Object
Code attributes from the same session, whilst the Source Code
attribute could be substituted with another attribute from a
different session i.e., from a pre-recorded session. All the
captured packets containing the attributes of the ProgramCy-
cleOB for both the user and attacker programs are presented
in the Appendix.

Step 4. Pushing the crafted message to the PLC: The crafted
S7CommPlus download message contains the following at-
tributes: the Object MAC and Object Code attributes of the
attacker’s program, and the Source Code attribute of the user
program. As S7CommPlusV3 exchanges a shared session key
between the TIA Portal and the PLC to prevent performing
replay attacks, we first need to bundle the packet with a correct
key before we push the crafted message to the PLC. However,
exploiting the shared key is out of the scoop of this paper,
but it is explained in details in [30]. Once the malicious key
exchange is completed, we can easily bundle the key byte-
codes with our crafted message. Taking into consideration the
appropriate modification to the session ID and the integrity
fields, we store the final S7 message (the attacker’s message)
in a pcap file for pushing it back to the PLC as a replay attack.
Algorithm 1 describes the main core of our PLCinjector tool
that we use to patch the PLC with the attacker’s download
message.

156 VOLUME 3, 2022

The PLCinjector tool has two functions. The first one is
utilized to exploit the integrity protection session key that
S7CommPLusV3 uses. The session key exchanged in each
session between the TIA Portal and S7-1500 PLCs originates
from combining 16 bytes of the PLC’s ServerSessionChal-
lange, precisely the ones located between the bytes 2 and
18, with a random 24-byte KDK that the TIA Portal chooses.
Afterwards, a fingerprinting function f () is used within the
sessionKey calculation. Line 5 generates a 24 bytes random
quantity (M), and maps it to the elliptic curve’s domain do-
nated as PreKey. From the random point PreKey, we use a Key
Derivation Function (KDF) to derive 3-16 bytes quantities
identified as follows: Key Encryption Key (KEK), Checksum
Seed (CS) and Checksum Encryption Key (CEK). In line 7,
the CS generates 4096 pseudo-random bytes organized as
four 256-word, namely LUT. This LUT is used to calculate
a checksum over the KDK and PLC_Challenge. Lines from 8
to 13 depict the elliptic curve key exchange method similar
to the one that the TIA Portal uses to encrypt the random
generated PreKey. After that, we mask the elliptic curve cal-
culations with 20 bytes chosen randomly (donated to x in the
algorithm). Line 19 provides an authenticated encryption for
the encrypted KDK. Here a non-cryptographic checksum is
computed, then encrypted by AES-ECP function. Finally, we
add 2 header fields including key fingerprints i.e., 8-byte trun-
cated SHA256 hashes of the relevant key with some additional
flags see line 20.

After establishing a successful session with the victim, the
PLC exchanges the malicious generated Session_Key with the
attacker machine along the current communicating session.
In the next step, our tool executes function 2 to send the
attacker’s crafted S7 message that contains both the malicious
code combined with the generated Session_Key. Our attacking
tool can be also used against all the S7-1500 PLCs sharing
the same firmware. This is due to the fact that Siemens has
designed its new S7 key exchange mechanism assuming that
all devices running the same firmware version use also the
same public-private key pair mechanism [30].

After a successful injection, the PLC updates its program,
processing the Object Code of the attacker’s program while
it saves the Source Code of the user’s program in its mem-
ory. Therefore, whenever the user uploads the program from
the infected PLC, the TIA Portal will recall, decompile, and
display the original program. This kept our injection hidden
inside the PLC and the user could not detect any difference
between the online and offline programs.

2) CASE_2: ACTIVE S7 SESSION
In this scenario, there is an ongoing active S7 session between
the legitimate TIA Portal and the PLC during the patch. As
the S7 PLC, by default, allows only one active online session,
an attacker is not able to communicate with the PLC. It will
immediately refuse any attempt to establish a connection as it
is already communicating with the user. For such a scenario,
the attacker needs first to close the current online session

Algorithm 1: PLCinjector Tool.
Function 1 Get_Session_Key ((ServerSessionChallenge))
1: Checksum = 0
2: PLC_Challenge = ServerSessionChallenge[2:18]
3: KDK = prng (24)
4: Session_Key = HMAC-SHA256 (f (Challenge,8))

[:24]
5: PreKey = M (prng(24))
6: KEK,CEK,CS = KDF (PreKey)
7: LUT[4][256] = hash-init (CS)
8: while point == ∞do
9: x = prng(20)

10: point = fx (G, y, Nonce)
11: EG2 = y (point)
12: end while
13: EG1 = add (s, PreKey)
14: for block in E(KDK)do
15: Checksum = hash (checksum) ⊕ block,

LUT[4][256]
16: end for
17: Checksum[12] = Checksum[12] ⊕ 40
18: final_Checksum = hash (Checksum, LUT[4][256])
19: key = AES-ECB (final_Checksum)
20: KEY = SHA256(key[:24] || “DERIVE” [:8])
21: Return KEY
END Function 1
Function 2 Replay (pcapfile, Ethernet_interface, SrcIP,

SrcPort)
22: RecvSeqNum = 0
23: SYN = TRUE
24: for pkt in rdpcap (Pcapfile)do
25: IP = packet [IP]
26: TCP = packet[TCP]
27: delete IP.checksum
28: IP.src = SrcIP
29: IP.Port = SrcPort
30: if TCP.flags == Ack or TCP.flags ==

RSTACKthen
31: TCP.ack = RecvSeqNum+1
32: if sendp(packet,

iface=Ethernet_interface)then
33: SYN = False
34: Continue
35: end if
36: end if
37: Recv = Srp1(packet, iface=Ethernet_interface)
38: RecvSeqNum = rcv[TCP].seq
39: end for
END Function 2

between the legitimate user and the PLC, before patching his
malicious code.

A user can establish an online session with an S7 PLC by
enabling the “go online” feature in the TIA Portal software.
Then he can control, monitor, diagnose, download, upload,

VOLUME 3, 2022 157

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

start, and stop the CPU remotely. Once the user has estab-
lished an online connection with the PLC, the two parties
(the TIA Portal and PLC) start exchanging a specific mes-
sage along the session regularly. This message is known as
S7-ACK, and in charge of keeping the session alive. The TIA
Portal must always respond to any S7-ACK request sent by the
PLC with a S7-ACK replay message. Therefore, for closing
the current online session we run our MITM station (presented
in [3]) that allows us to intercept and drop all packets sent
from the TIA Portal, by performing the well-known ARP
poisoning approach. If the PLC does not receive a response
from the TIA Portal right after sending an acknowledgment
request, it will close the connection with the connected TIA
Portal and both go offline. Fig. 11 describes this scenario.

It is worth mentioning that, an attacker can also use dif-
ferent ways to close the connection e.g., port stealing, replay
attack with “go offline” packets, etc. After both the legitimate
TIA Portal and the victim PLC turned offline, the attacker can
easily establish a new session with the PLC, using his own
TIA Portal. Then he patches the victim device following the
same four steps explained in the previous case.

For this scenario, our patching approach has limitations.
The legitimate TIA Portal was forced to close the session with
the PLC. Meaning that, the user can see obviously that he lost
the connection with the remote device. In case he attempts to
re-connect to the PLC while it is connected to the attacker’s
TIA Portal, the PLC will refuse his connection request. Our
investigations showed that there is no way to re-connect the
legitimate TIA Portal to the victim PLC after patching the
PLC, unless the ICS operator himself enables “go online” on
his TIA Portal. This abnormal disconnection between the two
parties is the only effect of our patch in this scenario.

B. ATTACK PHASE
After a successful injection, the attacker goes offline and
closes the current communication session with the target PLC.
With the next execution cycle, the attacker’s program will be
executed in the PLC. Meaning that, the interrupt condition of
the malicious interrupt block OB10 will be checked in each
execution cycle. This block remains in idle mode, and hidden
in the PLC’s memory as long as the interrupt condition is not
met. Once the configured date and time of the attack matches
the date and time of the CPU, the interrupt code will be acti-
vated i.e., the execution process of the main program (OB1) is
suspended, and the CPU jumps to execute all the instructions
that the attacker programmed OB10 with. In our application
example, we programmed the OB10 to force certain motors
to turn off at a certain time and date when we are completely
disconnected from the target’s network.

VI. EVALUATION, DISCUSSION, AND MITIGATION
In this section, we present the implementation of our attack
approach, and assess the service disruption of the physical
process due to our patch. Afterwards, we discuss our results
and suggest possible mitigation methods to protect systems
from such a threat.

A. LAB SETUP
For evaluating our attack approach, we used the Fischertech-
nik training factory shown in Fig. 12. It consists of industrial
modules such as storage and retrieval stations, vacuum suction
grippers, high-bay warehouse, multi-processing station with
kiln, a sorting section with color detection, an environment
sensor and a pivoting camera. The entire factory is controlled
by a SIMATIC S7-1512SP with a firmware V2.9.2, and pro-
grammed by TIA Portal V16. The PLC connects to a TXT
controller via an IoT gateway. The TXT controller serves as
a Message Queuing Telemetry Transport (MQTT) broker and
an interface to the fischertechnik cloud.

The factory we used in our experiment provides two in-
dustrial processes. Storing and ordering materials. The default
process cycle begins with storing and identifying the material
i.e., workpiece. The factory has an integrated NFC tag sensor
storing production data that can be read out via an RFID NFC
module. This allows the user to trace the workpieces digitally.
The cloud displays the part’s colour and its ID-number. Af-
terwards, the vacuum gripper places suction on the material
and transports it to the high bay warehouse which applies a
first-in first-out principle for the outsourcing. All goods that
were stored could be ordered again online using a dashboard.
The desired product and the corresponding color are selected
by the user, and then placed in the shopping cart. The suction
gripper passes the workpiece from one step to the next, and
then moves back to the sorting system once the production
is complete. The sorting system receives the allocation com-
mand as soon as the color sorter detects the proper color.
The material is sorted using pneumatic cylinders. Finally the
production data is written on the material at the end of the
production process, and the finished product will be provided
for collection.

B. IMPLEMENTATION
In our experiment, we found that the vacuum suction gripper
(VGR) is involved in all the industrial processes that the Fis-
chertechnik system operates. Therefore, if we could disrupt
its functionality, then the entire system would be impacted.
The VGR module moves with the help of 8 mini motors:
vertical motor up (%Q2.0), vertical motor down (%Q2.1), hor-
izontal motor backwards (%Q2.2), horizontal motor forwards
(%Q2.3), turn motor clockwise (%Q2.4), turn motor anti-
clockwise (%Q2.5), compressor (%Q2.6), and valve vacuum
(%Q2.7). Therefore, for exploiting the VGR, we programmed
our OB10 to force all the 8 motors to switch off at the point
zero for the attack as shown in Fig. 13.

After patching the PLC with our malicious block, and be-
fore the Time-of-Date interrupt being activated, we did not
record any physical impact and the Fischertechnik system
keeps operating normally. Once the CPU clock matches the
attack time that we set, we noticed that the VGR module
stopped moving. Furthermore, the workpiece that is being
transported by the gripper has fallen down, as the compressor,
which provides the appropriate air flow to carry the good,

158 VOLUME 3, 2022

FIG. 14. Boxplot presenting the measured execution cycle times of OB1.

was turned off. This led to an incorrect operation, and the
movement sequence of the workpieces was disrupted. For a
real-world heavy factory e.g. automobile manufacturing in-
dustry, such an attack scenario might be seriously dangerous
and even cost human lives.

C. EVALUATION
To assess the impact of our patch on the physical process
controlled by the infected device accurately, we measured and
analyzed the differences of the execution cycle times for the
control logic program that the PLC runs in three different
scenarios:
� Normal Operation: before patching the PLC as a base-

line.
� Idle Attack: after patching the PLC and before the in-

terrupt is being activated i.e., the PLC is running the
attacker’s program.

� Activated Attack: after the interrupt is being executed.
Siemens PLCs, by default, store the time of the

last execution cycle in local variable of OB1 called
OB1_PREV_CYCLE. Therefore, we added a small SCL code
snippet to our control program which stores the last cycle time
in a separate data block. Then we recorded 4096 execution cy-
cle times for each scenario, calculated the arithmetic median
value, and used the Kruskal-Wallis and the Dunn’s Multiple
Comparison test for statistical analysis. All the results are
presented as boxplots in Fig. 14. In order to make our resulting
boxplots clearer and easier to read, we define the following
parameters:

1) First quartile (Q1): represents the middle value (cycle
time) between the smallest value and the median of the
total recorded values (4096 execution cycle times).

2) Median (Q2): represents the middle value of the total
recorded values.

3) Third quartile (Q3): represents the middle value be-
tween the highest value and the median of the total
values recorded.

4) Interquartile Range (IQR): represents all the values be-
tween 25% to 75% of the total recorded values.

5) Maximum: represents Q3 + 1.5*IQR
6) Minimum: represents Q1 - 1.5*IQR

7) Outliers: represents all the values that they are higher
and lower than the maximum and minimum values re-
spectively.

Our measurements show that the calculated median value
(Q2) of executing the OB1 for the infected program is approx.
38 ms, and differs slightly from the median value of executing
the OB1 for the original program which is almost 36 ms. The
Q1, and Q3 values for the infected program are as high as
36 ms and 40 ms respectively. They are a bit higher compared
to the recorded ones for the original program i.e., 35 ms and
37 ms for Q1 and Q3 respectively. Meaning that, checking
the interrupt condition of our malicious block in each execu-
tion cycle does not disrupt executing the control logic, and
the Fischertechnik system keeps operating normally. Please
note that, executing the attacker’s program should not exceed
the overall maximum execution time of 150 ms. Our mea-
surements clearly show that our injection did not trigger this
timeout as we recorded a maximum value as high as 47 ms
which is still quite small compared to 150 ms.

Once the CPU’s date and time match the date and time
that we set to trigger our attack, the CPU jumps to execute
the malicious instruction existing in OB10, and the attack is
activated. Our measurements, for this scenario, did not record
any higher median values in the execution cycles compared to
the prior scenario i.e., when the attack is idle. This is because
we set the OB10 to occur only once, so the PLC processes
the instructions existing in OB10, and resumes executing OB1
from the last point before the interrupt. But it keeps checking
the condition of the interrupt in each cycle as long as OB10 is
existing in the control logic program. However, our approach
allows attackers to adjust the repeating of the interrupt (see
Section III), as well as to program the interrupt block on their
will causing different impacts in the physical process of the
target system.

D. DISCUSSION
Based on our analysis, we can conclude that when our patch
is in idle mode, the execution cycle times of the infected
program are almost as high as the execution times of the orig-
inal program. Therefore, the ICS operator would not record
any abnormality in executing the control logic as the TIA
Portal software will not report any differences before and after
the patch. Furthermore, our attack approach always shows

VOLUME 3, 2022 159

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

the original program to the ICS operator, despite the PLC is
running a different one. This is due to the fact that the original
Source Code attribute is always sent back to the TIA Portal
whenever the user requires the program from the infected
PLC. Due to all that, our attack is capable of staying in the
device in idle mode for a long time without being revealed,
and the only way to remove it is to re-program the device once
again by the ICS Operator. However, in critical facilities and
power plants, re-programming the PLCs is not a common case
unless there is a certain reason to do so.

The success of our attack approach on S7-1500 PLCs is,
indeed, based on serious design vulnerabilities in the newest
model of S7 PLCs and security issues in the integrity mecha-
nism used in the latest version of the S7CommPlus protocol.
We found that the PLC does not authenticate the TIA Portal
as we expected, and only confirms the session freshness. This
allows an external attacker to perform replay attacks against
the PLC, keeping in mind that he has always to provide the
correct Session_Key in his crafted S7 messages, otherwise the
PLC will detect that the expected S7 message received has
been modified and will refuse to update its program. Siemens
claimed that the newest PLCs are resilient against replay
attacks, but unfortunately we could maliciously update the
PLC’s program by sending a crafted S7 download message.

Another vulnerability we detected during our investigations
is that there is no security pairing between the TIA Portal and
the PLC i.e., the PLC does not ensure that the TIA Portal
it is currently-communicating with, is the same TIA Portal
than in a previous session. This allows an attacker who has a
TIA Portal installed on his machine to easily access the PLC
without any efforts. Although this holds true as long as the
target PLC is not already connected online to the legitimate
TIA Portal. Our results showed that an attacker can still com-
municate and inject the victim after closing the current session
between the TIA Portal and the PLC. It is also noticed that
Siemens provides its 1500 CPUs with a sophisticated integrity
checking algorithm which checks the validity of any S7 mes-
sage received. But unfortunately, this does not hold true for
the entire ProgramCycleOB Object. Meaning that, the CPU
checks only the integrity of the Object MAC and the Object
Code, and has no integrity check for the Source Code. So, if an
attacker replaces the Source Code from another session with a
new one, the PLC will authenticate the download message and
run the attacker’s program. This is a significant security gap in
the design of the integrity mechanism for S7-1500 PLCs, as it
keeps the injection hidden inside the memory.

E. MITIGATION
The fundamental solution would be completely redesigning
the integrity check mechanism that the newest S7 PLCs use.
The new mechanism should include a security pairing and
mutual authentication between the PLC and TIA Portal. But
we are aware of the fact that such a solution would also incur
an extremely high cost and may have backward compatibility
issues. Furthermore, ICS devices are usually not software
updated on time, and have a very long life-cycle compared

to common IT devices. For all that, we should expect that
insecure devices will keep employed in real-world ICS envi-
ronments for a long time. In this term, network detection can
be seamlessly integrated into the existing ICS setting. In par-
ticular, control logic detection [36], and verification [41], [42]
can be utilized to alleviate current situation. As our injection
was hidden in the PLC memory, so partitioning the memory
space and enforcing memory access control [37] could also
be a reasonable solution. Other suggestions include employ-
ing standard cryptography methods such as digital signatures
(for messages like control logic manipulation), but also us-
ing network monitoring tools like snort [38], ArpAlert [39],
and ArpWatchNG [40] for revealing any attack involving
MITM attacks. Furthermore, a mechanism to check the pro-
tocol header which contains information about the type of
the payload is also recommended as a solution to detect and
block any potential unauthorized transfer of the control logic.
However, from our perspective the best solution to prevent
injection attacks is to separate the information technology
(IT) domain from operational technology networks by using
a Demilitarized Zone (DMZ).

VII. CONCLUSION
This paper presented a new threat on the newest SIMATIC
PLCs. Our attack approach is based on injecting the attacker’s
malicious code once he gains access to the target’s network,
but activating his patch later without a need to be connected at
the time of the attack. Our investigation identified a few design
vulnerabilities in the new integrity method that the S7-1500
PLCs use. Based on our findings, we managed successfully to
conduct an injection attack, by patching the tested PLC with a
Time-of-Day interrupt block (OB10). This block allows us to
activate our patch, and to confuse the physical process without
being connected to the victim at the point zero for the attack.
We analyzed and evaluated the possibility of revealing our in-
jection by the ICS operator. Our experimental results showed
that the original control logic program is always shown to the
user, whilst the PLC runs the attacker’s program. In addition,
our injection does not increase the execution times of the
control logic. Hence, the physical process is not impacted
when our patch is in idle mode. To summarize, our attack is
a very serious threat targeting ICSs, as attackers need to be
only online during the patch and can close all the connections
to the target’s network afterwards. Therefore, they will not be
detected even if the ICS operators re-activate the security mea-
sure. Finally, we provided some recommendations to secure
ICSs from such a severe threat.

Our attack approach is feasible for all S7-1500 PLCs with
a firmware 2.9.2 or lower. However, Siemens updated the
firmware for all S7-1500 CPUs in December, 2021 to the
newer version 2.9.4. Therefore, a further investigation is re-
quired to test the security of the latest firmware version. Fur-
thermore, a deeper analyzes of the advanced S7CommPlus
protocol aiming at understanding the private key mechanism
that PLCs implement can be also be a part of future works.
We believe that, if attackers manage successfully to extract the

160 VOLUME 3, 2022

private key from an S7-1500 PLC, then stronger attacks e.g.,
fully man in the middle, session-hijacking, and impersonation
PLC attacks might become possible for the entire products
line.

VII. APPENDIX. PACKETS CAPTURE

FIG. 15. Object MAC Attribute - User Program.

FIG. 16. Object Code Attribute - User Program.

FIG. 17. Source Code Attribute - User Program.

FIG. 18. Object MAC Attribute - Attacker Program.

FIG. 19. Object Code Attribute - Attacker Program.

FIG. 20. Source Code Attribute - Attacker Program.

REFERENCES
[1] W. Alsabbagh and P. Langendörfer, “A fully-blind false data injection

on PROFINET i/o systems,” in Proc. IEEE 30th Int. Symp. Ind. Elec-
tron., 2021, pp. 1–8.

[2] H. Wardak, S. Zhioua, and A. Almulhem, “PLC access control: A
security analysis,” in Proc. World Congr. Ind. Control Syst. Secur., 2016,
pp. 1–6.

[3] W. Alsabbagh and P. Langendörfer, “A stealth program injection attack
against S7-300 PLCs,” in Proc. 22nd IEEE Int. Conf. Ind. Technol.,
2021, pp. 986–993.

[4] D. Beresford, “Exploiting siemens simatic S7 PLCs,” in Black Hat USA,
2011, pp. 723–733.

[5] W. Alsabbagh and P. Langendörfer, “A remote attack tool against
siemens S7-300 controllers: A practical report,” in 11. Jahreskollo-
quium Kommunikation in der Automat., 2020.

[6] J. Klick, S. Lau, D. Marzin, J. Malchow, and V. Roth, “Internet-facing
PLCs-a new back orifice,” in Black Hat USA, 2015, pp. 22–26.

[7] A. Spenneberg, M. Brüggemann, and H. Schwartke, “PLC-blaster: A.
worm living solely in the PLC,” in Black Hat Asia Marina Bay Sands,
2016, pp. 1–16.

[8] N. Govil, A. Agrawal, and N. O. Tippenhauer, “On ladder logic bombs
in industrial control systems,” in Proc. Int. Workshop Secur. Ind. Control
Syst. Cyber-Physical Syst., 2018, pp. 110–126.

[9] K. Sushma, A. Nehal, Y. Hyunguk, and A. Irfan, “CLIK on PLCs!
Attacking control logic with decompilation and virtual PLC,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2019, [Online]. Available: https:
//ruoyuwang.me/bar2019/pdfs/bar2019-final74.pdf.

[10] W. Alsabbagh and P. Langendörfer, “Patch now and attack later—
exploiting S7 PLCs by time-of-day block,” in Proc. 4th IEEE Int. Conf.
Ind. Cyber-Phys. Syst., 2021, pp. 144–151.

[11] W. Alsabbagh and P. Langendörfer, “A control injection attack against
S7 PLCs—manipulating the decompiled code,” IECON 2021 Proc.
47th Annu. Conf. IEEE Ind. Electron. Soc., Toronto, ON, Canada,
Oct., 2021, pp. 1–8.

[12] N. Falliere, “Exploring Stuxnet’s PLC infection process,” in Virus Bul-
letin Covering Global Threat Landscape Conf., Sep. 2010, [Online].
Available: http://www.symantec.com/connect/blogs/exploringstuxnet-
s-plc-infection-process.

[13] Y. Hyunguk and A. Irfan, Control Logic Injection Attacks on Industrial
Control Systems. Berlin, Germany: Springer, 2019.

VOLUME 3, 2022 161

https://ruoyuwang.me/bar2019/pdfs/bar2019-final74.pdf
https://ruoyuwang.me/bar2019/pdfs/bar2019-final74.pdf
http://www.symantec.com/connect/blogs/exploringstuxnet-s-plc-infection-process
http://www.symantec.com/connect/blogs/exploringstuxnet-s-plc-infection-process

ALSABBAGH AND LANGENDÖERFER: NEW INJECTION THREAT ON S7-1500 PLCS - DISRUPTING THE PHYSICAL PROCESS OFFLINE

[14] L. Garcia et al., “Hey my malware knows physics! Attacking PLCs
with physical model aware rootkit,” Proc. 24th Ann. Netw. Distrib. Syst.
Secur. Symp., 2017, pp. 1–15, doi: 10.14722/ndss.2017.23313.

[15] Z. Basnight et al., “Firmware modification attacks on programmable
logic controllers,” Int. J. Crit. Infrastructure Protection, vol. 6,
pp. 76–84, 2013.

[16] Attackers Deploy New ICS Attack Framework “TRITON,” and Cause
Operational Disruption to Critical Infrastructure. Accessed: Apr.
12, 2021. [Online]. Available: https://www.fireeye.com/blog/threat-
research/2017/12/attackers-deploy-new-ics-attack-framework-
triton.html

[17] R. M. Lee, M. J. Assante, and T. Conway, “Analysis of the cyber-
attack on the ukrainian power grid,” Tech. Rep., SANS E-ISAC,
Mar. 18, 2016. [Online]. Available at: https://ics.sans.org/media/ESAC_
SANS_Ukraine_DUC_5.pdf

[18] S. Senthivel et al., “Denial of engineering operations attacks in in-
dustrial control systems,” in Proc. 18th ACM Conf. Data Appl. Secur.
Privacy, 2018 pp. 319–329.

[19] G. liang, S. R. Weller, J. Zhao, F. Luo, and Z. Y. Dong, “The 2015
Ukraine blackout: Implications for false data injection attacks,” IEEE
Trans. Power Syst., vol. 32, no. 4, pp. 3317–3318, Jul. 2017.

[20] N. Falliere, L. O. Murchu, and E. Chien, “W32. Stuxnet Dossier,”
Symantec Corp., Security Response, Tempe, AZ, USA, White Paper,
2011.

[21] R. Langner, “Stuxnet: Dissecting a cyberwarfare weapon,” IEEE Secur.
Privacy, vol. 9, no. 3, pp. 49–51, May/Jun. 2011.

[22] T. De Maiziére, “Die Lage Der IT-Sicherheit in Deutschland
2014,” The German Federal Office for Information Security,
German Federal Office Inf. Secur., 2014. [Online]. Avail-
able: https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/
Publikationen/Lageberichte/Lagebericht2014.pdf

[23] Siemens ProductCERT and Siemens CERT, “Security advisory,” Pers.
commun., 2019. [Online]. Available: https://new.siemens.com/global/
en/products/services/cert.html

[24] IPCS Automation, “Market share of different PLCs,” 2018, [On-
line]. Available: https://ipcsautomation.com/blog-post/market-share-
of-different-plcs/

[25] S. Frances, “Top 20 programmable logic controller manufacturers,”
Robotics Automation News, 2020. [Online]. Available: https:
//roboticsandautomationnews.com/2020/07/15/top-20-programmable-
logic-controller-manufacturers/33153/

[26] Statista Research Department, “Programmable logic controllers:
Global manufacturer market share 2017,” 2021, [Online]. Available:
https://www.statista.com/statistics/897201/global-plc-market-share-
by-manufacturer/

[27] G. Benmocha, E. Biham, and S. Perle, “Unintended features of APIs:
Cryptanalysis of incremental HMAC,” in Selected Areas in Cryptogra-
phy. (Lecture Notes in Computer Science 12804) O. Dunkelman, M. J.
Jacobson, Jr, and C. O’Flynn, Eds. Berlin, Germany: Springer, 2021.

[28] National Institute of Standards and Technology, “CVE-2019-10929,”
National Vulnerability Database, 2019, [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2019-10929

[29] T. Wiens, “S7comm wireshark dissector plugin,” SourceForge, 2011.
[Online]. Available: http://sourceforge.net/projects/ s7commwireshark

[30] E. Biham, S. Bitan, A. Carmel, A. Dankner, U. Malin, and
A. Wool, “Rogue7: Rogue engineering-station attacks on S7
simatic PLCs,” in Black Hat USA, 2019, [Online]. Available:
https://i.blackhat.com/USA19/Thursday/us-19-Bitan-Rogue7-Rogue-
Engineering-Station-AttacksOn-S7-Simatic-PLCs-wp.pdf.

[31] C. Lei, L. Donghong, and M. Liang, “The spear to break the secu-
rity wall of S7CommPlus,” in Black Hat USA, 2017, [Online]. Avail-
able: https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-
Spear-ToBreak%20-The-Security-Wall-Of-S7CommPlus-wp.pdf.

[32] H. Hui and K. McLaughlin, “Investigating current PLC security issues
regarding siemens S7 communications and TIA poral,” in Proc. Ind.
Control Syst. Cyber Secur. Res., 2018, pp. 67–73.

[33] A. Menezes and S. Vanstone, “Elliptic curve cryptosystems and their
implementation,” J. Cryptol., vol. 6, pp. 209–224, 1993.

[34] F. Weißerg, “Analysis of the S7CommPlus protocol in terms of cryp-
tography used,” (in German), Mar. 26, 2018. [Online]. Available: https:
//www.os-s.net/publications/thesis/Bachelor_Thesis_Weissberg.pdf

[35] A. Ayub, H. Yoo, and I. Ahmed, “Empirical study of PLC authentication
protocols in industrial control systems,” in Proc. IEEE Secur. Privacy
Workshops, 2021, pp. 383–397.

[36] H. Yoo, S. Kalle, J. Smith, and I. Ahmed, “Overshadow PLC to detect
remote control-logic injection attacks,” in Proc. Int. Conf. Detection
Intrusions Malware, Vulnerability Assessment, 2019, pp. 109–132.

[37] C. H. Kim et al., “Securing real-time microcontroller Systems through
customized memory view switching,” in Proc. Netw. Distrib. Syst. Se-
cur. Symp., 2018, doi: 10.14722/ndss.2018.23117.

[38] M. Roesch et al., “Snort: Lightweight intrusion detection for networks,”
Lisa, vol. 99, no. 1, pp. 229–238, 1999.

[39] C. H. Kim et al., “Securing real-time microcontroller systems through
customized memory view switching,” Network Distributed Syst. Secu-
rity (NDSS) Symp., 2018, doi: 10.14722/ndss.2018.23117.

[40] C. Leres et al., “arpwatch Description,” KaliTools, 2021, [Online].
Available: https://en.kali.tools/?p=1411.

[41] S. Zonouz, J. Rrushi, and S. McLaughlin, “Detecting industrial control
malware using automated PLC code analytics,” IEEE Secur. Privacy,
vol. 12, no. 6, pp. 40–47, Nov./Dec. 2014.

[42] M. Zhang et al., “Towards automated safety vetting of PLC code in real-
world plants,” in Proc. IEEE Symp. Secur. Privacy, 2019, pp. 522–538.

[43] Siemens, “S7-300 CPU 31xC and CPU 31x: Technical specifications,”
2011. [Online]. Available: https://cache.industry.siemens.com/dl/files/
906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_
en-US_en-US.pdf

[44] H. Hui, K. McLaughlin, and S. Sezer, “Vulnerability analysis of S7
PLCs: Manipulating the security mechanism,” Int. J. Crit. Infrastructure
Protection, vol. 35, 2021, Art. no. 100470.

[45] S. Mclaughlin, “On dynamic malware payloads aimed at programmable
logic controllers,” in HotSec, 2011, [Online]. Available: http://www.
stephenmclaughlin.org/hotsec-2011.pdf.

[46] S. McLaughlin and P. McDaniel, “SABOT: Specification-based payload
generation for programmable logic controllers,” in Proc. ACM Conf.
Comput. Commun. Secur., 2012, pp. 439–449.

[47] A. Serhane, M. Raad, R. Raad, and W. Susilo, “PLC code-level vulner-
abilities,” in Proc. Int. Conf. Comput. Appl., 2018, pp. 348–352.

[48] S. E. Valentine, “PLC code vulnerabilities through scada systems,”
Ph.D. dissertation, Univ. South Carolina, 2013. [Online]. Available:
https://scholarcommons.sc.edu/etd/803

[49] Siemens, “SIMATIC STEP 7 Basic/Professional V16 and
SIMATIC WinCC V16,” 2019, [Online]. Available: https:
//support.industry.siemens.com/cs/document/109773506/simatic-step-
7-basic-professional-v16-and-simatic-wincc-v16?dti=0&lcn-WW

WAEL ALSABBAGH (Member, IEEE) received
the B.S. and M.S. degrees in automatic control and
computer engineering from Al-baath University,
Homs, Syria, in 2012 and 2015, respectively. He is
currently working toward the Ph.D. degree in com-
puter science with the Technical University of Cot-
tbus, Cottbus, Germany. Since 2018, he has been a
Scientist with the IHP-Leibniz-Institut für Innova-
tive Mikroelektronik, Frankfurt (Oder), Germany.
His research interests include the cyber-attacks and
security, mitigation methods of the attacks target-

ing industrial control systems, and supervisory control and data acquisition.

PETER LANGENDÖERFER received the Diploma
and Ph.D. degrees in computer science. Since
2000, he has been with the IHP-Leibniz-Institut
für Innovative Mikroelektronik, Frankfurt (Oder),
Germany. In the IHP-Leibniz-Institut für Innova-
tive Mikroelektronik, he is leading the Wireless
Systems Department. From 2012 to 2020, he was
leading the Chair for security in pervasive sys-
tems with the Technical University of Cottbus-
Senftenberg, Cottbus, Germany. Since 2020, he
owns the chair wireless systems with the Technical

University of Cottbus-Senftenberg. He has authored or coauthored more than
150 refereed technical articles, filed 17 patents of which ten have been granted
already. His research interests include security for resource constraint devices,
low power protocols, and efficient implementations of AI means and re-
silience. He was a Guest Editor of many renowned journals, such as Wireless
Communications and Mobile Computing (Wiley) and ACM Transactions on
Internet Technology.

162 VOLUME 3, 2022

https://dx.doi.org/10.14722/ndss.2017.23313
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://ics.sans.org/media/ESAC_SANS_Ukraine_DUC_5.pdf
https://ics.sans.org/media/ESAC_SANS_Ukraine_DUC_5.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf
https://www.bsi.bund.de/SharedDocs/Downloads/DE/BSI/Publikationen/Lageberichte/Lagebericht2014.pdf
https://new.siemens.com/global/en/products/services/cert.html
https://new.siemens.com/global/en/products/services/cert.html
https://ipcsautomation.com/blog-post/market-share-of-different-plcs/
https://ipcsautomation.com/blog-post/market-share-of-different-plcs/
https://roboticsandautomationnews.com/2020/07/15/top-20-programmable-logic-controller-manufacturers/33153/
https://roboticsandautomationnews.com/2020/07/15/top-20-programmable-logic-controller-manufacturers/33153/
https://roboticsandautomationnews.com/2020/07/15/top-20-programmable-logic-controller-manufacturers/33153/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://www.statista.com/statistics/897201/global-plc-market-share-by-manufacturer/
https://nvd.nist.gov/vuln/detail/CVE-2019-10929
https://nvd.nist.gov/vuln/detail/CVE-2019-10929
http://sourceforge.net/projects/ ignorespaces s7commwireshark
https://i.blackhat.com/USA19/Thursday/us-19-Bitan-Rogue7-Rogue-Engineering-Station-AttacksOn-S7-Simatic-PLCs-wp.pdf
https://i.blackhat.com/USA19/Thursday/us-19-Bitan-Rogue7-Rogue-Engineering-Station-AttacksOn-S7-Simatic-PLCs-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-ToBreak%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://www.blackhat.com/docs/eu-17/materials/eu-17-Lei-The-Spear-ToBreak%20-The-Security-Wall-Of-S7CommPlus-wp.pdf
https://www.os-s.net/publications/thesis/Bachelor_Thesis_Weissberg.pdf
https://www.os-s.net/publications/thesis/Bachelor_Thesis_Weissberg.pdf
https://dx.doi.org/10.14722/ndss.2018.23117
https://dx.doi.org/10.14722/ndss.2018.23117
https://en.kali.tools/{?}p$=$1411
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
https://cache.industry.siemens.com/dl/files/906/12996906/att_70325/v1/s7300_cpu_31xc_and_cpu_31x_manual_en-US_en-US.pdf
http://www.stephenmclaughlin.org/hotsec-2011.pdf
http://www.stephenmclaughlin.org/hotsec-2011.pdf
https://scholarcommons.sc.edu/etd/803
https://support.industry.siemens.com/cs/document/109773506/simatic-step-7-basic-professional-v16-and-simatic-wincc-v16{?}dti=0&lcn-WW
https://support.industry.siemens.com/cs/document/109773506/simatic-step-7-basic-professional-v16-and-simatic-wincc-v16{?}dti=0&lcn-WW
https://support.industry.siemens.com/cs/document/109773506/simatic-step-7-basic-professional-v16-and-simatic-wincc-v16{?}dti=0&lcn-WW

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

