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ABSTRACT
The RADiation sensitive metal-oxide-semiconductor field-effect-transistors (RADFETs) were 
irradiated with gamma rays up to absorbed dose of 110 Gy(H2O). The results of threshold 
voltage, VT, during irradiation with various positive gate biases showed the increase in VT with 
gate bias. The threshold voltage shift, ΔVT, during irradiation was fitted very well. The con-
tributions of both the fixed traps (FTs) and switching traps (STs) during radiation on ΔVT were 
analyzed. The results show the significantly higher contribution of FTs than STs. A function that 
describes the dependence of threshold voltage shift and its components on gate bias was 
proposed, which fitted the experimental values very well. The annealing at the room tempera-
ture without gate bias of irradiated RADFETs was investigated. The recovery of threshold 
voltage, known as fading, slightly increase with the gate bias applied during radiation. The 
ΔVT shows the same changes as the threshold voltage component due to fixed states, ΔVft, 
while there is no change in the threshold voltage component due to switching traps, ΔVst.
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1. Introduction

It has long been known that p-channel metal-oxide- 
semiconductor field-effect-transistors (pMOSFETs) with 
Al-gate can be used as dosimeters for ionizing radia-
tion and hence their name pMOS dosimeters. They are 
currently used in radiation therapy (Rosenfeld et al., 
2020), spacecraft (Hadi et al., 2019), and nuclear facil-
ities (Mateu et al., 2018), but the application in perso-
nal dosimetry is still in the testing phase. The most 
common name for pMOSFETs used as radiation dosi-
meters (dosimetric pMOSFETs) is radiation sensitive 
field-effect transistors (RADFETs). New types of these 
transistors are being intensively investigated, with the 
use of new technologies (Abe et al., 2020; Cramer et al., 
2018; Jain et al., 2020; Kahraman et al., 2020; Lai et al., 
2017; Lee et al., 2018; Liu et al., 2016; Tamersit, 2019; 
Zeidell et al., 2020), as well as the commercial transis-
tors (Carvajal et al., 2017). Very intensive researches are 
being carried out in order to improve the characteris-
tics of RADFETs, primarily their sensitivity and recovery 
(Andreev et al., 2020; Aleksandrov, 2015; Biasi et al., 
2020; Carbonetto et al., 2020; Dubey et al., 2018; Kulhar 
et al., 2019; Sampaio et al., 2020; Yilmaz et al., 2017).

This paper presents the results of RADFETs that are 
positively biased during irradiation by gamma-ray 
source and unbiased during annealing at room tem-
perature. The idea is to examine how gate bias influ-
ences the changes in the threshold voltage shift and in 

its components due to the creation of charge in the 
oxide and at the oxide/silicon interface. This is impor-
tant for all types of applications of these dosimeters.

2. Experimental details

RADFETs manufactured at the Tyndall National 
Institute, Cork, Ireland were used in this study. They 
have 400-nm-thick oxide, and threshold voltage before 
radiation about 0.9 V (more details and pictures of 
used RADFETs can be found in (Andjelković et al., 
2015; Ristic et al., 2015)).

The RADFETs were irradiated by gamma-radiation at 
room temperature using 60Co ionizing source. Тhе absorbed 
dose rate was DR = 2.14⋅10−3 Gy(H2O)/s and absorbed dose 
was D = 110 Gy(H2O). The irradiation was performed in the 
Radiation and Environmental Protection Laboratory, Vinča 
Institute of Nuclear Science, Belgrade, Serbia.

During irradiation, the gate biases were VG = 1, 3 
and 5 V. After the radiation, RADFETs were annealed at 
room temperature without gate bias (VGa = 0 V).

A fully automatic system, containing a switching 
matrix and a source measure unit, was used for 
RADFET characterizations (see G.S. Ristić et al., 2011). 
The experiments were performed by a program writ-
ten in the C# programming language. The main experi-
mental set-up is given in (Andjelković et al., 2015; G.S. 
Ristić et al., 2011).
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In order to quickly measure the electrical character-
istics of the transistor, the gate and drain, as well as the 
source and bulk were short connected. The drain- 
source current was forced and the gate biases were 
measured. In this way, the measurement of the elec-
trical characteristics of the transistor takes seconds.

A transistor threshold voltage, VT, was deter-
mined as the intersection between VG axis and the 
extrapolated linear region of the (ID)1/2 – VG curves, 
using the least square method performed by Octave 
6.2.0 program (Ristić, 2008). The threshold voltage 
shift, ΔVT, is: 

ΔVT ¼ VT � VT0 (1) 

where VT is the transistor threshold voltage during both 
the radiation and room-temperature annealing, but VT0 

is the transistor threshold voltage before radiation.
The midgap-subthreshold technique (MGT) 

(McWhorter & Winokur, 1986) that determines the con-
tribution of fixed traps (FTs), ΔVft, and contribution of 
switching traps (STs), ΔVst, to the threshold voltage shift, 
ΔVT, was used. Threshold voltage shift during radiation 
and annealing can be presented by these contributions: 

ΔVT ¼ ΔVft þ ΔVst (2) 

Using the ΔVft and ΔVst, the areal density of FTs, ΔNft 

[cm−2], and areal density of STs, ΔNst [cm−2], during 
radiation and annealing, for p-channel MOSFETs, can 
be calculated as: 

ΔNft ¼
Cox

e
ΔVft;ΔNst ¼

Cox

e
ΔVst (3) 

where e is the absolute value of the electron charge 
and Cox is the gate oxide capacitance per unit area. Cox  

= εox/tox, where εox = 3.45 × 10−13 F/cm is the silicon- 
dioxide permittivity, and tox is the oxide thickness.

The STs consist of traps near the oxide/substrate 
interface – slow switching traps (SSTs) and traps 
exactly at this interface – fast switching traps (FSTs) 
(Ristić, 2008). The ΔNst can be represented as: 

ΔNst ¼ ΔNsst þ ΔNfst (4) 

where ΔNsst and ΔNfst are the areal densities of SSTs 
and FSTs, respectively.

3. Results and discussion

The changes in threshold voltage, VT, during both the 
radiation with various positive gate biases (VG = 1, 3 
and 5 V) and room-temperature annealing without 
gate bias (VG,a = 0 V), known as a spontaneous anneal-
ing, are presented in Figure 1. It can be seen that VG 

influences the VT in both cases, and that increase in VT 

during radiation, and decrease in VT during sponta-
neous annealing are bigger for higher VG.

An equation that very well fitted the dependence of 
ΔVT on absorbed dose, D, was proposed in (G.S. Ristić 
et al., 2011; Ristic et al., 2015): 

ΔVTðDÞ ¼ ΔVT;sat �
ΔVT;sat

1þ b � Dc (5) 

where ΔVT,sat, b and c are the positive constants. The 
ΔVT,sat represents the saturation value of ΔVT(D).

We fitted the experimental results using Equation (5) 
and got a very good fit (Figure 2). The results showed very 
good agreement with Equation (5) and the r-square (r2) 
correlation coefficients were higher than 0.99 for all cases. 
Equation (5) fitted the ΔVT(D) much better than power law 
function: ΔVT(D) = b Dc, and exponential function: ΔVT 

(D) = b (1 – exp(-c D)), where b and c are the positive 
constants. Yilmaz et al. (2017) and Kahraman et al. (2020) 
also used Equation (5) and obtained very well fit of ΔVT(D).

Else, it is important to emphasize that Ristic et al. 
(2015) have shown that 5 or more points are enough to fit 
ΔVT = f(D) using Equation (5) very reliable. We performed 
a very detailed statistical analysis of the dependence of 
the reliability of the parameters ΔVT,sat, b and c on the 
number of measured values during radiation. That analy-
sis showed that a large number of points is not necessary 
during irradiation and that only a few of them, i.e. at least 
5 points, at the beginning of irradiation, are sufficient to 
obtain a very reliable fit by Equation (5).

Figure 3 shows the threshold voltage shift, ΔVT, and 
its components induced by both the fixed traps (FTs), 
ΔVft, and the switching traps (STs), ΔVst, during irradia-
tion with gate bias VG = 3 V. As it can be seen, the 
influence of FTs is significantly higher than influence of 
STs on ΔVT (this is about 90%). The behavior for the 

Figure 1. Threshold voltage during radiation and spontaneous 
annealing.

Figure 2. Fitting of threshold voltage shift, ΔVT, during radia-
tion using Equation (5).
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other two gate biases is identical (not shown). An 
illustration of the electron excitation process during 
60Co irradiation of MOSFETs is given in (Ristić, 2008).

During radiation, charged traps are formed in the 
oxide and at the interface. However, those charged 
oxide traps, which are close to the interface, have the 
same influence on the carriers in the channel as the 
interface traps themselves (Figure 4). When the elec-
trical characteristics of transistors are used to classify 
defects, as in our case, then the influence of the charge 
on the carriers is crucial. That is why we have divided 
radiation defects into fixed traps (FTs), switching traps 
(STs), slow switching traps (SSTs) and fast switching 
traps (FSTs) (Ristić, 2008).

Increasing the positive voltage at the gate during 
irradiation leads to:

(1) reducing the probability of recombination of 
electrons and holes at the place of their forma-
tion under the effect of radiation (electrons 
leave, holes are trapped),

(2) increasing the probability that the trapped holes 
will move and reach the area near the interface 
where the energy deeper trapping centers are 
located.

These effects lead to increase in FTs and SSTs.
The FSTs are formed from hydrogen ions H+ that 

reach the interface. This means that an increase in 
positive gate bias also leads to an increase in these 
traps because it increases the probability that H+ ions 
reach interface.

Our intention was to fit the dependencies of ΔVT, 
ΔVft and ΔVst on the gate bias VG. We tried many 
functions, but the next function best fit the experimen-
tal results: 

ΔVT;ft;stðVGÞ ¼ ΔVT;ft;st;satð1 � r � sVGÞ (6) 

where ΔVT,sat is the saturation value of ΔVT, ΔVft,sat 

is the saturation value of ΔVft, ΔVst,sat is the satura-
tion value of ΔVst, but r and s are the positive 
constants.

The extrapolation of fitting curves to VG = 0 V shows 
that these values, ΔVT,0 Gy, ΔVft,0 Gy, ΔVst,0 Gy, are not 
equal zero, because there is an external positive elec-
tric field, even in this no gate bias case. Namely, for 
pMOSFETs with Al gate, like RADFETs used in this 
paper, for VG = 0 V (the zero-bias regime) a small 
positive gate bias of Vwf = 0.33 V exists. It is due to 
a work function difference between the Al-gate and 
n-type silicon substrate, which resulted in a low exter-
nal electric field in the gate oxide of Ewf ≈ Vwf/tox 

= 0.825 V/μm. This field has a direction toward the 
gate oxide/substrate (SiO2/Si) interface. The values of 
fitting parameters are given in Table 1.

The contribution of ΔVft and ΔVst to ΔVT for dose 
of 110 Gy is shown in Figure 6. A slight increase in 
contribution of STs and a slight decrease in contribu-
tion of FTs can be observed. The explanation is that 
as the gate voltage increases, the traps in the 
oxide approach the interface, which means 
that part of the FTs is converted to the STs (see 
Figure 4).

Another important characteristic of RADFETs is 
the recovery of the threshold voltage during room 
temperature annealing without gate bias (sponta-
neous annealing). This is another dosimetric 

Figure 3. ΔVT, ΔVft and ΔVst during radiation.

Figure 4. Distribution of traps induced by radiation.

Table 1. The parameters of Equation (6) fitted in Figure 5. 
ΔVT,ft,st,sat, b and c are the positive constants.

@110 Gy
ΔVT,ft,st 

(0 Gy) ΔVT,ft,st,sat r s

ΔVT 2.710 13.55 0.80 0.68
ΔVft 2.755 11.98 0.77 0.69
ΔVst 0.016 1.57 0.99 0.65

Figure 5. ΔVT, ΔVft and ΔVst at 110 Gy fitted by Equation (6).
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parameter, in addition to the sensitivity, of this 
dosimeter type, and is known as fading (G. Ristić 
et al., 1995; Ristić, 2009): 

f ¼
VTð0Þ � VTðtÞ

VTð0Þ � VT0
¼

VTð0Þ � VTðtÞ
ΔVTð0Þ

(7) 

where VT(0) is the threshold voltage after radiation, VT(t) is 
threshold voltage during room-temperature annealing, 
and VT0 is the transistor threshold voltage before radiation.

As can be seen in Figure 7, the fading significantly 
increases with the annealing time and slightly increases 
with the gate bias (after 2000 hours the fading is 24.01%, 
25.08%, and 26.33%). This is a consequence of the increase 
in the tunneling of electrons from silicon to oxide, which 
leads to a decrease in the density of FTs and SSTs. However, 
small voltage differences lead to small changes in fading.

The behavior of threshold voltage shift and its compo-
nents of RADFETs irradiated with VG = 3 V during sponta-
neous annealing is shown in Figure 8. The ΔVT has 
identical behavior as ΔVft, but ΔVst is almost unchanged. 
The remaining two gate biases show the same behavior 
(not shown). It can be concluded that the annealing of 
fixed traps determines fading (Ristić et al, 2012).

4. Conclusion

The obtained sensitivities at 110 Gy of the used transistors 
are 56.30 mV/Gy, 92.04 mV/Gy, and 108.69 mV/Gy for the 
gate bias of 1, 3, and 5 V. The threshold voltage increases 
with the gate bias, but this dependence is not linear. 
A function was proposed that describes the dependence 

of the threshold voltage shift on the gate bias, and it fitted 
the obtained results very well. Based on this fitting, the 
saturation values of ΔVT is 13.55 V. The influence of fixed 
traps on the threshold voltage shift during radiation is 
about 90%. Fading is slightly increased by gate bias, and 
after 2000 hours the values are 24.01%, 25.08%, and 
26.33%. The threshold voltage shift during spontaneous 
annealing is conditioned by the change in the density of 
fixed traps in the oxide.
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