
Received 28 August 2024; accepted 3 September 2024. Date of publication 6 September 2024;
date of current version 19 September 2024. The review of this article was arranged by Associate Editor Luis Ribeiro.

Digital Object Identifier 10.1109/OJIES.2024.3455264

Unsupervised and Semisupervised Machine
Learning Frameworks for Multiclass Tool Wear

Recognition
MARYAM ASSAFO 1 AND PETER LANGENDOERFER 1,2

1Chair of Wireless Systems, BTU Cottbus-Senftenberg, 03046 Cottbus, Germany
2IHP - Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany

CORRESPONDING AUTHOR: MARYAM ASSAFO (e-mail: maryam.assafo@b-tu.de).

This work was supported by the Federal Ministry of Education and Research of Germany (BMBF) within the iCampus Cottbus project, under Grant 16ES1128K.

ABSTRACT Tool condition monitoring (TCM) is crucial to ensure good quality products and avoid
downtime. Machine learning has proven to be vital for TCM. However, existing works are predominately
based on supervised learning, which hinders their applicability in real-world manufacturing settings, where
data labeling is cumbersome and costly with in-service machines. Additionally, the existing unsupervised
solutions mostly handle binary decision-based TCM which is unable to fully reflect the dynamics of tool wear
progression. To address these issues, we propose different unsupervised and semisupervised five-class tool
wear recognition frameworks to handle fully unlabeled and partially labeled data, respectively. The underly-
ing methods include Laplacian score, sparse autoencoder (SAE), stacked SAE (SSAE), self-organizing map,
Softmax, support vector machine, and random forest. For the semisupervised frameworks, we considered
designs where labeled data influence only feature learning, classifier building, or both. We also investigated
different training configurations of SSAE regarding the supervision level. We applied the frameworks on two
run-to-failure datasets of milling tools, recorded using a microphone and an accelerometer. Single sensor and
multisensor data under different percentages of labeled training data were considered in the evaluation. The
results showed which of the frameworks led to the best predictive performance under which data settings,
and highlighted the significance of sensor fusion and discriminative feature representations in combating
the unavailability and scarcity of labels, among other findings. The highest macro-F1 achieved for the two
datasets with fully unlabeled data reached 87.52% and 75.80%, respectively, and over 90% when only 25%
of the training observations were labeled.

INDEX TERMS Autoencoder, feature learning, Laplacian score (LS), machine learning (ML), multiclass
classification, predictive maintenance (PdM), semisupervised learning, self-organizing map, tool condition
monitoring (TCM), unsupervised learning.

I. INTRODUCTION
Cutting tools are key components in the manufacturing in-
dustry, and their health condition plays a significant role
in the quality of finished products as well as the availabil-
ity of production lines. However, tool wear is inevitable
during machining due to the thermal-force coupling effect,
necessitating a suitable maintenance plan [1]. To this end,
three maintenance strategies exist, namely, corrective main-
tenance, preventive maintenance, and predictive maintenance
(PdM) [1], [2]. With corrective maintenance, tool replacement

occurs only after failure, causing unplanned downtime, work-
piece damage, etc. On the other hand, preventive maintenance
aims at avoiding failure by replacing the tool based on a
predefined time schedule, leading to an inefficient resource
utilization and financial losses. As a tradeoff solution, PdM
is based on continuously monitoring the tool condition and
replacing it in a timely manner, preventing failure while max-
imizing the tool usage and ensuring good quality products.
Implementing PdM mainly involves deploying sensors to col-
lect data relevant to the tool state. This data are subsequently

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/VOLUME 5, 2024 993

https://orcid.org/0000-0002-3924-3355
https://orcid.org/0000-0002-6209-9048
mailto:maryam.assafo@b-tu.de

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

used to develop the monitoring models which will eventually
be deployed for online tool condition monitoring (TCM) [1],
[2], [3].

Machine learning (ML) has been extensively employed to
build data-driven TCM models, with the supervised learning
being predominately used. Despite the state-of-the-art perfor-
mance of many existing supervised solutions, e.g., [4], their
heavy reliance on labeled training data limits their applica-
bility in real-world manufacturing scenarios where labeled
data are hard to obtain. This is particularly the case with the
supervised deep learning which needs a massive amount of
labeled data to ensure a high predictive performance [5]. Data
labeling is a laborious and costly task, and often needs experts.
Moreover, considering the TCM task, labeling the sensor data
collected during machining along the tool lifetime requires
frequent interruptions of the machining process so that the
tool health state can be inspected and the corresponding data
are labeled accordingly. This inspection is usually carried out
by an expert with the assistance of special equipment, e.g.,
microscope, cameras, etc., that captures some physical quan-
tities and/or qualities related to the tool health condition, e.g.,
flank tool wear [6], surface roughness of workpiece [7], char-
acteristics of the resulting chips [8], etc. While data labeling
might not be extremely challenging in laboratory settings, it
is tremendously costly and cumbersome in real-world settings
with in-service machines on the shop floor. These interrup-
tions adversely affect the productivity of production lines,
among other consequences. Therefore, the supervised TCM
solutions are not quite appealing to manufacturers in terms
of cost effectiveness and seamlessness of implementation. In
addition, given the massive amount of unlabeled data facing
the industry sectors [9], relying only on supervised solutions
not only hinders the adoption of PdM in real-world indus-
try applications but also prevents reaching the potential of
the available unlabeled data. The aforementioned constraints
pose an urgent need for fully unsupervised solutions that
can develop monitoring models using unlabeled data. Nev-
ertheless, such solutions are receiving little interest in TCM
literature.

Concerning the existing fully unsupervised TCM ap-
proaches, they mostly deal with the task of anomaly detection
modeled as a one-class classification, e.g., in [1], [10], [11],
and [12], where a model is trained using only normal data
and the tool is then assessed in the online phase as normal or
abnormal. Unlike such classification problems with a binary
decision, a multiclass classification enables the recognition
of the multiple wear states evolved along the tool lifetime,
allowing a more granular and timely TCM, which in turn helps
to reach a better maintenance plan and enhances the real-time
response by not only detecting the failure but also anticipating
it through the identification of the different degradation states
leading to it. However, to the best of our knowledge, fully
unsupervised multiclass classification for tool state recogni-
tion has been scarcely studied in literature, and the existing
insights are quite limited especially with respect to feature

learning, e.g., [13], [14]. Compared to the supervised learning,
one major challenge of using the unsupervised learning is that
it usually leads to a lower predictive performance [15]. This
is to be expected theoretically since critical processes of the
supervised ML pipeline, such as feature learning and model
building, can be considerably driven by the labels. As such,
the lack of studies in this regard will hinder the growth of this
challenging research area.

Some existing TCM frameworks include both super-
vised and unsupervised methods, constituting semisupervised
frameworks. Unsupervised methods are usually employed for
various purposes, e.g., dimensionality reduction [6]. However,
the input data considered for these frameworks are fully su-
pervised data, i.e., when it comes to applying the supervised
methods, all the training samples along with their labels are
used, which does not meet the real-world scenarios where
labeled data, if available, are usually scarce.

In light of the aforementioned discussion, the main limi-
tations of the existing works and the research gaps that we
address in this article can be summarized as follows.

1) Existing literature on supervised TCM solutions is
increasingly growing, whereas fully unsupervised solu-
tions are receiving little interest despite being urgently
needed in real-world industry settings.

2) The existing fully unsupervised solutions mostly handle
the anomaly detection task, and thus, are confined to a
binary decision. On the other hand, fully unsupervised
multiclass classification works are limited.

3) Fully labeled data were considered in many existing
semisupervised frameworks, which does not reveal their
performance with scarce labeled data.

The main aim of this article is developing multiclass tool
wear recognition frameworks that can deal with different lev-
els of data constraints with respect to the amount of labels
available, more specifically, fully unlabeled data and partially
labeled data. We focus on feature learning and classifier build-
ing as they are two integral tasks affecting the performance
of TCM. Feature learning, which is a subterm of the broader
term “feature engineering,” refers to the automated algorithms
aiming at feature selection (FS) or feature construction (trans-
formation) [16]. Both latter methods were considered and
used to provide a useful, lower dimensional feature represen-
tation that can be subsequently used in building ML models.
The proposed frameworks were experimentally evaluated for
a five-class tool wear recognition in milling, using two run-
to-failure milling tool datasets recorded by a microphone and
an accelerometer under two different sets of operating condi-
tions, i.e., rotation speed, feed rate, etc. Each dataset includes
both up-milling and down-milling operations. The contribu-
tions of this article can be summarized as follows.

1) Proposing different fully unsupervised multiclass tool
wear recognition frameworks that can handle fully unla-
beled data. A self-organizing map (SOM) was employed
for building the monitoring models, while different
approaches for feature learning were considered and

994 VOLUME 5, 2024

compared, namely, Laplacian score (LS), shallow sparse
autoencoder (SAE), and deep stacked SAE (SSAE). The
impact of the number of selected features on the predic-
tive performance was also investigated.

2) Proposing different semisupervised frameworks that
can handle partially labeled data. Different degrees of
supervision were induced across the different frame-
works. The underlying methods include: unsupervised
SSAE and semisupervised SSAE for feature learning,
support vector machine (SVM), Softmax, random forest
(RF) as supervised classifiers, and SOM as an unsuper-
vised classifier. These frameworks were experimentally
tested on different percentages of labeled training data.

3) Investigating different training configurations of SSAE
with respect to the supervision degree involved during
its deep feature learning, and analyzing their impact on
the multiclass tool wear recognition. To the best of our
knowledge, this performance aspect was neglected in
the related works that used SSAE, e.g., [17], [18].

4) Single sensor data as well as multisensor data were
considered in the evaluation.

We experimentally compared the different frameworks,
showing their relative strengths/weaknesses with respect to
the task at hand, and which framework led to the best pre-
dictive performance under which data settings. Further, we
considered various baselines to assess their utility and ro-
bustness (e.g., performance with fully labeled data, without
feature learning, etc.). The results highlighted the significance
of sensor fusion and discriminative feature spaces in improv-
ing multiclass TCM under label constraints. In addition, they
showed two distinctive ways of reaching discriminative fea-
ture representations: 1) implicitly by solely relying on some
data properties without assistance of any labels (the case of
LS under fully unsupervised settings); 2) explicitly by us-
ing labels, even if few, to fine-tune nondiscriminative feature
spaces pretrained on unlabeled data (the case of SSAE under
semisupervised settings), among other new findings that can
aid researchers to further advance this significant yet over-
looked research area.

The rest of this article is organized as follows. In Section II,
the related works are reviewed and their limitations are high-
lighted. Section III presents an overall methodology of devel-
oping TCM models. In Section IV, the proposed unsupervised
and semisupervised frameworks are detailed. The motiva-
tion behind the methods adopted and some backgrounds are
also presented. Section V presents the implementation details,
including the experimental datasets, the different processes,
training parameters, the results and discussion of the perfor-
mance evaluation. Finally, Section VI concludes this article.

II. RELATED WORKS
ML frameworks have been extensively employed for tool
wear recognition. Based on the degree of supervision involved
in feature learning and classifier building, we categorize
the existing frameworks into three main categories: 1) fully
supervised, 2) partially supervised or semisupervised, and

3) fully unsupervised. It is worth mentioning that the frame-
work category presented here should be distinguished from
the type of data available (e.g., the training dataset might be
fully supervised yet the framework is semisupervised), and
should also be distinguished from the category of the ML
algorithm used to build the predictive model (e.g., the model
might be trained in a supervised manner yet the framework is
semisupervised, for example, due to an unsupervised feature
learning being adopted in the framework), as it will be shown
in more examples later.

Fully supervised frameworks, where both feature learning
and classifier training are performed in a fully supervised fash-
ion. These frameworks are widely implemented in literature,
e.g., in [4] and [8], but their large dependence on labeled
data hinders their industrial applicability. Hence, as mentioned
previously, they are not the focus of this article.

Semisupervised frameworks, where data labels are used by
at least one part of the ML pipeline. For example, when fea-
ture learning (or classifier building) is fully supervised while
the classifier building (or feature learning) is fully unsuper-
vised, e.g., in [6], [19], [20], [21], and [22]. Alternatively, the
feature learning and/or classification task might be partially
(un)supervised, e.g., in [17], [18], [23], and [24]. It should be
noted that, even when the training data are fully labeled, unsu-
pervised methods can still be incorporated into the framework,
e.g., to benefit from the advantages of both supervised and un-
supervised methods, making it a semisupervised framework.

In [6], feature learning was realized through principle
component analysis (PCA) (unsupervised), while the tool
condition recognition was performed by SVM (supervised).
On the other hand, the framework in [20] used t-Test (su-
pervised) as an FS and SOM (unsupervised) as a classifier.
In [19], the labels were used to aid the FS, while differ-
ent fully unsupervised classifiers were built and compared
using clustering algorithms, namely, K-means, Gaussian mix-
ture models (GMM), density-based spatial clustering, and
the extended hierarchical version of the latter. Similarly,
in [21], feature learning-related settings were selected based
on the Pearson correlation coefficient between some health
indicators and the actual wear values (supervised), while un-
supervised classifiers based on k-means and Jenks natural
breaks were employed.

Some recent semisupervised frameworks leverage the pow-
erful capability of unsupervised deep learning architectures to
learn deep representations that can be subsequently coupled
with supervised classifiers. To this end, different deep archi-
tectures based on autoenocder (AE) variants were commonly
utilized [17], [18], [22], [23], [24]. An SSAE and Softmax
classifier were employed in [17] and [18] for four-class and
five-class tool wear recognition problems, respectively. In
both works, the SSAE network underwent a two-stage training
procedure: an unsupervised pretraining followed by a super-
vised fine-tuning. In [23], a framework comprising a stacked
denoising autoencoder, PCA, t-distributed random neighbor
embedding (t-SNE), and a Softmax classifier was proposed for
a four-class TCM. Similarly to [17] and [18], the deep network

VOLUME 5, 2024 995

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

training also involves unsupervised and supervised phases.
In [24], a parallel unsupervised learning model was built using
three independent SSAE trained on three feature domains,
respectively. The learned representations were concatenated
into a single vector that was further used to build a feature-
fusion SSAE model. Both the parallel learning model and
fusion model were then fine-tuned using the data labels and
a modified loss function. In [25], unsupervised SAE was also
part of the feature learning performed and Softmax was used
for classification. In [22], a four-class tool wear recognition
was performed using an unsupervised variational autoencoder
and a supervised extreme learning.

Despite the semisupervised nature of the aforementioned
frameworks, the training data considered were fully labeled,
i.e., when it comes to the supervised processes of the frame-
work, all the training data were used along with their labels,
which is not consistent with real-world scenarios where there
is only a limited amount of labels, if any. Hence, the perfor-
mance of these solutions with partially labeled data was not
investigated.

Fully unsupervised frameworks, where both feature learn-
ing and classification tasks are performed in a fully unsu-
pervised fashion, i.e., no labels are introduced at any stage
of the pipeline. Most of the existing unsupervised TCM so-
lutions deal with the anomaly detection task modeled as a
one-class classification problem [1], [10], [11], [12]. Feature
learning can be achieved here through unsupervised feature
reduction methods (e.g., PCA), traditional FS (e.g., LS),
task-customized FS (e.g., multicriteria decision making-based
FS) [1], or deep feature learning (e.g., AE variants) [10], [11],
[26]. A model representing the normal state is usually built
using an unsupervised data-driven method, e.g., SOM [1],
generative adversarial neural network [10], hybrid robust con-
volutional AE [11], long short-term memory (LSTM)-AE and
GMM [26], and finally some health indicators and thresh-
olds are derived accordingly. In the online phase, a binary
decision as whether the tool is normal or abnormal is made,
with the objective mostly being the detection of an exces-
sive tool wear [1], [10], [11] or a tool breakage [12], [26].
However, given the gradual and dynamic process of tool wear
progression, the binary decision-based solutions do not give
sufficiently granular information about the exact tool condi-
tion.

Literature on the fully unsupervised multiclass TCM frame-
works is scarce and the insights presented are limited. In [27],
SAE was adaptively trained on the current segment com-
prising multiple raw sensor data, and the next segment was
reconstructed using the trained model, and so on. The mean of
reconstruction errors is sequentially taken. The filtered signal
of the mean sequence was shown to be correlated with the
tool wear, and upon some imposed thresholds, suitable for a
four-class tool wear classification. However, standard classifi-
cation performance metrics, e.g., F1-score, were not presented
to clearly quantify the performance. In addition, the approach
included many parameters affecting the performance, e.g.,
filtering settings, thresholds, sampling interval, etc. Moreover,

the use of multiple raw sensor data poses a great burden in
terms of computation and storage, and can be largely influ-
enced by the interference and noise. In [13], a 6-D feature
space was created by applying PCA on Fourier-transformed
data, and K-means was used to cluster the resultant space into
seven classes representing the normal state, and six different
faults of the tool. However, the experiments presented did not
involve any comparison with other feature learning or clas-
sification algorithms, limiting the insights that can be gained
from the study. Moreover, the six faulty classes considered
represent separate tool faults, e.g., notch wear, crater face,
etc., rather than the different consecutive degradation stages
experienced by the tool along its lifetime. In [14], three time-
domain features were extracted from the cutting force signal,
and then clustered using an algorithm based on adjacent grids
searching. Based on the observation that the distribution of
force features is correlated with the tool wear, a cluster den-
sity factor was defined to reflect the predicted tool wears,
which were then converted into four classes. However, this
approach is quite related to the force signal characteristics,
and its effectiveness with other sensors is not clear. In addi-
tion, the role of feature learning in the performance was not
investigated.

III. METHODOLOGY OF TCM MODEL DEVELOPMENT
As mentioned previously, this work mainly aims to develop
unsupervised and semisupervised frameworks for multiclass
tool wear recognition, with the focus being on feature learning
and classifier building. Before delving into the frameworks,
we will present the workflow followed in this article to de-
velop TCM models. It is worth mentioning that the focus
here is on the main steps and processes. Other details related
to the experimental implementation and evaluation will be
thoroughly covered in Section V. Fig. 1 illustrates the over-
all workflow in the offline phase, starting with training data
‘ collected during run-to-failure experiments of milling tools,
and ending with a classification model. The highlighted area
in this figure marks where along the process chain our pro-
posed frameworks lie. The main steps are as follows.

Acquiring Raw Sensor Data: Sensor signals representing
the sound and vibration generated during milling were col-
lected using a microphone and an accelerometer, respectively.
This data cover five different consecutive states along the tool
wear progression, starting from when the tool is completely
new up to its failure state.

Signal Preprocessing: It includes processes aiming at im-
proving the data quality and preparing it for the subsequent
analysis, such as segmenting, reducing noise, keeping only
the relevant parts of collected signals, i.e., here the parts cor-
responding to active milling.

Feature Extraction: It aims to extract meaningful informa-
tion from raw data, which also reduces the computational,
storage, and communication burden associated with the large
number of samples contained in raw signals [28]. As in [8], we
used the following methods to extract multidomain features
from each signal segment: 1) Time-domain statistical analysis,

996 VOLUME 5, 2024

FIGURE 1. Methodology of developing TCM models in this article. The
highlighted area indicates which steps our proposed frameworks cover.

2) nondecimated discrete wavelet transform, and 3) short-time
Fourier transform (STFT). The specific features extracted us-
ing these methods are as follows [8].

1) Eight Time-Domain Features: Mean, variance, skew-
ness, kurtosis, impulse factor, crest factor, root mean
square, and range.

2) 56 Wavelet Features: A six-level signal decomposition
was performed using the following two mother wavelet
functions: db1 and db3. Each decomposition generates
one approximation and six details from which the four
following features were extracted: 1) mean, 2) variance,
3) skewness, and 4) kurtosis. Thus, 28 features were
extracted for each of these two decompositions.

3) One STFT Feature: mean peak frequency which is cal-
culated by averaging the peak frequencies determined
at the different time instances of the signal. The peak
frequency is the frequency with the maximum power at
the corresponding time instance.

Thus, a total of 65 features were extracted from each of the
microphone and accelerometer signals.

Feature Normalization: To account for different ranges of
different features, feature values were normalized with respect
to the training data. We used z-score for this purpose, i.e., a
feature value fi is standardized by subtracting the mean, and
then dividing by the standard deviation of the training samples
corresponding to the feature f .

Feature-Level Sensor Fusion: To integrate the information
from both sensors, the two 65-feature vectors corresponding
to individual sensors are concatenated into a single vector,
forming a 130-feature vector. This concatenation operation
serves as a simple feature-level sensor fusion. It should be
noted that, if only one sensor is to be used, this fusion step
is skipped and the respective 65-feature vector proceeds to the
next step.

Feature Learning: The purpose of feature learning in
this article is not only to reach an informative feature
representation of the tool wear progression but also to reduce
dimensionality, which is crucial for realizing an effective and
efficient TCM model as well as a better real-time response
in the online phase. Hence, let M be the dimension of the
original feature space containing the total extracted sensory
features, then the output of feature learning is an N-dimension
feature space, where N < M. As mentioned previously, FS
and feature construction (transformation) methods are both
considered in this study. FS selects a subset of N features from
the full feature set, whereas feature transformation constructs
new features by transforming the original M features into
another N-dimensional feature space.

Classification Model Building: The N-dimensional feature
samples generated from the previous step will be used by the
classifier algorithm in building the diagnosis model for tool
wear recognition.

Our frameworks do not only focus on the classifier build-
ing task but also on feature learning. While feature learning
greatly influences the predictive performance of ML models
regardless of their supervision type, its role is particularly
significant under unsupervised settings due to the absence
of labels which would otherwise guide the model building
process. Since the learning algorithm will rely solely on the
input features to detect hidden data patterns, we gave special
care to devising and investigating different feature represen-
tations in our frameworks, aiming at revealing which feature
representation properties and/or methods are promising with
complex multiclass tool wear progression data where differ-
ences between distinct classes, i.e., five classes in our case,
can be quite subtle. Further, under semisupervised settings,
we considered designs that exhibit different levels of super-
vision over the two tasks, aiming at investigating different
ways of harnessing both labeled and unlabeled data, while
also considering different combinations of feature learning
and classification methods.

IV. PROPOSED UNSUPERVISED AND SEMISUPERVISED
FRAMEWORKS FOR MULTICLASS TOOL WEAR
RECOGNITION
A. GENERAL OUTLINE
Different fully unsupervised and semisupervised frameworks
for multiclass tool wear recognition are proposed in this ar-
ticle. With respect to the underlying methods, the former
frameworks include only unsupervised methods, whereas the
latter include both supervised and unsupervised methods.
With respect to the input data, considering the real-world
data constraints, we assume fully unlabeled data for the un-
supervised frameworks, and partially labeled data for the
semisupervised frameworks, i.e., the training dataset contains
unlabeled observations and a certain fraction of labeled obser-
vations.

Fig. 2 shows an outline of the methods employed in
the proposed frameworks. As can be seen from Fig. 2(a)

VOLUME 5, 2024 997

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

FIGURE 2. Outline of the methods employed in the proposed frameworks.
(a) For unsupervised frameworks. (b) For semisupervised frameworks.

concerning the unsupervised frameworks, SOM is used for
building the classification models. As for feature learning,
two main approaches are employed: 1) LS-based FS, and
2) AE-based feature transformation/extraction, in which case
SAE and SSAE are considered. Regarding the outline of the
semisupervised frameworks shown in Fig. 2(b), two versions
of SSAE are considered for deep feature learning, namely,
SSAE, and a fine-tuned SSAE which involves a supervised
fine-tuning phase following the typical unsupervised training
of SSAE. As such, hereafter in this article, we will refer to
the former version as an unsupervised SSAE, and to the latter
version as a semisupervised SSAE. For the classification task,
we use SOM as an unsupervised classifier, and the following
supervised classifiers: Softmax, SVM, and RF. The details of
the proposed frameworks are presented in Section IV-C and
Section IV-D.

B. BACKGROUND AND MOTIVATION
In this section, we will present a brief background of the
unsupervised methods employed in our work, as well as the
motivation behind adopting them.

1) LAPLACIAN SCORE
LS is an unsupervised filter FS method that is essentially
based on Laplacian Eigenmaps and locality preserving pro-
jection [29]. We utilize LS as an FS-based feature learning
method for the following main reasons: 1) It is one of
the most popular well-established unsupervised FS methods.
2) LS is independent of any ML algorithm as it evaluates the

features based solely on the intrinsic data characteristics, lead-
ing to purely generic outputs that can be coupled with any ML
algorithm. 3) It can yield a predictive performance similar to
that of the supervised Fisher score method, as experimentally
shown in [29].

The rationale of LS is that data points under the same
class tend to be nearly spaced in the original data space. As
such, given a certain feature, LS reflects the extent to which
it preserves the local structure of the data. This structure is
determined by constructing a weighted nearest neighbor graph
with its nodes being the input data points. Two data points are
connected by an edge if and only if one of them is among the
k nearest neighbors of the other, and this connection is further
weighted by a distance-based similarity function Si j , where i
and j are the two data points under consideration. The LS of
feature f , L f , is given as [29]

L f =
∑

i j

(
x f i − x f j

)2
Si j

var(x f)
(1)

where x f i and x f j are the feature f ’s samples corresponding
to the data points i and j, respectively. The denominator in (1)
represents the sample variance of feature f . The smaller L f ,
the more important the feature.

2) SPARSE AUTOENCODER
Autoencoder is an artificial neural network that is commonly
used for nonlinear feature learning and dimensionality reduc-
tion. We employ it in our work for two main reasons: 1)
it is the most popular unsupervised neural architecture for
feature learning under the umbrella of deep learning [16]; 2)
traditional unsupervised techniques, such as PCA, have been
intensively studied with different TCM tasks. On the other
hand, the AE performance with multiclass classification under
data constraints is yet to be explored.

AE consists of an encoder and a decoder. The encoder
transforms the input, x ∈ RM , into a hidden (latent) feature
representation y ∈ RN ; where M and N are the dimensionality
of the input and encoded vectors, respectively. The encoding
process is expressed as

y = f (x) = s1
(
W (1)x + b(1)) (2)

where W (1) ∈ RN×M , b(1) ∈ RN , and s1 are the weight matrix,
bias vector, and activation function of the encoder, respec-
tively. The encoded vector is subsequently mapped by the
decoder into a reconstructed version of the original input
vector r as follows:

r = g(y) = s2
(
W (2)y + b(2)) (3)

where W (2) ∈ RM×N , b(2) ∈ RM , and s2 are the weight matrix,
bias vector, and activation function of the decoder, respec-
tively [16].

W and b are the learning parameters of the encoder and
decoder. The training process is unsupervised and aims to
replicate the encoder’s input at the decoder’s output through

998 VOLUME 5, 2024

the optimization of a cost function measuring the error be-
tween the input and output, also referred to as a reconstruction
error. The typical cost function used for the basic AE is the
mean squared error (MSE), as follows:

MSE = 1

T

T∑
i=1

M∑
j=1

(
ri j − xi j

)2
(4)

where T is the number of training observations, and M is the
number of input features.

Some mathematical properties can be introduced to the AE-
learned features by adding certain regularization terms to the
cost function [16]. One such property is the “sparsity” which
can be imposed on the encoded feature vector by adding a
penalty term Rsparsity to minimize the average activation of
each of the hidden neurons. One common choice of this term
is the Kullback–Leibler (KL) divergence function. L2 regu-
larization RL2 is another penalty term that can be added to the
cost function to constrain the weights, and thus, improving the
generalizability and avoiding overfitting [30].

The overall cost function for training the SAE is given in

I = MSE + λRl2 + βRsparsity (5)

where λ and β are coefficients for the L2 and sparsity regular-
ization terms, respectively.

An SAE with a basic architecture comprising the input,
hidden (encoding), and output layers is called a shallow SAE.
A deeper architecture can be formed by stacking multiple
SAEs successively, hence the name SSAE. In this case, the
architecture is particularly characterized by the number of
hidden layers. The input of the second SAE is the output of
the encoding layer of the first SAE, and so on [16].

3) SELF-ORGANIZING MAP
SOM is an unsupervised neural network that has proven to
be a powerful tool for data analysis, clustering, and visu-
alization [31]. Moreover, it has many other advantages that
are particularly desirable in practical applications, e.g., un-
derstandability, ease of optimization, low requirements of
memory, computations, and training data, etc [1], [9]. SOM
consists of a grid of neurons, usually a 2-D grid. Each neuron
(a map unit) is characterized by its spatial position in the
grid as well as its weight vector in the input space. SOM
is capable of mapping high-dimensional input data into the
neuron map in a way that preserves the topological relations
in the input space, i.e., the closer the neurons in the grid, the
more similar the patterns they represent in the input space, and
vice versa. This special property, that distinguishes SOM from
other clustering algorithms, such as K-means, is thanks to the
fact that the spatial relations between different SOM neurons
are taken into account when updating the neurons’ weights
during training. These relations are governed by the so-called
neighboring function. The main principle of SOM training is
based on finding the best matching unit (BMU), among the
map neurons, for the input data sample. This is determined
by the metric adopted to measure the similarity between the

input samples and neurons in the input space. The weights
of BMU as well as its spatial neighbors are updated so as to
better match the input sample. In this article, we adopt the
Euclidean distance as a similarity measure, as it is the most
commonly used metric with SOM [31]. As such, the BMU is
identified as follows:

c = arg min
i

{||x(t) − mi(t)| |} (6)

where c is the index of the BMU, mi(t) is the current weight
vector of the neuron i, and x(t) is the input vector. ||.|| is the
Euclidean distance.

We adopt the batch learning algorithm for training SOM,
as it does not involve a learning parameter and it allows the
network to reach a better and faster convergence compared
to the sequential learning [31]. In batch learning, the training
samples are fed to SOM all at once, and the weights are
updated in each iteration as follows [1]:

mi(t + 1) =
∑T

j=1 hci(t)x j∑T
j=1 hci(t)

(7)

where T is the number of training samples, and hci(t) is
the value of the neighborhood function, centered around the
winning neuron c, for the neuron i when the input vector is x j .
This function takes higher values as the spatial distance be-
tween the neurons c and i gets smaller. After the completion of
training, the neurons’ weights act as prototypes representing
the training data.

The map size is a significant parameter affecting the gen-
eralization and complexity of the SOM model. Too many
neurons or too few neurons lead to overfitting or underfitting,
respectively [9]. In addition, the computation and memory re-
quirements increase with the map size. To yield a tradeoff, the
following equations are commonly used to determine the size
and dimensions of a 2-D map based on the training data [1]:

U ≈ 5
√

T (8)

u1

u2
≈

√
e1

e2
(9)

where U is the number of map neurons, u1 and u2 are the
numbers of rows and columns of the map, respectively, e1 and
e2 are the largest and second largest eigenvalues of the training
data’s covariance matrix, respectively.

C. PROPOSED UNSUPERVISED FRAMEWORKS
These frameworks use training observations without any la-
bels. As mentioned previously, the different unsupervised
frameworks proposed here differ in the feature learning task.
The following approaches are considered: 1) An LS-based FS
scheme. 2) SAE-based feature learning. 3) SSAE-based deep
feature learning. The feature space resulting from the feature
learning step is used to build an SOM model. Fig. 3 shows the
workflow of the proposed unsupervised frameworks.

Fig. 3(a) illustrates the framework with LS. LS ranks the
extracted sensory features according to the extent to which

VOLUME 5, 2024 999

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

FIGURE 3. Workflow of the proposed unsupervised frameworks using
self-organizing map and two feature learning approaches. (a) With LS.
(b) With (stacked) sparse AE.

they preserve the local structure of the input feature space
(see Section IV-B1). To obtain a feature subset, the top-N
ranked features are selected. However, LS does not consider
the interfeature correlation when scoring the features, i.e.,
highly correlated features might exist among the selected top-
N features, leading to redundant, superfluous information that
increases the dimensionality without necessarily enriching the
representation. Moreover, redundant features might degrade
the performance of the learning models. To circumvent this
issue, eliminating redundant features can be carried out prior
to selecting the top features [1], [8], [32]. We adopt the fol-
lowing iterative procedure presented in [32]: Starting from the
top ranked feature, all the features with which they exhibit a
strong correlation (equal or exceeding a predefined threshold
value T h) are removed from the feature list. The same process
continues iteratively down the remaining ranked feature list
until no feature is remaining. Finally, the top-N features are
selected from the remaining features set. As in [8], the inter-
feature correlation is measured in this article by the absolute
value of Pearson’s coefficient correlation (the values range
from 0 to 1), and T h is set to 0.9.

The feature learning in the other frameworks is based on
SAE. The number of hidden layers in the SAE network is
a significant design parameter affecting the performance. An
architecture with two hidden layers was a common choice in
several PdM studies of multiclass recognition tasks, e.g., [17],
[30], and [33]. In this article, we consider the following: 1) A
shallow SAE (with only one hidden layer); 2) An SSAE with
two hidden layers. Deeper architectures with over two hidden
layers are not considered in this article since they might in-
crease the complexity and training time without necessarily
improving the accuracy, as experimentally shown in [33].

For the SAE-based feature learning, it is performed through
the training process explained in Section IV-B2, where a map-
ping from the M-dimension original feature space into an N-
dimension latent feature space is reached. It should be noted
that, both the encoder and decoder are involved in the training
process. However, when it comes to extracting the new

features from the input, only the encoder part of the trained
SAE is used to encode the input, as illustrated in Fig. 3(b).

Regarding the SSAE, it learns a multilevel feature
representation through a greedy layerwise training, i.e., only
a single SAE is trained at a time [16]. In our case with two
hidden layers, the first SAE learns to reconstruct the original
training observations, and then the second SAE learns to re-
construct the latent feature representation extracted by the first
SAE’s encoder.

In all the unsupervised frameworks, the feature vectors re-
sulting from feature learning are passed to SOM. Recall that
SOM is trained in an unsupervised fashion, with the resulting
model comprising a set of prototypes representing the training
data, and an input sample can then be mapped to one of these
prototypes by finding its BMU. However, in order to use the
SOM model for classification, given a finite set of possible
classes, labeling SOM units should first take place, then a
new data sample will be given the same class as that of its
BMU [31]. Labeling SOM can be performed manually by
domain experts, automatically, or both.

D. PROPOSED SEMISUPERVISED FRAMEWORKS
We propose different semisupervised frameworks that deal
with partially labeled data. Generally speaking, the more a
framework depends on labeled data for its underlying pro-
cesses, the more likely for its performance to be affected by
label scarcity. On the other hand, limiting the extent to which
available labels are utilized might also limit the predictive per-
formance of resulting models, since significant information
can be carried by the labels no matter how few. In order to
gain broad insights on different ways of harnessing partially
labeled data, we designed the frameworks in such a way that,
across different frameworks, the labeled data have different
levels of influence over the functionality of feature learning
and classifier building. In this regard, three scenarios are dis-
tinguished as follows.

1) The labeled data influence only feature learning. Here,
the framework comprises a semisupervised SSAE (the
supervision is induced here in the fine-tuning phase) and
an unsupervised classifier.

2) The labeled data influence only the classifier building.
Here, the framework comprises an unsupervised SSAE
and a supervised classifier.

3) The labeled data influence both feature learning and
classifier building. Here, the framework comprises a
semisupervised SSAE and a supervised classifier.

As mentioned in Section IV-A, SOM is adopted as an un-
supervised classifier, whereas SVM, RF, or Softmax was used
in the frameworks involving a supervised classifier.

To facilitate the discussion, we use the following notations
in the different steps described as follows. Let X be a set
of training observations, consisting of unlabeled observations
Xu, and labeled observations Xl . Let Yl be the set of labels cor-
responding to the labeled observations Xl . Recall that a single
observation here is an M-dimension feature vector consisting
of the extracted sensory features.

1000 VOLUME 5, 2024

FIGURE 4. Workflow of the proposed semisupervised frameworks.
(a) With unsupervised SSAE (undergoing only an unsupervised layerwise
training) and a supervised classifer (SVM, RF, or Softmax). (b) With
semisupervised SSAE (SSAE undergoing an unsupervised layerwise
pretraining followed by a supervised global fine-tuning) and a supervised
classifier (SVM, RF, or Softmax) or an unsupervised classifier (SOM).

Fig. 4(a) illustrates the main workflow of the semisuper-
vised frameworks that use unsupervised SSAE and supervised
classifiers. SSAE training is performed here through the
typical greedy layerwise training, as explained previously
for the unsupervised frameworks. For this training, the full
training dataset is used, but without any labels, i.e., only X .
Next, only the labeled observations Xl are encoded by the
trained stacked encoders. Then, the encoded feature vectors
are fed, together with their respective labels Yl , to train the
supervised classifier, i.e., SVM, RF, or Softmax. Thus, being
fully unsupervised, the feature learning in these frameworks
leverages the total training observations. However, the unla-
beled observations Xu remained unexploited when it comes to
building the supervised classifiers.

Fig. 4(b) illustrates the main workflow of the semisu-
pervised frameworks that use semisupervised SSAE with
(un)supervised classifiers. The training process of the semisu-
pervised SSAE encompasses two successive phases, namely,
an unsupervised pretraining and a supervised fine-tuning.
The first unsupervised training uses all the training obser-
vations, i.e., X , and is based on the same greedy layerwise
unsupervised training described previously. On the other
hand, the fine-tuning phase aims to globally tune the previ-
ously initialized learning parameters in accordance with the
supervised classification task at hand. However, SSAE does
not inherently possess the capability of classifying data, as it
only transforms the input into a latent representation. Thus,

in order to enable the supervised fine-tuning phase, a classifi-
cation layer should be added to the SSAE. This is commonly
tackled by adding a Softmax classification layer, as in [17]
and [18], which is also the solution employed in our frame-
works. Yet, it should be noted that, in existing works [17],
[18], all the training observations and labels were also used in
the fine-tuning phase as fully supervised data were considered,
and this added Softmax layer served also as the end classifier
of the tool wear. On the other hand, since we consider partially
labeled data in our frameworks, the fine-tuning phase uses
only the labeled observations along with their labels, i.e., Xl

and Yl . Moreover, across our proposed frameworks that use
semisupervised SSAE, one of the two following cases can be
noticed with respect to the role of the added Softmax layer: 1)
It is only involved in the feature learning task (more specif-
ically, in the fine-tuning phase of SSAE), which is the case
corresponding to the frameworks in which other classifiers
were employed to classify the tool wear (i.e., SOM, SVM, or
RF). 2) It serves as the end classifier of the tool wear, besides
its involvement in the fine-tuning phase of SSAE.

In light of the discussion above, after the pretraining of
SSAE, the initial training of the Softmax layer is carried out
in a supervised fashion, with the input being the features
generated from passing the labeled observations Xl through
the pretrained SSAE encoders (encoding process), along with
their corresponding labels Yl . Next, the pretrained encoders
of the first and second SAEs, as well as the pertained Softmax
layer are successively stacked in one network. Using Xl and Yl

as input, the stacked network is then fine-tuned in a supervised
manner, where the parameters of the whole stacked network
are updated simultaneously based on a global supervised cost
function, which is similar to training the multilayer percep-
tron.

After the fine-tuning, the stacked network can be used
for feature extraction (the stacked fine-tuned encoders) and
tool wear classification (the fine-tuned Softmax classification
layer), which constitutes one of the proposed semisupervised
frameworks. Moreover, in order to benefit from other state-
of-the-art supervised classifiers, the role of Softmax layer
can be limited to the fine-tuning phase of SSAE, i.e., the
encoders which were fine-tuned with the assistance of the
Softmax can now be coupled with other classifiers, which is
the idea behind the proposed frameworks including SVM and
RF. Alternatively, to leverage the full training observations in
building the classification model, an unsupervised classifier
can be trained on the features resulting from applying X to
the fine-tuned stacked encoders, which corresponds to the
proposed framework containing SOM. However, no labels are
guiding the model building here. Among the other proposed
semisupervised frameworks, the labeled data are involved the
least in this latter framework containing SOM.

V. IMPLEMENTATION DETAILS
This section covers the experimental implementation of
the proposed frameworks, including the datasets, training
parameters, results and discussion, etc. As mentioned

VOLUME 5, 2024 1001

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

FIGURE 5. Experimental setup. (a) Deployed sensors. (b) Milling process.
(c) Finished surface quality and chips generated under the five different
health states (classes) of milling tools. [8].

previously, the specific PdM task handled by the proposed
unsupervised and semisupervised frameworks is a five-class
tool wear recognition in milling. It should be mentioned that
all the software implementations related to the ML pipeline,
starting from signal preprocessing, were performed in MAT-
LAB R2020b.

A. MILLING DATASETS
Two run-to-failure datasets of milling tools were used
in this article, with each tool having two teeth and a
diameter of 8 mm. Each milling dataset represents sound
and vibration signals recorded by a microphone and an
accelerometer, respectively, during dry milling a steel
workpiece. Fig. 5(a) shows the sensors deployed in the
machine center. Each dataset comprises both up-milling and
down-milling operations. The down-milling (or up-milling)
refers to the milling process in which the cutter rotates
against (or with) the feed direction. Alternating between
these two operations, the milling process type changes with
every cutting line of the workpiece surface. A snapshot of the
milling process is shown in Fig. 5(b). Five different health
states (classes) of the milling tools were used to label the
collected sensor data, as shown in Fig. 5(c). The labeling was
based on various factors, namely, the color and shape of the
resulting chips, quality of the finished surface, wear on the
cutting edge, and operator experience [8].

The sensor signals were passed through an amplifier into
a Red Pitaya board, where they were sampled with a fre-
quency of about 1.95 MHz, and then transferred to a PC for
storage. As in [8], the following preprocessing were applied:

FIGURE 6. Example of microphone signals. (a) before filtering. (b) after
Median filtering. [8].

TABLE 1. Description of Milling Datasets [8]

1) Median filtering to remove the high-frequency noise. Fig. 6
shows an example of the microphone signal before and after
this step, showcasing the importance of filtering in revealing
the different events encountered during the milling process.
2) Removing the parts of signals corresponding to the entry
cut (the tool is engaging in the workpiece), exit cut (the tool is
disengaging from the workpiece), and air cut (the tool is in the
air), while keeping only parts corresponding to active milling.
3) Reducing the sampling frequency to about 400 KHz. The
operating conditions of the two milling experiments as well
as the size of the two datasets used in the subsequent analysis
are listed in Table 1. More details about the datasets and the
experimental setup can be found in [8] and [34], and about the
preprocessing steps in [8].

B. TRAINING PARAMETERS
The distance metric used in SOM and LS is the Euclidean
distance. Regarding LS, we set k [for the K nearest neighbors
(KNN)] to be k = ln(T), where T is the number of training
observations. In our implementation of SOM, a 2-D hexagonal

1002 VOLUME 5, 2024

grid was considered, where the map size and dimensions were
determined based on the training data, as in (8) and (9), re-
spectively. The batch learning algorithm was used for training
(see Section IV-B3) with 300 epochs.

Concerning the SAE-based architectures, we used the Lo-
gistic sigmoid function as an activation function of the
neurons. To yield a dimensionality reduction, we adopted
an undercomplete configuration of the AE structure, i.e.,
the dimensionality of the encoding layer’s output is smaller
than that of the input layer, which will cause the network
to learn a compressed representation of the input. When it
comes to training, two sets of parameters were used. For the
unsupervised training, we used an L2-weight-regularization
coefficient of 0.001, a sparsity proportion of 0.05, a sparsity
regularization of 1, a scaled conjugate gradient descent as a
training algorithm, a loss function as in (5), and a maximum
of 1000 epochs. For the supervised fine-tuning, we used a
scaled conjugate gradient as a training algorithm, the cross
entropy as a loss function, a maximum of 300 epochs. The
training parameters of the Softmax layer are the same as those
aforementioned for the fine-tuning of SSAE.

Regarding the dimensionality of the hidden (encoding)
layer of SAE N , defined by the number of neurons in this
layer, was set specific to each experimental case, as it will
be shown in Section V-E2. The same holds true for the second
hidden layer in the SSAE. As for the size of the first hidden
layer in SSAE, Nl1, it was set as follows:

Nl1 = ceil

(
M − M − N

2

)
(10)

where M and N are the sizes of the input layer and the last
hidden layer, respectively. Considering the datasets used here,
M is 65 and 130 for the single-sensor feature vector and
multisensor feature vector, respectively.

For SVM, we used a polynomial kernel of order 2, and
the one-versus-one approach to construct the five-class SVM
classifier. Thus, the SVM classifier comprises ten SVM binary
classifiers (C(C − 1)/2; where C is the number of classes).
The penalty parameter was set to 1, and the kernel scale was
determined automatically using a subsampling-based heuris-
tic approach applied in MATLAB on the training data. As
for the RF classifier, it consists of 50 classification trees,
the minimal leaf size is 1, and the number of the randomly
selected features for each decision split is the square root of
the number of total input features, as in [8].

C. LABELING SOM FOR EVALUATION
As mentioned in Section IV-C, a built SOM model can be used
for classification by labeling the map neurons, and then an
input data sample is given the same class as that of its BMU.
The existing approaches of labeling SOM are mainly based on
associating each map unit i of the trained model with the class
corresponding to the majority class of those training samples
whose BMU is the unit i [9], [31]. Some considerations can
also be taken to account for particular scenarios, e.g., a tie,
neurons with zero or too few hits [31].

In this work, we present a scheme for labeling SOM which
is largely inspired by [31]. In this scheme, we also adopt the
majority class voting as a main approach to label the SOM
units. However, we impose some rules to determine which
of the training samples the voting is applied on. To this end,
the main criterion we consider is the number of sample hits
of map units. Given a neuron i, the number of sample hits
Hi refers to the number of training samples whose BMU is
the neuron i. If Hi is larger than a defined threshold th, then
the majority voting is applied on all the training samples
associated with the neuron i. Otherwise, the voting is applied
on those training samples corresponding to the KNN of the
neuron i. In any case, when a tie is encountered, KNN is also
applied, as described above. If the tie was not resolved, K is
increased incrementally until the tie is resolved. We set th to
be the 0.5 quantile (median) of the sample hits of the total map
neurons, and we set K to be ln(T), where T is the number of
training samples.

It should be emphasized here that training SOM was purely
unsupervised, and this latter stage is only to label SOM for
evaluation purposes. Thus, a test sample will be given the
same class as that of its BMU, and this predicted class will
then be compared with the ground-truth class of that sample
for calculating the metric of the predictive performance.

D. PERFORMANCE METRICS AND VALIDATION
To evaluate the predictive performance of the TCM models
built at the final stage of the different proposed frameworks,
we use macro F1-score as a performance metric. It is cal-
culated by taking the average of the individual F1-scores
corresponding to the respective classes, as expressed in (14).
Given a class c, the F1-score is given in (13), and it repre-
sents the harmonic mean of the recall (11) and precision (12)
corresponding to this class [8].

Recallc = TP

TP+FN
(11)

Precisionc = TP

TP+FP
(12)

(F1-score)c = 2 × Recallc × Precisionc

Recallc + Precisionc
(13)

macro-F1 = 1

C

C∑
c=1

(F1-score)c (14)

where TP and TN denote the number of the test observations
that were correctly classified as positive and negative, respec-
tively. FP and FN represent the number of the test observations
that were wrongly classified as positive and negative, respec-
tively. C is the number of classes, i.e., five classes in our work.

A five-fold cross validation was performed for all the ex-
periments. As such, given a dataset, each of the resulting
five-folds will serve once as test data while the remaining four
folds form the training data. Hence, each macro-F1 reported
in this article is the average of the individual macro-F1 values
corresponding to the five test folds.

VOLUME 5, 2024 1003

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

FIGURE 7. Macro-F1 variation of SOM over different numbers of features selected using the LS-based FS scheme (the highest value is marked in yellow),
and the case where all the extracted features are used, for two milling datasets. (a) and (b) Microphone. (c) and (d) Accelerometer. (e) and (f) Sensor
fusion.

E. RESULTS AND DISCUSSION OF UNSUPERVISED
FRAMEWORKS
As mentioned previously, SOM is used with different feature
learning methods across these frameworks.

1) EFFECT OF NUMBER OF SELECTED FEATURES
Starting with the LS-based FS scheme, we will evaluate the
predictive performance of SOM over all the possible numbers
of selected features, i.e., N in Fig. 3(a). For this purpose, N is
increased incrementally one at a time, starting from N = 1,
i.e., only the top-ranked feature, through the total number
of features remaining after removing redundant features. For
each resulting feature subset, an SOM model is built using the
corresponding training observations, then tested on the test
observations. Figs. 7(a)–(f) illustrate the macro-F1 variation
over N for all the six combinations of dataset-sensor configu-
rations. The highest macro-F1 of each curve was highlighted
with a yellow circle. It can be seen that, as more features

are added, macro-F1 initially tends to increase until a certain
point, then it slightly decreases. The initial rising trend is a
result of gaining more useful information by adding more
relevant features. The slight degradation afterward can be
attributed to the decreased distinction between different data
patterns as more less-relevant features are added, especially,
given the unsupervised training of SOM, there are no labels
to guide the training and the model is built merely based on
the data patterns observed in the feature space of the train-
ing data. Fig. 7 also shows the case where all the extracted
features are used without applying FS, i.e., 65 features for
the individual sensors and 130 features for the sensor fusion.
This latter case helps to assess the utility of the LS-based
FS scheme. As it can be seen from Figs. 7(a)–(f), different
feature subsets, constituted out of different numbers of top
features, achieved a higher macro-F1 at considerably lower
dimensionalities compared to when all the features were used.
This is particularly evident for the accelerometer, in which

1004 VOLUME 5, 2024

TABLE 2. Feature Vector Dimensionality for the Subsequent Experiments

case the FS scheme with 14 and 6 selected features for DS1
and DS2, respectively, led to a maximum macro-F1 improve-
ment of 5.89% and 4.81% along with a reduction of 51 and
59 features, respectively, compared to the case of no FS. The
only case where a better performance was obtained without
FS was the sensor fusion of dataset DS2 [see Fig. 7(f)], where
the macro-F1 achieved with all the 130 features was higher by
1.88% than the highest value achieved by the FS scheme (with
29 features). However, the performance difference in this case
can be considered insignificant given the much higher number
of features needed (101 more features). Therefore, given the
overall results, the proposed LS-based FS scheme is suitable
for building effective and efficient unsupervised multiclass
tool wear recognition models.

2) COMPARISON OF LS AND (S)SAE
We will compare the different unsupervised frameworks that
differ in feature learning. To ensure a fair comparison given a
certain dataset-sensor, the dimensionality of the feature learn-
ing’s output feature vectors is kept constant across all the
frameworks, allowing the performance variation of SOM to be
solely linked to the quality of feature vectors. As such, given
a certain dataset-sensor, we set the unified dimensionality N
of the learned feature vectors to be equal to the dimensional-
ity that achieved the best performance using the LS selected
features, i.e., based on the results shown in Fig. 7. These sizes
are listed in Table 2 and will be used for all the subsequent
experiments presented in this article regarding both the unsu-
pervised and semisupervised frameworks.

Table 3 shows the macro-F1 results of SOM models with
the different feature learning methods. Overall, SSAE slightly
improved the performance compared to the SAE. The highest
improvement reached 3.37%, which was achieved for the sen-
sor fusion of DS2. However, for all the experimental cases,
both SAE and SSAE led to a lower performance than that
achieved with all the original features (the case of no feature
learning). On the other hand, the macro-F1 attained with the
LS-based FS scheme was substantially higher than those with
SAE and SSAE. The average outperformance (over all the
sensor configurations and milling datasets) reached 9.67% and
8.23%, respectively. Thus, despite the deep feature represen-
tation constructed by training the SSAE, it was inferior to
the LS-based FS scheme when it comes to the unsupervised
multiclass tool wear recognition. This can be attributed to the
fact that the unsupervised SSAE learns to replicate the input,
which might not necessarily yield a latent feature space that is
sufficiently discriminative with respect to the different wear
states. On the other hand, LS selects the features with the
highest locality preserving power, implicitly favoring the most
discriminative features despite the absence of labels.

Regarding the sensors, as to be expected, the sensor fu-
sion led to a better performance compared to the individual
sensors, for all the feature learning methods and datasets.
This demonstrates the impact of sensor fusion in boosting the
performance under the challenging fully unlabeled data.

F. RESULTS AND DISCUSSION OF SEMISUPERVISED
FRAMEWORKS
For the semisupervised frameworks that deal with partially
labeled data, the amount of labeled training observations is
a critical factor affecting the performance. As such, we will
evaluate the proposed semisupervised frameworks for the fol-
lowing percentages of labeled training observations (out of
the total training observations): 100%, 50%, 25%, 10%, and
1%. The labeled training observations corresponding to each
percentage were determined by downsampling the original
training data accordingly. The case when 100% of the training
observations are labeled represents data under no constraints
regarding the labels (which is the case considered in the ex-
isting semisupervised frameworks reviewed in Section II). In
contrast, the other percentages represent data under differ-
ent levels of label constraints. Thus, the 100%-case can also
serve here as a baseline for the other cases. As mentioned
previously, the different proposed frameworks are influenced
differently by the labeled data, based on how the labeled data
involve in the feature learning and/or classifier building (See
Fig. 4).

1) EFFECT OF DIFFERENT SUPERVISION CONFIGURATIONS
ON SSAE FEATURES
Fig. 8 shows an illustrative example of the different neural
network architectures involved in training the semisupervised
SSAE, as well as the different input/output dimensionalities
corresponding to this example case (DS1-sensor fusion). The
input is a 130-feature vector, the dimensionality of the second
hidden layer is 24 (as determined from Table 2), and the
dimensionality of the first hidden layer is 77 [as determined
from (10)].

We will study how different supervision configurations of
training SSAE can influence the quality of resulting feature
representations, and thus, SOM performance. Fig. 9 illus-
trates the different macro-F1 values achieved by SOM with
the semisupervsied SSAE under different percentages of the
labeled training observations involved in the fine-tuning of
SSAE, as well as that achieved with the unsupervised SSAE
which does not involve any supervision. This latter case
serves as a significant reference to assess how the perfor-
mance evolves with adding more labeled data. Recall that
SOM always exploits the total training observations due to
its unsupervised training, regardless of the framework, and
that the influence of labeled data in the semisupervised frame-
work containing SOM is only restricted to the semisupervised
SSAE-based feature learning. Thus, the performance variation
over the different cases in this figure is only attributed to the
quality of the corresponding feature representation reached.

VOLUME 5, 2024 1005

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

TABLE 3. Evaluation of Unsupervised Multiclass Tool Wear Recognition Frameworks Using 5-Fold Cross-Validation: Macro-F1 (%) of Self-Organizing Map
Models Built With Different Feature Learning Approaches

FIGURE 8. Neural network architectures for the unsupervised pretraining
and supervised fine-tuning phases of the semisupervised SSAE. Input and
output dimensionalities in this illustration correspond to the DS1-sensor
fusion case. (a) First SAE. (b) Second SAE. (c) Softmax layer for a five-class
classification. (d) Stacked network comprising the two trained encoders
and Softmax layer.

It can be seen that SOM benefits from the features learned
by the semisupervised SSAE as it achieved higher macro-F1
values compared to those achieved with the unsupervised
SSAE in the fully unsupervised frameworks. This indicates
that, with the semisupervsied SSAE, SOM was able to detect
more useful data patterns for the tool state classification task,
despite the absence of labels in the SOM training in all the
cases. It also emphasizes our previous explanation related to
the incapability of the unsupervised SSAE to yield a fea-
ture representation that is sufficiently discriminative, owing to
its reliance on the unsupervised reconstruction error. On the
other hand, adding the fine-tuning phase that incorporates a
supervised criterion, i.e., in the semisupervised SSAE cases,
allows tuning the latent feature representation in accordance
with the classification task at hand, which led to a more

FIGURE 9. Macro-F1 variation of SOM over different feature
representations learned by the unsupervised SSAE, and the
semisupervised SSAE under different percentages of labeled training
observations. In all the cases, SOM was trained in an unsupervised fashion
using the total training observations. The performance variation is linked
to the quality of feature representation. Overall, SOM was able to detect
more useful data patterns for the five-class classification task as more
labeled observations were involved in the fine-tuning of SSAE, indicating
an increasingly discriminative feature representation. (a) Milling dataset
DS1. (b) Milling dataset DS2.

discriminative feature representation. Overall, the macro-F1
of SOM gets higher as more labeled data are involved in the
feature learning, owing to an improved fine-tuning of SSAE.
An exception can be seen with the DS2-microphone, where
macro-F1 saturated after adding 25% of the labeled training
data, and did not improve thereafter.

Even though SSAE was also used with supervised classi-
fiers in the other proposed semisupervised frameworks, the
framework with SOM is more suitable to reveal the impact
of the supervised fine-tuning phase on SSAE, as well as the
role that the size of labeled data plays in this process. This
is due to two reasons: 1) SOM training is unsupervised, and
thus, is solely based on the feature space characteristics, and
unlike the supervised classifiers, is not biased by the labels.
Hence, the macro-F1 variation of SOM is strongly related

1006 VOLUME 5, 2024

TABLE 4. Evaluation of Semisupervised Multiclass Tool Wear Recognition Frameworks Using Five-fold Cross-Validation: Macro-F1 (%) of Different
Supervised and Unsupervised Classifiers With Different SSAE-Based Feature Learning Configurations

to the SSAE performance; 2) in the frameworks containing
supervised classifiers with semisupervised SSAE, the labeled
data not only affect the quality of feature learning but also
the size of training data fed to the classification algorithm.
Thus, the macro-F1 variation over different percentages of
labeled data in these frameworks can also be related to the
impact of training data size on the classifier training. There-
fore, Fig. 9 is not only important for illustrating the impact
of feature learning quality on SOM but also for observing the
SSAE performance without/with supervised fine-tuning under
different sizes of labeled data. The impact of the fine-tuning
phase on the feature learning quality is particularly evident
when comparing the performance obtained with the follow-
ing two extreme cases: 1) unsupervised SSAE and 2) the
semisupervised SSAE under 100% labeled training observa-
tions. For example, with the multisensor data of DS2, the
macro-F1 of SOM was 71.38% and 91.94%, for the two afore-
mentioned cases, respectively.

2) COMPARISON OF SEMISUPERVISED FRAMEWORKS
Table 4 shows the predictive performance of the classification
models for all the semisupervised frameworks. Given a cer-
tain supervised classifier, the impact of fine-tuning phase of
SSAE can be revealed by comparing the performance attained
with the unsupervised SSAE and that with the semisupervised
SSAE, at the same percentage of labeled training data. Con-
sidering the overall trend over all the datasets and sensors,
the supervised classifiers achieved a higher macro-F1 with the
semisupervised SSAE compared to the unsupervised SSAE,
indicating a higher quality feature representation reached by
the former. Thus, even with the supervised classifiers that use
data labels, the features learned by the unsupervised SSAE
cannot lead to a better or comparable performance to that of
the semisupervised SSAE. The performance difference be-
tween the cases of unsupervised and semisupervised SSAEs
gets more significant as more labeled data are involved in the
frameworks. Taking the accelerometer of the milling dataset

VOLUME 5, 2024 1007

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

DS1 as an example, the macro-F1 difference between the two
SSAE configurations under the 100% percentage of labeled
data reached 16.10%, 23.85%, and 9.47% for the Softmax,
SVM, and RF, respectively, whereas the difference with 1%
labeled observations reached 4.11%, 11.18%, and 2.69%,
for the aforementioned three classifiers, respectively. Even
though the Softmax classifier was used in the fine-tuning
phase of the semisupervised SSAE, all the classifiers benefit
from the enhanced feature representation (to an extent that ex-
ceeded the Softmax in some cases), reflecting a generic utility
of the fine-tuning approach. With the semisupervised-SSAE
features, the performance difference between the supervised
classifiers is marginal, especially as the percentage of labeled
data gets larger. However, with the unsupervised SSAE, the
difference is more significant, with RF being the superior
in most of the cases. For example, in the case of unsuper-
vised SSAE of DS1-accelerometer with 100% labeled data,
RF outperformed Softmax and SVM by 6.75% and 14.33%,
respectively, whereas the performance difference for any clas-
sifier pair in the case of semisupervised SSAE did not exceed
0.17%. This observation can also be seen in many other cases,
indicating that the choice of the supervised classifier becomes
more critical with less-discriminative features.

It is noteworthy that, with the multisensory features learned
by the semisupervised SSAE, all the supervised classifiers
maintained a macro-F1 of over or nearly 90% even when
only 25% of the training data were labeled. Moreover, the
multisensor data showed a considerably greater robustness to
the decrease of labeled observations, compared to the single
sensor data. For example, moving from 100% to 25% labeled
training data for DS1 and DS2, the macro-F1 of SVM corre-
sponding to the sensor fusion dropped by 2.41% and 3.62%,
respectively, whereas it decreased by 7.16% and 8.31%, re-
spectively, for the microphone, and by 6.85% and 10.35%,
respectively, for the accelerometer.

3) CHOICE OF SEMISUPERVISED FRAMEWORK
As mentioned previously, the overall results suggest that, with
partially labeled data, a better predictive performance can be
attained with the semisupervised SSAE-based feature learning
that uses the available labeled data for fine-tuning the unsu-
pervised SSAE, regardless of the size of labeled data and the
subsequent classifier. However, when it comes to determining
the best classifier type to be used with this feature learning
method, it is quite dependent on the size of labeled training
data. Based on our results, the supervised classifiers outper-
formed SOM when the size of labeled data seemed to still
be sufficient for them to build well-generalized models. How-
ever, this performance difference diminishes as the labeled
observations get fewer, until it reaches a point where SOM
became the superior. More specifically, when only 1% of
the training data are labeled, SOM consistently outperformed
the other supervised classifiers for all the milling datasets
and sensors. Even for larger labeled data percentages, SOM
showed a comparable or better performance in some cases,

e.g., accelerometer of DS2. Thus, when the size of labeled
data is not sufficient, using an unsupervised classifier that
makes full use of the training observations without any labels
is more promising than using a supervised classifier that can
only use the few available labeled observations along with
their labels. This holds true regardless of the quality of the
feature learning, as it can also be seen that when only 1% of
training data are labeled, the supervised classifiers with the
unsupervised SSAE achieved a lower performance than that
of SOM with the unsupervised SSAE (see Table 3). Moreover,
it is noteworthy that even in the cases where the small labeled
data were not sufficient to build supervised classification mod-
els with high macro-F1, they were still beneficial to fine-tune
the latent feature space learned by the unsupervised SSAE.

4) FURTHER INSIGHTS ON FEATURE LEARNING QUALITY
Among the different considered percentages of labeled train-
ing data, some important insights can be derived from the case
corresponding to 100% as it is the only case in which the
size of training data is the same for SOM and the supervised
classifiers, allowing for observing the impact of other factors
affecting their performance differences. It can be seen that,
for all the datasets and sensors corresponding to this case,
the performance of SOM with semisupervised SSAE features
substantially surpasses that of the supervised classifiers with
the unsupervised SSAE, even though the supervised classifiers
use the total labels. For example, considering the sensor fusion
of DS2, the macro-F1 of SOM with semisupervised SSAE
was 91.94%, which is larger than that of Softmax, SVM, and
RF with unsupervised SSAE by 14.23%, 10.17%, and 8.98%,
respectively. This proves that the feature learning quality can
be a more significant factor of the predictive performance
than the presence of labels during training the classifiers, i.e.,
high-discriminative features without labels are more powerful
than low-discriminative features with their labels, under the
same data dimensionality and size.

VI. CONCLUSION
This article addressed constraints that can limit the feasi-
bility and applicability of the existing TCM solutions in
real-world manufacturing settings. These include the heavy
reliance on the supervised learning that requires labeled data,
the focus on binary decision-based unsupervised solutions,
and not considering scarce labeled data when it comes to
the semisupervised solutions. To this end, we proposed dif-
ferent unsupervised and semisupervised multiclass tool wear
recognition frameworks that can deal with fully unlabeled and
partially labeled data, respectively. Concerning the unsuper-
vised frameworks, SOM was used for model building, and
three methods were considered for feature learning, namely
LS, SAE, and SSAE. To gain broad insights across the
different semisupervised frameworks, we considered scenar-
ios where the labeled data influence only feature learning,
classifier building, or both. The underlying methods include
the two following SSAE-based feature learning methods:

1008 VOLUME 5, 2024

1) unsupervised SSAE (trained in an unsupervised greedy
layerwise fashion) and 2) a semisupervised SSAE (follow-
ing the previous unsupervised training on the full data, the
encoders undergo a supervised global fine-tuning phase us-
ing the available labeled data), and the following classifiers:
SOM (unsupervised), Softmax, SVM, and RF (supervised).
The frameworks were experimentally evaluated for a five-
class tool wear recognition using two run-to-failure datasets
of milling tools, recorded using a microphone and an ac-
celerometer. Single sensor data and multisensor data, as well
as different percentages of labeled training observations were
considered in the evaluation. The main conclusions from the
experimental results can be summarized as follows.

1) Regarding the fully unsupervised frameworks, the
macro-F1 of SOM with the LS-based FS scheme was
higher than those with SAE and SSAE by an av-
erage (over all the sensor configurations and milling
datasets) of 9.67% and 8.23%, respectively. This would
be attributed to the fact that LS selects the features
based on their locality preserving power, a property
that is significant for discrimination. On the other hand,
the reconstruction error criterion considered in training
(S)SAE does not necessarily lead to a discriminative
feature space.

2) Compared to the unsupervised SSAE, the semisuper-
vised SSAE led to a considerably better predictive
performance for all the classifiers (e.g., the macro-F1
difference reached 20.56% for SOM in the sensor fu-
sion of dataset DS2), owing to the fine-tuning phase
that tunes the latent feature representation in accor-
dance with the classification task, which led to a more
discriminative feature representation. The improvement
was more evident with more labeled data added. Even
though a Softmax-based classification layer was used in
the fine-tuning phase, the resulting features were bene-
ficial for all the classifiers, indicating a generic utility of
the approach.

3) High-discriminative features without labels are more
powerful than low-discriminative features with their la-
bels, under the same data dimensionality and size. This
was indicated by comparing the performance achieved
by SOM and the semisupervised SSAE, against that
achieved by the supervised classifiers and unsupervised
SSAE, over all the datasets and sensors.

4) For the semisupervised frameworks, the overall results
suggest that the semisupervised SSAE was the superior
for feature learning, regardless of the size of labeled
data. As for the choice of the classifier, it depends on
the labeled data size. When the labeled data are small
and not sufficient to build well-generalized supervised
models, particularly when only 1% of the training data
were labeled, SOM outperformed the other supervised
classifiers, owing to its use of the total training ob-
servations since no labels are needed during training.
Otherwise, the supervised classifiers showed a better
performance.

5) With the multisensor features learned by the semisuper-
vised SSAE, all the supervised classifiers maintained a
macro-F1 of over or nearly 90% when the percentage of
labeled training data dropped to 25%. Moreover, multi-
sensor data showed a greater robustness to the decrease
of labeled observations, compared to the single sensor
data.

For the future work, we will focus on two factors that
were proven in this study to be promising for combat-
ing the unavailability or scarcity of labeled data, namely,
sensor fusion and feature representation quality. In this
regard, we consider investigating the combination of dif-
ferent multisensor feature representations, e.g., combining
LS-selected features with SSAE-learned features in one repre-
sentation, as well as other variants of AE, e.g., convolutional
AE.

REFERENCES
[1] M. Assafo and P. Langendörfer, “A TOPSIS-Assisted feature selection

scheme and SOM-based anomaly detection for milling tools under
different operating conditions,” IEEE Access, vol. 9, pp. 90011–90028,
2021, doi: 10.1109/ACCESS.2021.3091476.

[2] M. Abubakr, M. A. Hassan, G. M. Krolczyk, N. Khanna, and H.
Hegab, “Sensors selection for tool failure detection during machining
processes: A simple accurate classification model,” CIRP J. Manuf. Sci.
Technol., vol. 32, pp. 108–119, Jan. 2021.

[3] G. Herrera-Granados, T. Misaka, J. Herwan, H. Komoto, and Y. Fu-
rukawa, “An experimental study of multi-sensor tool wear monitoring
and its application to predictive maintenance,” Int. J. Adv. Manuf. Tech-
nol., vol. 133, pp. 3415–3433, Jun. 2024.

[4] M. Ahmed et al., “Tool health monitoring of a milling process using
acoustic emissions and a ResNet deep learning model,” Sensors, vol. 23,
no. 6, 2023, Art. no. 3084.

[5] V. Nasir and F. Sassani, “A review on deep learning in machining and
tool monitoring: Methods, opportunities, and challenges,” Int. J. Adv.
Manuf. Technol., vol. 115, no. 9, pp. 2683–2709, 2021.

[6] W. J. Lee, G. P. Mendis, and J. W. Sutherland, “Development of an
intelligent tool condition monitoring system to identify manufacturing
tradeoffs and optimal machining conditions,” Procedia Manuf., vol. 33,
pp. 256–263, Jan. 2019.

[7] T. Żabiński, Z. Hajduk, J. Kluska, and L. Gniewek, “FPGA-embedded
anomaly detection system for milling process,” IEEE Access, vol. 9,
pp. 124059–124069, 2021.

[8] M. Assafo, J. P. Städter, T. Meisel, and P. Langendörfer, “On the sta-
bility and homogeneous ensemble of feature selection for predictive
maintenance: A classification application for tool condition monitor-
ing in milling,” Sensors, vol. 23, no. 9, May 2023, Art. no. 4461,
doi: 10.3390/s23094461.

[9] C. S. Wickramasinghe, K. Amarasinghe, and M. Manic, “Deep self-
organizing maps for unsupervised image classification,” IEEE Trans.
Ind. Inform., vol. 15, no. 11, pp. 5837–5845, Nov. 2019.

[10] C. Cooper, J. Zhang, R. X. Gao, P. Wang, and I. Ragai, “Anomaly de-
tection in milling tools using acoustic signals and generative adversarial
networks,” Procedia Manuf., vol. 48, pp. 372–378, Jan. 2020.

[11] S. Yan, H. Shao, Y. Xiao, B. Liu, and J. Wan, “Hybrid robust convo-
lutional autoencoder for unsupervised anomaly detection of machine
tools under noises,” Robot. Comput.- Integr. Manuf., vol. 79, Feb. 2023,
Art. no. 102441.

[12] Y. Gui, Z.-Q. Lang, Z. Liu, Y. Zhu, H. Laalej, and D. Curtis, “Unsu-
pervised detection of tool breakage: A novel approach based on time
and sensor domain data analysis,” IEEE Trans. Instrum. Meas., vol. 72,
2023, Art. no. 3524813.

[13] A. Patange, R. N. Soman, S. Pardeshi, M. Kuntoglu, and W. Osta-
chowicz, “Milling cutter fault diagnosis using unsupervised learning
on small data: A robust and autonomous framework,” Eksploatacja i
Niezawodność-Maintenance Rel., vol. 26, no. 1, 2024, Art. no. 178274,
doi: 10.17531/ein/178274.

VOLUME 5, 2024 1009

https://dx.doi.org/10.1109/ACCESS.2021.3091476
https://dx.doi.org/10.3390/s23094461
https://dx.doi.org/10.17531/ein/178274

ASSAFO AND LANGENDOERFER: UNSUPERVISED AND SEMISUPERVISED MACHINE LEARNING FRAMEWORKS

[14] Z. Li, W. Zhong, W. Liao, Y. Cai, J. Zhao, and G. Wang, “A robust tool
condition monitoring system based on cluster density under variable
machining processes,” Appl. Sci., vol. 13, no. 12, 2023, Art. no. 7226.

[15] B. Brenner et al., “Better safe than sorry: Risk management based on
a safety-augmented network intrusion detection system,” IEEE Open J.
Ind. Electron. Soc., vol. 4, pp. 287–303, 2023.

[16] D. Charte, F. Charte, S. García, M. J. del Jesus, and F. Herrera, “A prac-
tical tutorial on autoencoders for nonlinear feature fusion: Taxonomy,
models, software and guidelines,” Inf. Fusion, vol. 44, pp. 78–96, 2018.

[17] L. E. E. Ochoa, I. B. R. Quinde, J. P. C. Sumba, A. V. Guevara Jr., and R.
Morales-Menendez, “New approach based on autoencoders to monitor
the tool wear condition in HSM,” IFAC-PapersOnLine, vol. 52, no. 11,
pp. 206–211, Jan. 2019.

[18] J. Ou, H. Li, G. Huang, and Q. Zhou, “A novel order analysis
and stacked sparse auto-encoder feature learning method for milling
tool wear condition monitoring,” Sensors, vol. 20, no. 10, 2020,
Art. no. 2878.

[19] T. Gittler, S. Scholze, A. Rupenyan, and K. Wegener, “Machine tool
component health identification with unsupervised learning,” J. Manuf.
Materials Process., vol. 4, no. 3, 2020, Art. no. 86.

[20] L. C. Brito, M. B. da Silva, and M. A. V. Duarte, “Identification of
cutting tool wear condition in turning using self-organizing map trained
with imbalanced data,” J. Intell. Manuf., vol. 32, no. 1, pp. 127–140,
Jan. 2021.

[21] D. Mishra, U. Awasthi, K. R. Pattipati, and G. M. Bollas, “Tool wear
classification in precision machining using distance metrics and un-
supervised machine learning,” J. Intell. Manuf., pp. 1–25, Nov. 2023.
[Online]. Available: https://doi.org/10.1007/s10845-023-02239-5

[22] B. Liu, H. Li, J. Ou, Z. Wang, and W. Sun, “Intelligent recogni-
tion of milling tool wear status based on variational auto-encoder and
extreme learning machine,” Int. J. Adv. Manuf. Technol., vol. 119,
pp. 4109–4123, 2022.

[23] J. Gao, J. Liu, and X. Yu, “Research on tool condition monitoring
(TCM) using a novel unsupervised deep neural network (DNN),” J.
Vibroeng., vol. 26, no. 1, pp. 193–208, Feb. 2024.

[24] C. Shi, G. Panoutsos, B. Luo, H. Liu, B. Li, and X. Lin, “Using multiple-
feature-spaces-based deep learning for tool condition monitoring in
ultraprecision manufacturing,” IEEE Trans. Ind. Electron., vol. 66,
no. 5, pp. 3794–3803, May 2019, doi: 10.1109/TIE.2018.2856193.

[25] B. Liu, C. H. Chen, P. Zheng, and G. Zhang, “An adaptive parallel
feature learning and hybrid feature fusion-based deep learning approach
for machining condition monitoring,” IEEE Trans. Cybern., vol. 53,
no. 12, pp. 7584–7595, Dec. 2023.

[26] J. S. Nam and W. T. Kwon, “A study on tool breakage detection
during milling process using LSTM-autoencoder and Gaussian mixture
model,” Int. J. Precis. Eng. Manuf., vol. 23, no. 6, pp. 667–675, 2022.

[27] J. Dou, C. Xu, S. Jiao, B. Li, J. Zhang, and X. Xu, “An unsupervised
online monitoring method for tool wear using a sparse auto-encoder,”
Int. J. Adv. Manuf. Technol., vol. 106, pp. 2493–2507, 2020.

[28] Y. Jia and G. Li, “A two-stage feature selection method for hob
state recognition,” Eng. Appl. Artif. Intell., vol. 133, Jul. 2024,
Art. no. 108580.

[29] X. He, D. Cai, and P. Niyogi, “Laplacian score for feature se-
lection,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2006,
pp. 507–514.

[30] Z. Chen and W. Li, “Multisensor feature fusion for bearing fault diag-
nosis using sparse autoencoder and deep belief network,” IEEE Trans.
Instrum. Meas., vol. 66, no. 7, pp. 1693–1702, Jul. 2017.

[31] T. Kohonen, “Essentials of the self-organizing map,” Neural Netw.,
vol. 37, pp. 52–65, Jan. 2013.

[32] K. Jemielniak, T. Urbański, J. Kossakowska, and S. Bombiński, “Tool
condition monitoring based on numerous signal features,” Int. J. Adv.
Manuf. Technol., vol. 59, pp. 73–81, Mar. 2012.

[33] G. Luo, C. Yao, Y. Liu, Y. Tan, J. He, and K. Wang, “Stacked auto-
encoder based fault location in VSC-HVDC,” IEEE Access, vol. 6,
pp. 33216–33224, 2018, doi: 10.1109/ACCESS.2018.2848841.

[34] M. Jongmanns, P. Städter, and T. Meisel, “Dataset for AI-assisted detec-
tion of the wear level of a cutting tool on a CNC mill,” 2023. [Online].
Available: https://fordatis.fraunhofer.de/handle/fordatis/348

MARYAM ASSAFO received the B.Sc. and M.Sc.
degrees in communications engineering from the
University of Aleppo, Aleppo, Syria, in 2013 and
2018, respectively. She is currently working toward
the Ph.D. degree in computer science with Bran-
denburg University of Technology (BTU) Cottbus-
Senftenberg, Cottbus, Germany.

She is currently a Research Assistant with
the Chair of Wireless Systems, BTU Cottbus-
Senftenberg. Her research interests include pre-
dictive maintenance, sensor fusion, data mining,

signal processing, and artificial intelligence.

PETER LANGENDOERFER received the Diploma
degree in computer science from the Technical
University (TU) of Braunschweig, Braunschweig,
Germany, in 1995, and the Ph.D. degree in com-
puter science from the Brandenburg University of
Technology (BTU), Cottbus, Germany, in 2001.

Since 2000, he has been with the Leibniz In-
stitute for High Performance Microelectronics,
Frankfurt (Oder), Germany, where he leads the
Wireless Systems Department. From 2012 to 2020,
he lead the Chair for Security in pervasive systems

with the Technical University of Cottbus-Senftenberg, Cottbus, Germany,
where he has owned the Chair of Wireless Systems, since 2020. He has
authored or coauthored more than 150 refereed technical articles, filed 17
patents of which ten have been granted already. His reserach interests include
security for resource constraint devices, low power protocols, efficient imple-
mentations of A means and resilience.

Dr. Langendoerfer was a Guest Editor for many renowned journals, e.g.,
Wireless Communications and Mobile Computing (Wiley) and ACM Trans-
actions on Internet Technology.

1010 VOLUME 5, 2024

https://doi.org/10.1007/s10845-023-02239-5
https://dx.doi.org/10.1109/TIE.2018.2856193
https://dx.doi.org/10.1109/ACCESS.2018.2848841
https://fordatis.fraunhofer.de/handle/fordatis/348

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

