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Abstract: Feature selection (FS) represents an essential step for many machine learning-based pre-
dictive maintenance (PdM) applications, including various industrial processes, components, and
monitoring tasks. The selected features not only serve as inputs to the learning models but also can
influence further decisions and analysis, e.g., sensor selection and understandability of the PdM
system. Hence, before deploying the PdM system, it is crucial to examine the reproducibility and
robustness of the selected features under variations in the input data. This is particularly critical
for real-world datasets with a low sample-to-dimension ratio (SDR). However, to the best of our
knowledge, stability of the FS methods under data variations has not been considered yet in the
field of PdM. This paper addresses this issue with an application to tool condition monitoring in
milling, where classifiers based on support vector machines and random forest were employed. We
used a five-fold cross-validation to evaluate three popular filter-based FS methods, namely Fisher
score, minimum redundancy maximum relevance (mRMR), and ReliefF, in terms of both stability and
macro-F1. Further, for each method, we investigated the impact of the homogeneous FS ensemble on
both performance indicators. To gain broad insights, we used four (2:2) milling datasets obtained
from our experiments and NASA’s repository, which differ in the operating conditions, sensors, SDR,
number of classes, etc. For each dataset, the study was conducted for two individual sensors and
their fusion. Among the conclusions: (1) Different FS methods can yield comparable macro-F1 yet
considerably different FS stability values. (2) Fisher score (single and/or ensemble) is superior in
most of the cases. (3) mRMR’s stability is overall the lowest, the most variable over different settings
(e.g., sensor(s), subset cardinality), and the one that benefits the most from the ensemble.

Keywords: classification; feature selection; homogeneous feature selection ensemble; predictive
maintenance; milling; sensor fusion; stability of feature selection; tool condition monitoring

1. Introduction

Maintaining the proper operation of industrial systems is crucial to meet the produc-
tivity and reliability requirements [1]. To this end, different maintenance strategies exist,
among which the predictive maintenance (PdM) is particularly receiving a lot of interest
from both industry and academia [2]. PdM is based on assessing the health condition of the
monitored system so that a timely maintenance plan can be made accordingly. This is unlike
other strategies where maintenance is performed only after the occurrence of failure (i.e.,
run-to-failure maintenance) or regularly based on a predefined schedule (i.e., preventive
maintenance) [3]. PdM allows for preventing failures while maximizing the utilization of
the industrial components as well as minimizing the downtime and maintenance costs [1].
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The PdM mainly includes diagnosis tasks (e.g., fault identification, health state recogni-
tion) and prognosis tasks (e.g., prediction of the remaining useful life) [2]. The specific PdM
application addressed in this paper is the classification-based tool condition monitoring
(TCM) in milling, i.e., health diagnosis, where different data classes correspond to different
health conditions of the tool. Milling is a popular machining process in which a rotating
cutting tool is used to remove material from the workpiece in such a way that the desired
geometry of the surface is attained. The tool, inevitably, wears gradually due to the joint
effect of the heat and force generated during the milling process. The quality of the finished
surface is directly affected by the tool wear. In addition, when the tool wear exceeds a
certain level, a tool breakage occurs. Therefore, TCM is essential for ensuring good quality
products and for replacing the tool in a timely manner [1,4].

The advances in collecting, storing, and processing large amounts of data are key
enablers of data-driven PdM solutions [2,3,5]. Data-driven solutions include statistical
methods, stochastic models, and machine learning (ML) methods. ML can perform complex
tasks that might not be handled by other data-driven solutions. This is due to the ML
advanced learning algorithms that can capture complex relations from data [2]. A general
framework of ML-based PdM in the offline phase is depicted in Figure 1, and it encompasses
the following steps [3,6]:

1. Acquiring raw sensor signals representing the process at hand, e.g., tool wear progres-
sion during machining.

2. Preprocessing the sensor signals, e.g., for reducing noise.
3. Extracting features from the sensor signals.
4. Reducing the data dimensionality (feature reduction), mainly through feature trans-

formation or feature selection.
5. Building a learning model that can eventually be deployed in the online phase to

assess the system health.

Figure 1. A general framework of the machine learning-based predictive maintenance in the offline phase.

Feature extraction allows for reaching meaningful information about the underlying
process. However, it is quite intricate, if not impossible, to theoretically determine the
optimal sensory features for the problem at hand. This is mainly due to the complexity and
dynamics of the industrial processes being monitored and the presence of diverse factors
affecting the importance of a given feature, including the operating conditions [4,7,8],
position of sensors, signal-to-noise ratio of the acquired signals [8], the window size of
feature extraction [9], etc. Therefore, in order to ensure that sufficient information is
derived, many features are initially extracted from the sensor signals in the time, frequency,
and/or time-frequency domain. However, some of these features might be irrelevant
and redundant [6], and the number of extracted features might be too large, causing the
overfitting problem [8,10]. Hence, the role of the subsequent step, i.e., dimensionality
reduction, is to provide a feature vector of a lower dimension while keeping the most
representative information from the original features.

Dimensionality reduction is essential for model building as it enhances the generaliz-
ability of the model and reduces the storage and computation requirements. To this end,
two major techniques exist, namely feature transformation and feature selection. In the
former, the original feature space is mapped into another lower-dimensional space, and
thus, completely new features are constructed, whereas in the latter, no transformation
is performed, but rather, a subset of the most relevant features is selected from the entire
feature set. Since feature selection preserves the physical meaning of the features, it outper-
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forms the feature transformation with respect to the interpretability [11]. The focus of this
paper is on feature selection (FS).

FS methods can be categorized based on the involvement of the learning algorithm
into: filter, wrapper, and embedded methods.

• Filter methods function independently of any learning algorithm. They rely solely on
the intrinsic properties of the features, e.g., their correlation with the output, variance,
etc. Filter methods are characterized by being fast and computationally efficient,
which is particularly beneficial for high-dimensional datasets. However, they usually
lead to a lower classification accuracy compared to the other two categories [12].

• Wrapper methods utilize a specific learning method along with a search strategy that
searches the space of possible feature subsets. Each drawn feature subset is evaluated
based on the employed learning model’s performance, e.g., predictive accuracy, which
is assessed using a validation set or cross-validation. As a result, wrappers suffer from
the intensive computations needed, as each iteration involves training and testing the
model from scratch [10]. Another disadvantage of wrappers is the risk of overfitting.
Additionally, the selected features are specific to the learning algorithm employed [13].

• Embedded methods employ a learning algorithm that inherently assesses the feature
importance as part of the model training, e.g., random forest. Therefore, these methods
are computationally more efficient than the wrappers [12]. Similarly to wrappers, the
embedded methods suffer from the bias of their output by the particular learning
algorithm employed [13].

Only filter-based FS methods are considered in the experiments conducted in this
paper, as they are less computationally expensive than the other two categories and also
produce generic solutions due to their independence of the learning algorithm.

The output of a given FS method can take one of the three following forms, with N
being the total number of the evaluated features [12]:

• Weights (scores), where weights are assigned to the N features based on their impor-
tance, as perceived by the employed FS method.

• Ranks, where the most important feature is usually ranked first, whereas the least
important one is ranked Nth.

• A subset of features selected from the original N-feature set.

Before training the model, a subset of selected features is eventually derived from the
weights or ranks. The weights of features are sorted to produce a ranked list of features,
and this list can be cut by specifying a specific number of features or a threshold (usually a
percentage of the selected features) to generate a subset of the most important features [14].

FS methods have been extensively employed, investigated, and developed in the field
of PdM, including a wide range of industrial processes, e.g., machining [4], industrial
components, e.g., machining tools [4], gears [15], bearings [16], as well as PdM tasks, e.g.,
diagnosis [5] and prognosis [17]. Regarding the evaluation of FS methods, the majority
of these works only consider the predictive power of the FS, expressed as the predictive
performance of the learning model whose input are the features selected by the FS method,
e.g., accuracy or similar measures [4]. Some works also consider other performance in-
dicators such as the run time of the FS algorithm [18], among others. However, to the
best of our knowledge, the stability of FS has not been considered in any of the works
existing in the field of PdM. The stability of a given FS method reflects the ability of this
method to select a consistent subset of features under small perturbations (variations) in
the input data. Such data variations can be at the instance level and/or feature level [12].
The focus of this paper is on the instance-level data perturbations, i.e., when the variations
are caused by adding or removing some data samples that come from the same process
generating the data [12,19,20]. The stability of FS started to gain a lot of attention in many
domain areas, especially where the data tend to have a high number of features but a small
number of observations, e.g., in text mining and bioinformatics [12,21]. It has recently been
addressed with various applications, e.g., sensor array optimization in electronic nose [22],
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and with different kinds of data, e.g., text, image, video, electrocardiogram (ECG) signal,
voice recording [21]. However, it is still neglected in the area of PdM. Therefore, the main
aim of this paper is to fill this research gap, both theoretically and experimentally. We
argue that the stability of FS is an important aspect to be considered in the various PdM
applications for many reasons, summarized as follows.

• The data used for PdM purposes are mostly time-series sensory signals that represent
complex, dynamic industrial processes. These signals are usually non-stationary and
contaminated with different kinds of noise. As such, estimating the stability of the
FS outcome under changes in the dataset can reflect the extent to which the selected
sensory features are generic and robust.

• The reproducibility of results is a crucial aspect to increase the confidence in the ob-
tained outcome and the underlying implementation. Before the actual implementation
of the PdM system, many elements should be determined in the offline phase, among
which FS is of high significance as it selects the features that will be fed to the learning
algorithm. Thus, the FS method that selects extremely different features for slightly
different data samples may decrease the confidence in the total implementation, even
if, in some cases, different subsets of features might build different models of equal
accuracies.

• In the context of PdM, the selected features can be used by the domain experts to
explore possible relations between some events, e.g., faults and health states, and the
selected features. This is beneficial to reach a better understanding of the monitored
system, which in turn can promote the PdM system. For such knowledge discovery
and understandability purposes, stability of FS is of high importance.

• Many of the datasets acquired from real-world industrial processes contain only a
small number of training observations. This is mainly due to the high requirements
associated with acquiring large datasets in terms of cost, storage, and time [23]. More-
over, multisensor fusion is increasingly employed for PdM, leading to a larger pool of
candidate features compared to the case of a single sensor. As such, it is not unlikely
for the PdM dataset to suffer from a low sample-to-dimension ratio (SDR) (i.e., the
ratio between the number of observations and number of features), in which case
examining the FS stability would be particularly crucial.

• It is common in the literature to assess the candidate sensors based on the relevance of
the features extracted from their signals, as performed in [4,24,25]. Such an assessment
is especially important when there is a constraint on the number of the sensors to
be used. In addition, the selected features in the offline phase will determine which
signal analysis to be used in the online phase, e.g., fast Fourier transform, wavelet
transform, etc. Thus, the FS stability can also affect the confidence in selecting the
sensor(s) and signal analysis methods.

When it comes to facing FS stability issues, the trend in the literature seems to be
toward developing techniques that can improve the stability of any FS method rather than
establishing new FS methods that are stable. This is to be expected since there are already
multitude of well-established FS methods and also given the fact that there is no single
FS that is considered the best for all the applications. A recent technique that has been
shown to increase the FS stability is the FS homogeneous ensemble. It was first introduced
in [12] and is based on combining the outputs of identical FS methods that were fed with
different data samples taken from the same dataset. This technique can be applied on all
the FS types and algorithms, and it has been studied in various areas, e.g., bioinformatics,
biomedicine [12], text mining [21], etc. To the best of our knowledge, it has also not been
studied yet in the field of PdM.

Stability and homogeneous ensemble of FS are two recent research areas that have
been studied in many fields but not yet in the PdM. This paper aims to fill this research gap
with an application to TCM in milling. Our contributions in this paper can be summarized
as follows:



Sensors 2023, 23, 4461 5 of 39

1. Presenting a brief review of the existing performance indicators of FS methods in the
PdM field.

2. Introducing the stability of FS as an important performance indicator to be considered
in the field of PdM, which is, to the best of our knowledge, still neglected in this
research area. Our motivation was driven by the reasons described above.

3. Presenting a brief review of the existing measures of FS stability while highlighting
their pros and cons with respect to this study.

4. Investigating the impact of incorporating the homogeneous FS ensemble into the
general framework of PdM. We experimented with different ensemble sizes and
examined the impact of the FS ensemble on both the FS stability and predictive
performance. Hence, this paper also contributes to the research area of FS ensemble,
by exploring the potential of this technique for PdM.

5. Conducting a performance comparison of three well-known, filter-based FS meth-
ods, namely Fisher score, maximum relevance minimum redundancy (mRMR), and
ReliefF, in terms of both the stability and predictive performance. This comparison
is performed for both the single and ensemble versions of these methods and for
different numbers of selected features.

6. The experimental study was performed for individual sensors and sensor fusion.
7. As mentioned previously, the PdM application addressed in this paper is classification-

based TCM in milling. We used four milling datasets obtained from two sources:
(1) milling experiments we conducted and (2) NASA’s data repository [26]. Our
data and NASA’s data were generated under different experimental setups (different
machines, milling tools, sensors, data acquisition systems (DAS), operating conditions,
etc.). Further, they differ in the main data characteristics in terms of the number of
classes and observations. Our aim of using such diverse milling datasets is to conduct
a comprehensive, non-biased study with respect to the experimental cases and data
characteristics.

The remainder of this paper can be summarized as follows. In Section 2, related works
are reviewed. In Section 3, the methodologies used in this paper are presented, including
the FS methods, the FS stability and its measures, and the homogeneous FS ensemble. In
Section 4, the overall FS scheme implemented for both the single and ensemble versions
of FS methods is described. Section 5 contains the implementation details concerning the
datasets, experimental setups, data processes, results, and discussion. Finally, in Section 6,
the conclusion and future work are presented.

2. Related Works

FS represents an integral part of many of the PdM frameworks existing in the literature.
In many of these frameworks, traditional FS methods that were originally developed in
the area of ML have been employed and investigated. For example, Fisher’s discrimi-
nant ratio [27], t-test [7], genetic algorithm [28], recursive feature elimination [29], and
random forest [24] were used for TCM in different machining processes. In [30], mRMR
was employed for machinery fault diagnosis. In addition, a performance comparison
of different FS methods was conducted in some works. In [16], a comparison between
sequential forward selection, sequential floating forward selection, and genetic algorithm
was performed for fault diagnosis of bearing. In [17], three metaheuristic optimization FSs,
namely Dragonfly, Harris hawk, and genetic algorithms, were compared for tool wear pre-
diction. In [31], FS techniques based on decision trees, neural fuzzy systems, scatter matrix,
and a cross-correlation were compared for TCM in milling. Aside from the well-known
FS methods, some application-specific FS schemes were proposed in the field of PdM to
meet particular needs and scenarios, e.g., an FS scheme was proposed in [4] to tackle the
challenges related to anomaly detection of milling tools when the data belong to different
operating conditions. In [5], an FS scheme was proposed to reduce the detrimental effect of
the data outliers on the accuracy of fault diagnosis. Other general FS techniques were also
developed in the PdM area with the aim of improving the diagnosis accuracy, as in [15,18].
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To evaluate the effectiveness of the FS schemes proposed in the literature, their performance
is usually compared with popular FS methods [4,15,25,32], with other related works [5], and/or
with the case when no FS is performed (i.e., all the features are used) [5,8,15,25,33,34]. The major
performance indicator used to evaluate a given FS or to compare different FSs is the predictive
performance of the learning model, e.g., accuracy, which was built using the features selected
by the corresponding FS method [4,15–18,25,32–37]. Other performance indicators of FS, not
yet commonly used, include run time of the FS algorithm [18,34,37], training time of the
learning model trained by the selected features [33,34], the computation complexity of
FS in terms of the number of parameters to be adjusted in the FS algorithm [32], and the
number of selected features [32,34,36]. However, as mentioned previously, to the best
of our knowledge, stability of FS has not been considered in the field of PdM, including
the various industrial processes, components, and monitoring tasks existing in this field.
Table 1 summarizes the most common FS performance indicators used for PdM based on
the existing literature.

Table 1. The most common performance indicators of the feature selection methods in the existing
literature of predictive maintenance

Performance Indicator of FS PdM Application Reference Example(s)

Predictive performance of the model, e.g., accuracy Tool condition monitoring in milling/micromilling/grinding [4]/[35]/[37]
Fault diagnosis of gears/bearings/wind turbines/air-
handling units/railway point machines

[15]/[16]/
[18]/[25]/[36]

Run time of the FS algorithm Tool condition monitoring in grinding [37]
Fault diagnosis of bearings/wind turbines [34]/[18]

Training time of the learning model Tool condition monitoring in milling [33]
Fault diagnosis of bearings [34]

Number of adjusted parameters in the FS algorithm Chatter detection in computer numerical control (CNC) ma-
chines

[32]

Number of selected features Fault diagnosis of bearings/railway point machines [34]/[36]

A recent topic that has been studied in conjunction with the stability of FS is the
homogeneous ensemble of FS [12,21,38–40]. It has been studied in many domain areas,
mainly with the aim of improving the FS stability. Based on the existing works in the
literature, there seems to be no general conclusion regarding the impact of homogeneous
FS ensemble, as the ensemble performance is dependent on many factors, e.g., domain,
dataset, FS method, aggregation method, etc. A broad study was conducted in [21],
where the ensemble was tested in many domains, data sizes, and different FS types. It
was found in [21] that the less stable the method is, the more it can benefit from the
ensemble. Another common conclusion in the literature is that the homogeneous ensemble
can increase the FS stability while maintaining (or even with slightly increasing) the
classification performance [12,21]. However, there are examples where the FS homogeneous
ensemble led to an improvement in the classification performance, but coupled with a
decrease in the FS stability, e.g., the t-test ensemble with the cancer diagnosis microarrays
datasets tested in [39]. Other examples exist when the increased stability caused by the
homogeneous ensemble comes at the expense of decreasing the classification performance,
e.g., the ensemble of random forest caused a decrease in the classification accuracy by an
average of 10% compared to the single version for the biomarker discovery datasets tested
in [12]. To the best of our knowledge, the homogeneous ensemble of FS has also not been
explored yet in the field of PdM.

Stability and homogeneous ensemble of FS are two recent research areas that have
been studied in many domain areas but not in the PdM. This paper aims to fill this research
gap with an application to TCM in milling.
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3. Methodologies
3.1. The Feature Selection Methods Studied in This Paper

As mentioned in Section 1, three filter-based FS methods are studied in this paper,
namely Fisher score, mRMR, and ReliefF. These filters are supervised, i.e., the target
classes are fed to the FS algorithm along with the observations, where each observation
is represented by the features Ff ; f = 1, . . . , N. These methods assign weights (scores) to
the features, which can be further converted into ranks, and a subset (see the forms of FS
output explained in Section 1). These particular methods were selected in this paper due to
the fact that they are well-known, widely-used FS methods and that they are distinct from
each other in terms of the general characteristics, as shown in Table 2. More specifically,

• The metric used for feature assessment in Fisher score, mRMR, and ReliefF is statistical,
information-based, and instance-based, respectively.

• Regarding whether or not the assessment of a given feature is influenced by the other
features, Fisher score is univariate, i.e., each feature is assessed independently of the
others, whereas both mRMR and ReliefF are multivariate, i.e., the inter-dependency
among features is considered.

• Regarding feature redundancy, only mRMR, among the three studied FSs, considers
the redundancy among features.

Table 2. The main characteristics of the filter-based feature selection methods studied in this paper.

FS Method Metric Type Evaluation Approach Feature Redundancy

Fisher score Statistical Univariate Not considered
mRMR Information-based Multivariate Considered
ReliefF Instance-based Multivariate Not considered

More details about these methods are described as follows.
Fisher score: It is a simple-yet-effective FS method [41]. Each feature is evaluated

individually based on its discriminant ability, W f , expressed as in (1) [42].

W f =
∑C

c=1 nc(µc
f − µ f )

2

∑C
c=1 nc(σc

f )
2

(1)

where nc is the number of observations in class c. The number of classes is C. µc
f and (σc

f )
2

are the mean and variance of samples in class c corresponding to the feature Ff , respectively.
µ f denotes the mean of all the samples of feature Ff . Fisher score reflects the feature’s
ability to globally maximize the between-class scatter (the numerator in (1)) and minimize
the within-class scatter (the denominator in (1)). The major disadvantage of the Fisher score
is that the relations between the features are not considered [42].

mRMR: It uses two mutual information-based criteria to score the features, namely
relevance and redundancy. The most important features are considered to be the ones
that are highly relevant to the class while being most dissimilar to the other features. The
score given to the feature Ff represents the mutual information quotient MIQ f , as given
in (2) [43].

MIQ f =
I(Ff , Y)

1
|S| ∑Fz∈S I(Ff , Fz)

(2)

where the numerator and denominator of (2) represent the relevance and redundancy of
the feature Ff , respectively. I(Ff , Y) is the mutual information between the feature Ff and
the target class Y, whereas I(Ff , Fz) represents the mutual information between the features
Ff and Fz. S is the feature set.

ReliefF: A major advantage of the feature assessment performed by ReliefF is that the
local dependencies between features are harnessed without loss of the global view [44].
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The basic idea is to evaluate the features based on the extent to which their values discern
the closely spaced observations. This assessment is performed iteratively. In each iteration,
an observation is randomly drawn from the observation space. The k nearest neighbors
of this observation are determined from the same class as well as from each of the other
classes. The score of each feature is updated based on the difference of the feature values
between the concerned observation and the nearest neighbors. The score, W f , decreases
if the feature values are different within the same class and increases if the feature values
differ for the neighbors of the other classes, as shown in (3).

W f = W f −
1

mk

k

∑
j=1

diff f (Ri, Hj) +
1

mk ∑
c 6=class(Ri)

P(c)
1− P(class(Ri))

k

∑
j=1

diff f (Ri, Mj) (3)

where m is the number of iterations. Ri is the observation drawn in the iteration i. Hj and
Mj are neighboring observations to Ri from the same class (class(Ri)) and a different class,
respectively. P(c) is the prior probability of the class c, and is usually determined from the
training samples fed to the ReliefF algorithm. The Equation (3) corresponds to the case
where all the K nearest neighbors have the same influence (as indicated by the factor (1/k)),
which is the version used in our implementation [44]. diff f (., .) is the value difference of
the feature Ff between two observations, and is given by (4).

diff f (Oi, Oj) =

∣∣∣Oi f −Oj f

∣∣∣
max(Ff )−min(Ff )

(4)

where Oi f and Oj f are the values of feature Ff for the observations Oi and Oj, respectively.
max(Ff ) and min(Ff ) are the maximum and minimum values of the feature Ff , respectively.

Recall that the data classes in our work represent different health conditions of the
milling tool, and the importance score given to a certain sensory feature will reflect its
discriminative power for tool health diagnosis as perceived by the respective FS method.

3.2. Stability of Feature Selection and the Measure Adopted in This Paper

The stability of a given FS method reflects the sensitivity of its outcome to small
perturbations (variations) in the input data [45]. As mentioned previously, this paper
focuses on the data perturbations at the instance level. Thus, stability reflects the consistency
of the selected features when different subsamples from the same data-generating process
are input to the FS algorithm [19,20], i.e., it is indicative of the reproducibility of the selected
features [21,46].

The stability of FS was a neglected issue and is considered a research area of recent
interest [21]. Various measures have been proposed in the literature to quantify the FS stabil-
ity, most of which are essentially similarity measures, e.g., Pearson, Jaccard measures [45].
The input to the stability measure is the FS’s different outputs generated under different
data versions of the original dataset. To quantify the stability, a pairwise similarity is
first computed for different outputs, and then the overall estimated stability would be the
average of the resulting similarities [45]. Let X be a dataset with M instances (observations)
and N features, m is the number of perturbed versions of X. To quantify stability under
instance perturbations, the m versions are usually created by resampling techniques, such
as bootstrapping or cross-validation [14]. The total stability (Stot) is given as in (5) [12].

Stot =
2

m(m− 1)

m−1

∑
i=1

m

∑
j=i+1

S
(
Oi, Oj

)
(5)

where Oi and Oj are the two outputs of FS corresponding to the ith and jth data versions,
respectively. S(., .) is the similarity value between Oi and Oj computed based on the
stability measure used.
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Different stability measures exist for different types of FS output (weights, ranks,
or subset) [12,45,47]. Nevertheless, some measures can be used for many output forms,
e.g., Pearson’s correlation coefficient [45]. The Pearson’s correlation coefficient and the
Spearman rank correlation coefficient are widely used for feature weighting and feature
ranking, respectively [12,14,47]. As for the feature subsets, a variety of measures exist in
the literature, most of which are basically increasing functions of the cardinality of the
pairwise intersections, i.e., the higher the number of overlapping features between the
feature subsets, the higher the stability is [20,45]. Examples of such measures include
Jaccard’s, Hamming’s, and Kuncheva’s measures [45]. A thorough review on different
stability measures can be found in [47].

The FS methods studied in this paper produce feature weightings that can be further
converted into ranks and feature subsets. Thus, all the aforementioned types of stability
measures can be applied. However, different types of measures represent the stability from
different perspectives, and thus, provide different information. Weighting-/ranking-based
measures estimate the stability from a global point of view as they take the weights/ranks
of all the features into account. On the other hand, subset-based measures focus only
on the subset of selected features, giving a finer view concerning the most important
features [14]. Thus, the selection of the type(s) of stability measure should be driven by
what insights are sought for the respective study. Since the main purpose of FS in this paper
is to select the features that will be input to the classifier, we only focus on the subset-based
stability measures.

As mentioned previously, most of the existing subset-based measures mainly rely on
finding the features that the compared subsets have in common. Some of these measures
suffer from specific drawbacks that result in constraints and/or invalid interpretations of
the estimated stability in certain scenarios. For example, some measures, e.g., Kuncheva’s
measure, require the compared feature subsets to be of the same cardinality [45]. Clearly,
this constraint might not be met by the wrapper FS methods, for example. Other measures
do not consider the so-called “similarity by chance” (the case when the stability correspond-
ing to a random feature selection is dependent on the number of selected features) [48]. The
usual trend for such measures is that the larger the subsets of selected features, the more
features they have in common, as is the case with the Jaccard’s measure [45]. However,
such a higher feature overlap is not linked to a higher stability in feature selection, but
rather to a higher “chance”. To account for this issue, corrections are usually added to the
stability measure so that the stability is zero for a random feature selection regardless of
the number of selected features [45]. In addition, most of the existing measures assume
that the different features are independent of one another [46] and, thus, regard features
with different identifiers, e.g., Fi, Fj; i 6= j, as different regardless of whether they are highly
correlated or not [20]. This drawback might lead, in the presence of highly correlated
features, to having a seemingly low estimated stability when different yet similar features
exist across the different output feature subsets [20,46]. The existing stability measures that
consider the similarity among features are few, and a review on them can be found in [48].
Hence, in order to have a reliable quantification of the FS stability, it is critical to select a
suitable measure for the respective study. For example, the issues related to having subsets
with different cardinalities are not relevant to our work since we deal with ranking-based
FSs, i.e., we can control that the number of the eventually selected features is constant over
all the compared subsets. Based on the properties of the existing stability measures in the
literature, and driven by what we consider desirable properties for our work, we adopted
the stability measure proposed in [20], called SMA, for the following main reasons:

• It takes into account the issue of “similarity by chance” that was described above.
• It takes into account the correlation between the features belonging to different subsets.

Thus, two features of different identifiers are considered similar if the correlation
between them is high (compared to a predefined correlation threshold). This property
is significant for PdM applications where the features extracted from the sensor signals
might be highly correlated.
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• In the SMA measure [20], the correlation-based similarity between features is assessed
based on the absolute value of inter-feature correlation, which is unlike other existing
measures that take the direction of correlation into account, such as the nPOGR
measure proposed in [46]. The absolute value is relevant to our work since it represents
the correlation strength (irrespectively of whether the correlation direction is positive
or negative), which is the aspect of interest when examining the redundancy among
features [4].

The aforementioned reasons represent the main properties that motivated us to adopt
the SMA measure in this paper. However, it is worth mentioning that this measure also
has other properties that were not mentioned above, e.g., it does not require the compared
feature subsets to be of the same cardinality, which makes it applicable with all the FS
algorithms including those that immediately generate a feature subset whose size might
not necessarily be the same across different input samples. More properties and proofs
of this measure can be found in detail in [20,48]. The SMA stability measure is given in
(6) [20].

SMA =
2

m(m− 1)

m−1

∑
i=1

m

∑
j=i+1

∣∣Vi ∩Vj
∣∣+ Adj

(
Vi, Vj

)
− E

[∣∣Vi ∩Vj
∣∣+ Adj

(
Vi, Vj

)]
UB
[∣∣Vi ∩Vj

∣∣]− E
[∣∣Vi ∩Vj

∣∣+ Adj
(
Vi, Vj

)] (6)

where
∣∣Vi ∩Vj

∣∣ is the number of overlapping features between the two feature subsets
Vi and Vj. UB

[∣∣Vi ∩Vj
∣∣] denotes an upper bound for

∣∣Vi ∩Vj
∣∣ and is set in this paper to√

|Vi|.
∣∣Vj
∣∣, as in [20]. Adj

(
Vi, Vj

)
is the adjustment function added to the stability measure

to account for similarity between features from different subsets. Four different variants
of this adjustment were proposed and investigated in [20]. They differ in the function
used, but are similar in terms of the theoretical properties and the experimentally-attained
stability values, as shown in [20]. Therefore, as recommended in [20], we will use the
variant with the shortest execution time, which is called AdjCount(., .), and is calculated as
in (7).

AdjCount
(
Vi, Vj

)
= min

{
A
(
Vi, Vj

)
, A
(
Vj, Vi

)}
(7)

where A
(
Vi, Vj

)
is computed as in (8):

A
(
Vi, Vj

)
=
∣∣{x ∈

(
Vi\Vj

)
: ∃ y ∈

(
Vj\Vi

)
with similarity(x, y) ≥ θ

}∣∣ (8)

Hence, A
(
Vi, Vj

)
represents the number of features that are included in Vi but not in

Vj and has a similarity exceeding the threshold θ with at least one feature included in Vj but
not in Vi. Similarity (., .) is assessed in this paper based on the absolute value of Pearson’s
correlation coefficient, as it will be shown in Section 5.5.

As for E[.] in (6), it represents the expected value corresponding to a random feature
selection. Since this value is data-dependent, there is no general equation to calculate it.
However, it can be estimated by repeating the following Monte Carlo procedure L times:
(1) Performing a random feature selection, with each feature having an equal probability, to
generate two feature subsets whose cardinalities are the same as the corresponding subsets
Vi and Vj, respectively. (2) Calculating the corresponding score

∣∣Vi ∩Vj
∣∣ + Adj

(
Vi, Vj

)
.

Then, E[.] would be the average of the L scores. In this paper, L is set to 10,000 as in [20,46].
Estimating E[.] will be performed for each pair of subsets Vj, Vj; i < j.

3.3. Homogeneous Ensemble of Feature Selection

The rationale of FS ensemble is similar to that of the ensemble learning. Ensemble
learning was originally developed to enhance the performance of classification and regres-
sion tasks by combining the outputs of many individual models [12]. The diversity of these
models is a crucial aspect of ensemble learning, and it can be induced at the algorithm level
and/or the data level [21]. The ensemble concept has gained an increasing interest in the
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area of FS, mainly with the aim of increasing the stability of FS methods and the predictive
performance [49].

The FS ensemble consists of two main components: individual feature selectors, also
referred to as base selectors [21,49], and an aggregator. Each base selector generates a
single output based on the input data and the type of the base selector (the applied FS
method). Then, the aggregator combines the individual outputs to form one final output of
the ensemble [12]. Many methods exist for both the base selectors and aggregators. Based
on how the diversity is formed in the ensemble, the ensemble has two main categories:
homogeneous and heterogeneous ensembles. In the former, the base selectors are all of the
same type. However, the input data fed to them represent different versions of the original
training data. On the other hand, the base selectors in the heterogeneous ensemble use the
same input data, but they apply different FS methods on that data [21,49]. In this paper,
only homogeneous ensemble is considered as it was experimentally shown to improve the
stability of FS in many works, e.g., [12,21].

Different components and parameters should be considered when designing the ho-
mogeneous FS ensemble. First, instance perturbations are generated to attain the diversity
needed for this ensemble category. To this end, sampling techniques are usually used, e.g.,
cross-validation [50], bootstrapping [12,38]. In this paper, bootstrapping is used to create B
bootstrap samples with each one having T instances drawn, with replacement, from the
training set; T is the number of instances in the training set. Thus, the employed FS will
be applied to each one of these B bootstrap samples, resulting in B different outputs. The
ensemble size, i.e., B, is a crucial design parameter. Hence, different values of this parame-
ter will be tested in this paper, as it will be shown in Section 5.6.2. The resultant outputs
will be eventually combined by an aggregator to produce the final output. The common
aggregators existing in the literature combine rankings or subsets [12,49]. Rank-based
aggregators are used in this paper. There exist several rank-based aggregators that range
in complexity from aggregators with very simple functions, e.g., mean, median, etc., to
more complex ones, e.g., the aggregator proposed in [38] that assigns bootstrap-dependent
weights to the individual ranks of each feature based on the test accuracy of a classifier
trained on the respective bootstrap sample. However, the sophisticated aggregators are
more computationally expensive, without necessarily increasing the FS stability or the
predictive accuracy [21]. Therefore, we will use a simple aggregator with a mean-based
function as it was shown to perform well in many studies [21]. As such, the final rank of
a given feature will be the mean of its individual B ranks, i.e., the final rank of feature Ff
is Rank f = mean(rank f 1, . . . , rank f B). The final feature ranking of the ensemble would be
an ascendingly sorted list of the feature ranks; the lower the feature’s rank, the higher the
feature’s importance.

4. The Feature Selection Scheme Implemented in This Paper

For each of the three FS methods explained in Section 3.1, two versions are imple-
mented, namely the single version and the homogeneous ensemble version (as described
in Section 3.3).

As mentioned previously, redundancy among features are not taken into account by
both Fisher score and ReliefF. However, redundant features, even if relevant to the class,
increase the data dimensionality without necessarily enhancing, or even degrading, the
representation of the process at hand. It was experimentally shown in [4] that, for a constant
number of 5 features, an increase in the assessment accuracy of the milling tool was gained
by simply replacing more-important yet redundant features with less-important but non-
redundant ones. Additionally, it was shown in [51] that a more accurate fault diagnosis was
achieved when redundant features are removed from a specific feature subset. Similarly to
[4,51,52], we applied the following iterative procedure to eliminate redundant features, in
which redundancy among features was examined using the Pearson’s correlation coefficient:
In the first iteration, the top ranked feature eliminates the less important features with
which it exhibits a correlation whose absolute value exceeds a threshold. In the next
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iteration, the same process is performed after determining the top ranked feature among
the features remaining from the previous iteration, and so on until no feature is remaining.
The Pearson’s correlation coefficient (absolute value), Rab, between two features is given as
in (9).

Rab =

∣∣∣∣∣∣ ∑s(ys − ȳ)(zs − z̄)√
∑s(ys − ȳ)2

√
∑s(zs − z̄)2

∣∣∣∣∣∣ (9)

where ys and zs are the feature samples corresponding to the features Fa and Fb, respectively.
ȳ and z̄ are the mean values of feature samples for Fa and Fb, respectively.

The range of Rab is [0, 1]. In this paper, the condition for eliminating redundant features
is Rab >= Th. A threshold value that is too high might not effectively remove redundant
features. On the other hand, a threshold value that is too low might also lead to removing
significant features. A common trade-off choice of this threshold is 0.9, as in [52–56], which
is also the Th value used in this paper. This step of eliminating redundant features will
be implemented for each of the studied FS methods. It should be noted that, even for
mRMR which takes the redundancy among features into account, this step will not affect
the feature preference perceived by this method, since mRMR considers the more-relevant,
dissimilar features more important than the less-relevant, redundant ones.

Figure 2 illustrates the overall FS scheme implemented in this paper for both the single
and ensemble versions of each FS method.

Figure 2. The overall feature selection scheme implemented in this paper for both the single and
homogeneous ensemble versions of the FS method (Fisher score, mRMR, or ReliefF). The training set
represented by the feature vectors is directly passed to the FS algorithm in the single version, whereas
in the ensemble version, it undergoes the bootstrapping technique so that B different data versions are
generated from the training set. The B bootstrap samples are fed to the same FS algorithm, resulting
in B feature rankings. These rankings are combined using a mean-based aggregator to generate the
final feature ranking of the ensemble. The next steps are the same as those applied in the single
version, where redundant features are removed and the top n remaining features are selected.



Sensors 2023, 23, 4461 13 of 39

In the FS scheme, the training set represented by the feature vectors will be fed
to the single version of a given FS method. However, for the ensemble version, the
bootstrapping technique is applied on the training set to generate B bootstrap samples.
Then, the respective FS method will be applied on each bootstrap sample to generate a
corresponding feature ranking. As discussed in Section 3.3, we use a mean-based rank
aggregator that averages the B individuals ranks generated for each feature. The resulting
feature ranking will represent the ensemble feature ranking. For both the single and
ensemble versions, the final feature ranking will be used to eliminate the redundant, less
important features. Finally, the selected features will be the top n features among the
remaining ones.

5. Implementation Details

This section presents all the details related to the datasets used, the workflow im-
plemented, including preprocessing, feature extraction, FS (single and ensemble), and
classification-based TCM, as well as the different evaluations performed, and finally the
results and discussions. A five-fold cross-validation was used for the different evaluations
performed in this section. The MATLAB R2020b software was used to perform the different
experiments on the data.

5.1. Experimental Datasets

Four real milling datasets are used in this paper. Two of them, called DS1 and DS2
hereafter, are generated from our experiments, whereas the other two, called DS3 and DS4
hereafter, are from the NASA’s data repository [26]. Each of these four datasets contains
run-to-failure data of the milling tool, i.e., the dataset covers the different stages of tool
wear progression, starting from when the tool is completely new, through the different
degradation states, and finally to the failure state. These datasets differ in many aspects,
e.g., DAS, sensors, operating conditions, data size, etc. However, the main difference
between the two datasets under each setup, i.e., (DS1, DS2) and (DS3, DS4), is the operating
conditions of the milling process. The sensors and operating conditions of the four datasets
are shown in Table 3. The detailed experimental setups will be described in the following
two subsections.

Table 3. The sensor(s) and main operating conditions of the datasets used in this paper.

Data Set
(DS)

Data Source Sensor(s)

Main Operating Conditions

Rotation
Speed
(rpm)

Feed Rate
(mm/min)

Depth of
Cut (mm)

Workpiece
Material

DS1 Our experiments Microphone and/or accelerometer 8000 360 2.5 Steel
DS2 Our experiments Microphone and/or accelerometer 5600 252 2.5 Steel
DS3 NASA’s data repository [26]

(case 9)
AC current and/or AE sensor 826 413 1.5 Cast iron

DS4 NASA’s data repository [26]
(case 10)

AC current and/or AE sensor 826 206.5 1.5 Cast iron

5.1.1. Experimental Setup and Preprocesses of Our Milling Datasets (DS1 and DS2)

The milling machine used in our experiments is a five-axis milling center from Metrom
GmbH that is equipped with an Andronic 2060 CNC control. We used solid carbide milling
cutters with a diameter of 8 mm, cutting material of VHM, a tooth number of 2, and a
cutting edge length/total length of 19 mm/63 mm. A workpiece of steel was used. The
workpiece surface was machined line-by-line with the cutter. The milling performed is
dry milling. For each collected run-to-failure dataset, the milling was performed under a
distinct set of operating conditions defined mainly by the rotation speed, depth of cut, and
feed rate (See Table 3). We used a radial depth of cut of 3.6 mm for all the experiments.
Two types of milling processes were performed, namely up milling, in which the cutter
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rotates against the feed direction, and down milling, in which the cutter rotates along the
feed direction. For each dataset, these two types were used alternately, i.e., the milling
type changes with every cutting line. A microphone (model: SPU0410LR5H-QB) and an
accelerometer (model: ADXL1005) were used to collect the sound and vibration signals,
respectively. Five classes were used to label the data. To this end, several factors were
taken into account for labeling, mainly the quality of the finished workpiece surface; the
characteristics of the chips generated during milling, specifically, their color and shape; as
well as the experience of the machine operator (also guided by the sound and vibration
generated during milling). The first two factors, i.e., surface quality and chip characteristics,
are largely influenced by the tool wear. As the tool wear increases, the surface quality
degrades, the chip no longer rolls in as much, and the cutting temperature also increases
due to the increased friction, which affects the chip color. Figure 3 illustrates the main setup
of our milling experiments, including the CNC machine used, the sensors mounted inside
the milling center, a snapshot of the milling process, the up and down milling processes,
and the finished surface quality as well as the chips generated during milling corresponding
to the five classes.

The sensor signals were amplified by an amplifier and then fed to a Red Pitaya board
that served as a data acquisition system in our setup. The sampling frequency for each of
the sensors was about 1.95 MHz. The acquired sensor signals were then transferred to a
PC where they were stored for further analysis. The signals of each sensor were stored in
packages of 16,381 samples each, where the frequency of the packages is about 10 Hz. The
following preprocesses were performed on each of the sensor signals: (1) Filtering using a
median filter which was selected due to its capabilities of removing high-frequency noise
without affecting the useful information. (2) As in [1,24], the parts of signals corresponding
to the following events of the milling process were eliminated: the aircut (when the tool is in
the air) and the entry/exit cuts which correspond to when the tool first engages/disengages
in/out of the workpiece. (3) The original sampling frequency of 1.95 MHz was reduced
to about 400 KHz, where the latter frequency, given the frequency ranges of the sensors
used and the monitoring signals, is sufficient according to the Nyquist–Shannon sampling
theorem which states that the sampling frequency should be at least twice as high as the
maximum frequency contained in the sampled signal. In our case, the sampling frequency
of 400 KHz is about 7 times higher than the maximum frequency of interest contained
in the observed signals. Figure 4 illustrates an example of the microphone signal before
filtering (Figure 4a) and after filtering (Figure 4b) for different machining lines. It can be
noticed from the figure that, before filtering the signal, events such as when the tool is in
the air cannot be clearly recognized. The signal parts corresponding to the aircuts are those
parts whose amplitude is considerably lower than the other parts corresponding to the
actual milling.
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(a) (b)

(c) (d)

(e)
Figure 3. Our experimental setup. (a) CNC machine. (b) Up milling and down milling processes and
the cutting paths on the workpiece. (c) The sensors and cutter inside the milling center. (d) Snapshot
of the milling process. (e) The finished surface quality and the chips generated with the five classes
of the tool health.
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(a)

(b)
Figure 4. An example of the microphone signal during our milling experiments in the time domain:
(a) before filtering and (b) after filtering. Some events, e.g., aircuts, cannot be recognized clearly
before filtering.

5.1.2. Experimental Setup and Preprocesses of the NASA Milling Datasets

The publicly available NASA milling data [26] contains 16 run-to-failure datasets with
6 sensors. For this paper, we only used two datasets, namely case 9 and case 10. We only
used two sensors, namely the AC current sensor of the spindle motor and the acoustic
emission (AE) sensor mounted on the machining table. Each run of the machine is provided
with sensor signals, with each signal containing 9000 samples obtained at a sampling
frequency of 250 Hz. The data are labeled with a flank wear value (VB) that was measured
after each run. As in [1], we divided the dataset into three classes based on their VB values
as follows: VB < 0.2 mm, 0.2 mm ≤ VB ≤ 0.4 mm, and VB > 0.4 mm. We performed the
following preprocesses on the NASA datasets: (1) Eliminating the aircut and entry/exit
cuts, as described previously in our setup. (2) Segmenting the signal corresponding to the
milling part of each run into 4 non-overlapping segments of 1024 samples each.

5.2. Feature Extraction

For feature extraction, we applied signal analysis methods that are quite similar to
those used in [4]. The methods and the corresponding features are described as follows.
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• Time-domain statistical analysis was used to calculate the following 8 statistical fea-
tures: mean, variance, skewness, kurtosis, impulse factor, crest factor, root mean
square (RMS), and range [4,6].

• A multi-resolution analysis was performed using a non-decimated discrete wavelet
transform. For this, the following mother wavelet functions were used: db1 and db3.
As in [4], with each of the mother wavelets, a six-level decomposition of the data
segment was performed, resulting in six details (D1, D2, . . . , D6) and one approxi-
mation (A6). From each of these coefficients, the following statistical features were
extracted: mean, variance, skewness, and kurtosis, constituting a total of 28 features.
Since 2 mother wavelet functions were used, a total of 56 wavelet-based features
were generated.

• Time-frequency analysis was performed to calculate the mean peak frequency. The
mean peak frequency is the average of the peak frequencies determined at different
time instances of the data segment, with each peak frequency being the frequency
with the maximum power at the corresponding instance [4]. In [4], this feature was
extracted from the scalogram generated by the continuous wavelet transform. How-
ever, in this paper, we extracted this feature from the spectrogram generated by the
short-time Fourier transform (STFT) since this latter transform is less computationally
expensive than the continuous wavelet transform.

As such, 65 (8 + 56 + 1) features were extracted out of each sensory segment, as depicted
in Figure 5. After the feature extraction, each segment representing one observation, will
be represented by the corresponding extracted features, rather than by raw sensor signals.
As such, for an individual sensor, the 65 features corresponding to that sensor will be used
for feature selection, whereas for the sensor fusion, the concatenated feature vectors from
two sensors, i.e., a 130-feature vector, will be used. Table 4 shows the main characteristics
of the four datasets used in this paper in terms of the number of classes, observations,
and extracted features, as well as the SDR. SDR is a common measure used to reflect the
difficulty of the task performed by the FS methods [12,21], with SDR << 1 being considered
too challenging [21]. In this paper, SDR is only computed on the training set, since it is the
data portion that the FS method will see. Since the same number of features were extracted
for all the datasets, the SDR variation over the datasets is caused by merely the difference
in the number of observations. As it can be noticed from the table, there is a considerable
difference in SDR values between (DS1 and DS2) on the one hand, and (DS3 and DS4) on
the other. For sensor fusion, for example, SDR for the datasets DS1–DS4 is 78.03, 96.40, 0.22,
and 0.25, respectively. Such a huge difference allows for gaining diversified insights into
the behavior of the FS methods and classifiers, as it will be shown later.

Figure 5. The methods used to extract sensory features in this paper.
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Table 4. The description of the datasets used in this paper.

Data
Set

No.
of
Classes

No. of the Total Observations (per Class 1/
. . . /Class C)

No. of Features (Sin-
gle Sensor/Sensor
Fusion)

SDR a (Single Sen-
sor/Sensor Fusion)

DS1 5 12,680 (2247/2599/ 2585/2639/2610) 65/130 156.06/78.03
DS2 5 15,665 (2865/3133/ 3181/3198/3288) 65/130 192.80/96.40
DS3 3 36 (16/8/12) 65/130 0.44/0.22
DS4 3 40 (17/9/14) 65/130 0.49/0.25

a Sample-to-dimension ratio, computed only on the training observations (80% of the total observations since we
use a 5-fold cross-validation).

5.3. Feature Selection

Before performing the feature selection, the extracted features are normalized based
on the training samples that will be input to the FS. For this purpose, the z-score is used in
this paper as in (10).

zj f =
xj f − X̄ f

S f
(10)

where xj f and zj f are the original and normalized values of the sample j corresponding to
the feature Ff . X̄ f and S f are the mean and standard deviation of the feature Ff ’s samples,
respectively.

As mentioned previously, Fisher score, mRMR, and ReliefF are applied for all the
experiments performed in this paper. Regarding the parameters related to the implementa-
tion of ReliefF, the number of the nearest neighbors, k in (3), was set to 10. Additionally,
all the observations input to the ReliefF algorithm were used for computing the feature
weights, and all the k nearest neighbors contribute equally to the weight updates [44].

It is noteworthy that, for a given dataset, the Fisher score of a specific feature Ff related
to a specific sensor will be the same for both the cases of the individual sensor and the
sensor fusion. This is unlike the scores given by mRMR and ReliefF, i.e., the scores given by
these methods to the feature Ff will vary between the single sensor and sensor fusion cases.
This is due to the fact that the latter two methods are multivariate, and hence, scoring the
feature Ff will be influenced by the other input features.

5.4. Classification-Based Tool Condition Monitoring

As mentioned previously, TCM is modeled in this paper as a multi-class classifica-
tion problem. We employed support vector machines (SVM) and random forest (RF) as
classifiers for the following main reasons:

• SVM is one of the most popular classifiers that have shown a promising performance
for TCM, e.g., in [1,24,28,29,33,37].

• RF is considered the most popular method of creating a decision forest—a model
ensemble whose base learners are decision trees. It has been widely and satisfactorily
used for diagnosis tasks of different industrial components, e.g., bearings [57], and
it recently started gaining interest for TCM, e.g., in [58,59]. However, it is still not
extensively investigated with different FS methods for classification-based TCM.

Recall that in this paper, a five-class classification was performed for DS1 and DS2,
and a three-class classification for DS3 and DS4. The one-versus-one approach was em-
ployed to constitute the multi-class SVM-based classifier consisting of C(C− 1)/2 binary
classifiers, where C is the number of classes. Hence, the SVM classifier consists of 10 and 3
binary classifiers for the 5-class and 3-class classification problems, respectively. For each
experimental case, we used the two following non-linear kernels: the polynomial kernel
of order 2 (the quadratic kernel) and the radial basis function (RBF) kernel. The penalty
parameter was fixed to 1 in all the experiments.
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Regarding the RF implementation, the RF model consists of 50 classification trees, the
minimal leaf size is set to 1, and the number of the randomly selected features for each
decision split is the square root of the total number of input features.

5.5. Performance Indicators of FS Methods

As mentioned previously, the FS methods studied in this paper will be evaluated based
on their stability and the predictive performance of the classifier trained with the features
selected by the respective FS method. Given the classification-based TCM performed in
this paper, the stability of a given FS method will reflect the sensitivity of the selected
features, i.e., those considered by the method to be the most informative for distinguishing
between the different health conditions, to variations in the training observations (drawn
from the corresponding run-to-failure data). As discussed in Section 1, FS stability is a
significant performance indicator to be considered prior the deployment of the PdM system.
However, it should not solely be used to select the best FS method. Assessing the predictive
power of the selected features is also critical to ensure that they allow building an accurate
classification model that can eventually serve as the diagnosis model.

Regarding the stability, the SMA measure is adopted as discussed in Section 3.2. Recall
that this measure considers two features Fa, Fb to be alike if they are either identical, i.e.,
a = b, or different, i.e., a 6= b, but highly correlated in reference to a predefined correlation
threshold. As mentioned previously, the similarity of two features in (8) was computed
using the absolute value of the Pearson’s correlation coefficient, which is the same similarity
measure we used to examine redundancy among features (See Section 4). θ in (8) was
set to 0.9, which is also the same threshold we adopted to examine redundancy among
features. As for evaluating the predictive performance, we will use the macro-F1 of the
classifiers. Macro-F1 is calculated by averaging the individual F1-scores corresponding to
the individual classes, as in (14) [60]. F1-score for class c is given in (13), and it represents
the harmonic mean of the recall (given in (11)) and precision (given in (12)).

Recallc =
TP

TP + FN
(11)

Precisionc =
TP

TP + FP
(12)

(F1-score)c =
2× Recallc × Precisionc

Recallc + Precisionc
(13)

macro-F1 =
1
C

C

∑
c=1

(F1-score)c (14)

where TP and TN represent the number of test observations that were classified correctly
as positive and negative, respectively. FP and FN represent the number of test observations
that were wrongly classified as positive and negative, respectively. C is the number
of classes.

A five-fold cross-validation was implemented. As such, for a given dataset, each of
the five folds will be used once as the test set for the classifier, while the remaining four
folds will constitute the training set used for the feature selection and training the classifier.
For a given FS method (whether a single or ensemble version), the overall stability of FS
and the macro-F1 of the classifier will be calculated as follows.

• The overall stability is estimated by the SMA measure, as in (6), where the input to
this measure is the five feature subsets selected based on the five training sets. Thus, m
in (6) is 5, and the computed 10 pairwise similarities are averaged to obtain the overall
stability. It is noteworthy that, since we used 5-fold cross-validation, the percentage of
overlapping observations for each pair of training sets is roughly 75%.
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• The overall macro-F1 is calculated by averaging the five macro-F1 values correspond-
ing to the five test sets, with each value being calculated as in (14).

5.6. Experimental Results and Discussions

In this section, many evaluations of the studied FS methods will be performed over all
the datasets and sensor configurations and can be summarized as follows:

1. The macro-F1 of the FS single versions is evaluated over all the possible numbers
of selected features. Based on the results, only specific subset cardinalities will be
selected for the next experiments.

2. For each of the subset cardinalities specified in step 1, the stability of each FS method
is evaluated for both its single and ensemble versions. Five ensemble sizes are tested
for the ensemble versions. The ensemble size that achieves the highest stability will
be determined for each experimental case to represent the corresponding ensemble
version. Finally, a global stability profile will be presented for the single and ensemble
versions for all the datasets.

3. The FS single and ensemble versions are evaluated in terms of the stability and macro-
F1 for the subset cardinalities specified in step 1 and the ensemble sizes being as
determined in step 2.

4. Based on the comprehensive results of step 3, we specify only one cardinality of
feature subset for each combination of dataset/sensor(s), where the FS single and
ensemble versions will be evaluated based on the harmonic mean of the stability and
macro-F1. Based on the results, the superior FS method (in its superior version, i.e.,
single or ensemble) will be determined for each combination.

5.6.1. Evaluation of FS Methods (Only Single Versions) in Terms of Macro-F1 over All the
Possible Numbers of Selected Features

As mentioned previously, feature rankings can be generated from the FS methods
studied in this paper. Thus, to generate a feature subset out of each ranking, a threshold or a
specific number of features, n, should be determined to select the top features. The optimum
number of selected features, with respect to the predictive performance, is influenced by
many factors, including the number of training observations, the complexity of the dataset
and the task at hand [4], the FS method [21], etc. In light of that, we first conducted
exhaustive experiments in which a classification model was built and tested for each of all
the possible feature subsets consisting of the top n features, starting from n = 1 and up
to the total number of features remaining after eliminating redundant features. Our aim
of these experiments is to reveal the trend of the macro-F1 variation over the number of
selected features, and accordingly, select only some cardinalities of interest for the further
experiments. Moreover, such experiments allow for comparing the number of features
required by the different FS methods to achieve the highest predictive performance for a
specific classifier, as it will be shown later.

Figure 6 shows the macro-F1 variation of the SVM classifiers over the number of
selected features across all the datasets and sensor configurations. It can be vividly seen
that the trends of macro-F1 variation corresponding to the datasets DS1 and DS2 for all
the sensor configurations are more or less similar. Additionally, the trends with DS3 and
DS4 are quite alike. However, the trend with both DS1 and DS2 differs largely from that
with DS3 and DS4. Regarding DS1 and DS2, the macro-F1 increases with the addition of
features, indicating an improvement in the classification performance of the models with
more features added until a certain number of features is reached, where the macro-F1
does not change or slightly degrades with adding further features thereafter. For DS3 and
DS4, however, the trend tends to be more complex, as the macro-F1 reaches its peak value
with only a few features (mostly 1–3 features) and thereafter fluctuates with adding further
features, with an overall decreasing trend. This can be attributed to the fact that the number
of training observations for DS3 and DS4 is low (see Table 4), and thus, the risk of overfitting
increases with adding more features, which adversely affects the classification performance
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on the test data. Moreover, the limited training samples increase the sensitivity of the
learning to the information presented by new features, which can explain the fluctuation.
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Figure 6. Macro-F1 (the average using 5-fold cross-validation) of the SVM classifiers as a function of
the number of the top ranked features selected after removing the redundant features for different
sensor configurations. (a–f) Datasets DS1 and DS2, (g–l) Datasets DS3 and DS4. The top features
are added incrementally (one feature at a time), and a corresponding classification model is built
and tested for each resulting feature subset. The aim of these experiments is to reveal the trend
of the macro-F1 variation over the different cardinalities of feature subset, which in turn helps to
select some cardianlities of interest for the further experiments and to show the number of features
required by each FS method to achieve the highest performance for a specific classifier. For DS1 and
DS2, adding more features improves the generalizability of the classification models until a certain
number of features is reached, where the performance converges thereafter. The trend for DS3 and
DS4 is different, as the macro-F1 reaches its peak value with only a few features (mostly 1–3 features)
and thereafter fluctuates by adding further features with an overall decreasing trend. This can be
attributed to the fact that the number of training observations for DS3 and DS4 is low, which increases
the risk of overfitting with adding more features. The highest macro-F1 achieved for each case is
given in Table 5.

As it can be seen from Figure 7 corresponding to the sensor fusion case, the trend of
the macro-F1 variation obtained with the RF classifier strongly resembles that obtained
with the SVM classifiers for the respective dataset and FS method. The only significant
difference in the trend is related to the small datasets DS3 and DS4 where RF showed a
higher robustness to increasing the dimensionality compared to the SVM classifiers. For
briefness, we only included the sensor fusion results in Figure 7 as the resemblance in the
macro-F1 variation trend between the SVM and RF classifiers was also observed for the
individual sensors.
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Figure 7. Macro-F1 (the average using 5-fold cross-validation) of the random forest classifier as a
function of the number of the top ranked features selected after removing the redundant features, for
the sensor fusion. (a–d) Datasets DS1–DS4. The highest macro-F1 achieved for each case is given in
Table 5.

For a given classifier, the number of features required to achieve a certain value of
macro-F1 is dependent on the FS method. On the other hand, the superior FS method seems
to be dependent on the number of features. For example, for all the sensor configurations
in DS1 and DS2, mRMR led to the highest macro-F1 of both SVM-RBF and RF when only
one feature was used. However, mRMR did not remain the superior when higher numbers
of features were added (see Figures 6a–f and 7a,b).

Regarding the performance comparison between the two SVM kernels, the superior
kernel is largely dependent on the number of features. For example, for datasets DS1
and DS2, the RBF kernel tends to considerably outperform the quadratic kernel for all
the FS methods when the number of features is low (around 4 features), e.g., for the case
of the DS1-sensor fusion-one feature (Figure 6e), the difference in macro-F1 between the
kernels reached 24.65%, 41.41%, 24.32%, for Fisher score, mRMR, and ReliefF, respectively.
However, this difference diminishes rapidly with adding more features, and after a certain
number of features, the quadratic kernel is mostly the superior of these two datasets.

Table 5 shows the maximum macro-F1 achieved by each FS method, along with the
corresponding number of features. It should be noted that, for a given combination of
dataset/sensor(s)-FS, the same macro-F1 value might be achieved with different numbers
of selected features. For such cases, only the lowest number of features is recorded in
Table 5. The table also shows the macro-F1 achieved when no FS was applied, i.e., all the
features extracted from the sensor(s) were used to build and test the models. This latter
case serves as a baseline for the FS methods to reflect the utility of applying the feature
selection. An effective FS scheme should improve or at least not significantly degrade the
classification performance compared to the case where no FS is applied. It can be seen from
the table that this is fulfilled for all the datasets/sensor(s). In most of the experimental cases,
the highest macro-F1 can be achieved with at least one of the three FS methods, which
emphasizes the role of FS in improving the health assessment of the milling tool while
simultaneously reducing the storage and computation requirements. This is especially true
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for the small datasets, such as DS3 and DS4, which increase the risk of overfitting when the
feature dimension is relatively large. For example, all the FS methods in DS3-AC current
achieved a macro-F1 of 100% with only 1–3 features for both SVM kernels, whereas all
the 65 features (no FS) achieved 89.33% and 90.22% for the quadratic and RBF kernels,
respectively. Concerning the cases where using all the features led to a higher classification
performance compared to when FS was applied, the difference in the macro-F1 is mostly
marginal and can be neglected given the higher number of features required, e.g., for the
case corresponding to the accelerometer-quadratic kernel, a total of 65 features led to a
macro-F1 of 85.65% and 78.31% for datasets DS1 and DS2, respectively, whereas for the same
case, 84.74% and 78.27% were achieved by the Fisher score with only 21 and 15 features,
respectively (i.e., a reduction by 44 and 50 features with a macro-F1 reduction by only
0.91% and 0.04%, respectively). For a given dataset, sensor(s), and classifier, the maximum
achieved macro-F1 as well as the corresponding number of features are dependent on the
FS method. It is always desirable to obtain a high predictive performance with the lowest
number of features possible. For DS1 and DS2, the maximum F1-macro achieved by Fisher
score and ReliefF is higher than that of mRMR for all the cases of the SVM classifiers and
most of the cases of the RF classifier, and the number of required features is always lower
than that of mRMR. However, mRMR with datasets DS3 and DS4 showed a comparable
performance, and in some cases better (e.g., case of DS4-AE for both SVM-RBF and RF),
compared to the other two FS methods.

Table 5. The highest macro-F1 value (%) and the corresponding number of selected features across
the different datasets and sensor(s). When the maximum macro-F1 for a given FS method is obtained
by more than one cardinality of feature subset, only the lowest cardinality is recorded in the table.
These results are mainly based on Figures 6 and 7.

Data
Set
(DS)

FS
Method

SVM with a Quadratic Kernel SVM with an RBF Kernel Random Forest

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Max
F1

No.
Fea

Microphone Accelerometer Sensor fusion Microphone Accelerometer Sensor fusion Microphone Accelerometer Sensor fusion

DS1 Fisher 90.47 32 84.74 21 95.59 53 90.54 34 84.41 21 95.19 36 91.81 32 85.35 26 95.59 39
mRMR 90.19 40 83.22 29 94.90 67 89.69 39 82.62 29 94.17 62 91.81 36 84.38 30 95.29 50
ReliefF 90.59 33 84.20 24 95.55 42 90.51 33 84.05 27 95.29 38 91.81 30 85.39 26 95.58 36
No FS 90.26 65 85.65 65 94.92 130 89.11 65 85.35 65 94.46 130 91.54 65 85.36 65 95.27 130

DS2 Fisher 85.40 33 78.27 15 92.03 51 83.33 33 76.34 15 90.06 47 83.73 30 76.96 26 90.07 49
mRMR 84.86 40 77.16 28 90.94 75 81.86 40 75.75 29 88.71 70 83.71 41 76.98 32 89.51 72
ReliefF 85.54 32 77.86 17 92.34 36 83.75 22 75.94 18 90.51 36 83.56 39 76.72 26 89.92 46
No FS 85.89 65 78.31 65 92.90 130 83.39 65 77.36 65 91.17 130 82.67 65 77.16 65 91.07 130

AC current AE sensor Sensor fusion AC current AE sensor Sensor fusion AC current AE sensor Sensor fusion

DS3 Fisher 100 3 100 1 100 1 100 2 100 1 100 1 100 1 100 1 100 1
mRMR 100 2 100 1 100 1 100 1 100 1 100 1 100 1 100 1 100 1
ReliefF 100 3 100 1 100 3 100 3 100 1 100 3 100 1 100 1 100 1
No FS 89.33 65 96.44 65 100 130 90.22 65 96.44 65 93.33 130 100 65 100 65 100 130

DS4 Fisher 94.60 2 91.87 36 89.65 2 94.60 2 89.21 1 91.94 2 91.94 29 91.87 27 94.16 24
mRMR 92.32 1 91.83 1 89.60 1 94.60 1 91.83 1 92.32 2 94.60 17 94.54 9 94.60 43
ReliefF 92.32 1 91.87 36 92.32 1 94.60 1 89.21 1 94.60 1 94.60 29 91.87 1 94.60 2
No FS 86.38 65 92.89 65 83.94 130 88.38 65 89.21 65 85.87 130 94.60 65 94.54 65 94.54 130

Bold values indicate the FS method with the highest macro-F1 value with respect to the corresponding dataset,
classifier, and sensor(s).

Among the tested classifiers, RF achieved the highest macro-F1 with all the FS methods
and sensor(s) for DS1, whereas SVM-quadratic was the superior for DS2. All the classifiers
achieved a maximum macro-F1 value of 100% in all the cases of DS3, whereas for DS4, the
superior classifier varies with the cases.

As for the sensor(s) used, the classification performance was better with sensor fusion
compared to the individual sensors for DS1 and DS2. Taking SVM-quadratic as an example,
the maximum macro-F1 that can be reached by sensor fusion is higher than that of the
microphone by an average (over the three FS methods) of 4.93% and 6.5% for DS1 and DS2,
respectively. The improvement gained by sensor fusion is even higher when compared to
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the accelerometer. However, for DS3 and DS4, the sensor fusion mostly led to an identical
macro-F1 (and even lower with some cases of SVM) compared to the individual sensors.
This represents an example of when adding more sensors might lead to more hardware
and computation requirements without necessarily improving the performance.

Based on the macro-F1 values observed for the different datasets and sensor config-
urations in Figures 6 and 7, and Table 5, the number of selected features, n, that will be
considered for the next experiments is as follows:

• For datasets DS1 and DS2, we consider the value set of {10, 20, 30} for each of the
individual sensors and {10, 20, 30, 40, 50} for the sensor fusion.

• For datasets DS3 and DS4, we consider the value set of {1, 2, 3} for each of the individual
sensors and {1, 2, 3, 4, 5} for the sensor fusion.

5.6.2. Stability of the FS Methods (Single Versions and Ensemble Versions with Different
Sizes) for Different Numbers of Selected Features

In this subsection, the stability of the studied FS methods will be examined for the
numbers of selected features specified in Section 5.6.1. This will be performed for both the
single and ensemble versions of FS methods. For each fold of the five-fold cross-validation,
the corresponding training set will be fed to the single version and ensemble versions of a
given FS method as illustrated in Figure 2. Recall that B is the number of bootstrap samples
(the ensemble size). B is a significant design parameter of the ensemble. The experiments
conducted in many different domains in [21] showed that a value of 50 for B is sufficient to
increase the FS stability, and that higher numbers led to little or no improvement. Similarly,
30 and 40 bootstrap samples were shown to be sufficient in [12,39], respectively. Hence, in
this paper, we will not consider more than 50 bootstrap samples. We tested five B values:
10, 20, 30, 40, and 50. Figure 8 shows the stability of the studied FS methods for both the
single versions as well as the ensemble versions with different ensemble sizes for different
feature subsets cardinalities. The following can be noticed from Figure 8:
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Figure 8. Cont.
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Figure 8. Stability (%) of the FS methods (single and ensemble versions) for different numbers of
selected features and different sensor configurations. Different ensemble sizes (Ensemble-B) are
tested, where B is the number of bootstrap samples used to construct the homogeneous ensemble of
each FS method. (a–f) Datasets DS1 and DS2, (g–l) Datasets DS3 and DS4.

• Different FS methods can largely differ in their stability, e.g., in the case of DS2-sensor
fusion-20 features, the stability values of the single versions of Fisher score, mRMR,
and ReliefF are 97.05%, 58.69%, and 91.88%, respectively, i.e., a noticeable difference
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between the Fisher score and ReliefF on the one hand, and mRMR on the other hand.
Such a difference reflects the interaction between the data and the inherent functioning
of the different FS methods and it promotes the role of the stability as a decisive
performance indicator when it comes to selecting the best FS method for a PdM task.

• Concerning the FS single versions, mRMR has the lowest stability in all the datasets
and sensor configurations, except for some feature cardinalities related to cases of
DS3 and DS4, where it showed a similar stability to the other two methods (see
Figure 8g–h).

• Concerning the FS ensemble versions, the stability of mRMR is the one most influenced
by the ensemble technique. This manifests itself in the stability variation over the
single version and the ensemble versions of the different sizes. On the other hand, the
stability of Fisher score is the least influenced by the ensemble.

• Applying the ensemble technique can improve the stability of a given FS method,
especially with mRMR in DS1 and DS2. However, there are also cases where the
stability dropped with the ensemble, such as for mRMR in the case of DS4-AC current
sensor-1 feature (see Figure 8h) and ReliefF in the case of DS1-Microphone-10 features
(see Figure 8a).

• The stability can significantly vary over different ensemble sizes, as mostly seen with
mRMR, e.g., in the case of DS4-sensor fusion-4 features, the mRMR ensemble with
10 and 30 bootstrap samples improves the stability over that of the single version
by 5.98% and 50.69%, respectively. This emphasizes the importance of selecting the
ensemble size experimentally so that the most benefit can be obtained when there is
an improvement potential with the ensemble.

• The only negative stability values were obtained by the mRMR ensemble: −6.74%
and −0.84% in the case of DS3-sensor fusion-10 bootstrap samples for one and two
features, respectively (see Figure 8k), and −0.38% in the case of DS4-AE-10 bootstraps-
1 feature (see Figure 8j). Obtaining a negative value for the adopted stability measure
indicates that the stability is worse than that of a random feature selection for the
corresponding case.

• Generally speaking, the stability of a given FS (whether single or ensemble) is influ-
enced by the dataset, sensor(s), and the number of selected features.

For the next experiments and analysis, only the ensemble size that achieved the highest
stability will be considered for the corresponding experimental case. The best ensemble
sizes based on Figure 8 are given in Table 6. When the highest stability is achieved by
different ensemble sizes, the largest ensemble size is recorded in the table since it will be
more representative of the ensemble version.

In order to provide a global stability profile of the FS methods, revealing their overall
stability performance for each dataset as well as the extent to which their stability can
vary with different settings, Figure 9 shows a statistical summary represented by a box
plot of the stability values achieved by the respective method across the different sensor
configurations and subset cardinalities studied for the corresponding dataset. In each
boxplot, the horizontal, red line represents the median. Additionally, the longer the box
plot and the whiskers, the larger the stability variability, and vice versa. Recall that, as far
as the sample size is concerned, DS1 and DS2 do not pose a challenge to the FS stability, as
opposed to DS3 and DS4, which have very small training samples (see Table 4). Starting
with DS1 and DS2, it can be seen that Fisher score (both single and ensemble) achieved
the highest overall median stability (96.27% and 100% for DS1 and DS2, respectively) and
showed the most consistent stability performance over the different sensor(s) and numbers
of features studied under each dataset, which increases the confidence in considering
the Fisher score the most globally stable method for these two datasets irrespectively of
the underlying settings. On the other hand, mRMR showed clearly the lowest stability
as well as the largest stability variability over the different cases for DS1 and DS2. This
indicates that its stability in selecting the features relevant to TCM can vary largely with
different sensor(s) and numbers of features for the same dataset. However, applying the
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ensemble technique significantly improved the overall stability of mRMR and also reduced
its stability variability. Moreover, since the overall stability of Fisher score and ReliefF was
already high in their single versions and did not get influenced much by the ensemble,
the stability difference between the mRMR ensemble and those of the other two methods
diminished noticeably, making mRMR more competitive under its ensemble version. As
for DS3 and DS4, Fisher score and ReliefF showed the highest median stability, respectively.
However, the stability variability of all the FS methods is larger compared to DS1 and DS2,
especially mRMR, showing a larger dependence on the specific settings. This holds true
even when the ensemble brought improvements. Further, a large overlapping between the
stability values of the different methods can be observed. This all indicates that there is no
global winner with respect to stability for these two datasets, and the best method should
be determined based on the specific case. The behavior of the FS methods observed with
these two datasets can be largely attributed to the small data size.

Table 6. The FS ensemble size (the number of bootstrap samples) that yielded the highest stability
among the sizes experimented (10, 20, 30, 40, and 50); if the highest stability is achieved by more than
one size, the largest size is recorded. The entries of this table is based on the results shown in Figure 8.

Dataset Sensor(s) No. of Selected Features FS Method The Best Ensemble Size

DS1 Micro-
phone

10/20/30 Fisher 20/50/10
mRMR 50/50/50
ReliefF 50/40/50

Accelero-
meter

10/20/30 Fisher 50/50/50
mRMR 50/50/20
ReliefF 50/30/50

Sensor
fusion

10/20/30/40/50 Fisher 50/20/30/40/50
mRMR 40/50/50/40/50
ReliefF 50/50/40/50/50

DS2 Micro-
phone

10/20/30 Fisher 50/50/50
mRMR 50/40/50
ReliefF 50/20/20

Accelero-
meter

10/20/30 Fisher 50/50/50
mRMR 50/50/50
ReliefF 50/20/50

Sensor
fusion

10/20/30/40/50 Fisher 50/50/50/50/50
mRMR 50/50/30/50/50
ReliefF 50/20/50/50/50

DS3 AC
current

1/2/3 Fisher 50/30/10
mRMR 20/40/50
ReliefF 50/20/40

AE 1/2/3 Fisher 50/50/50
mRMR 50/40/40
ReliefF 50/30/40

Sensor
fusion

1/2/3/4/5 Fisher 50/20/10/50/50
mRMR 30/30/20/50/50
ReliefF 50/10/10/20/30

DS4 AC
current

1/2/3 Fisher 50/50/50
mRMR 50/50/50
ReliefF 50/50/50

AE 1/2/3 Fisher 50/50/30
mRMR 50/20/30
ReliefF 50/20/50

Sensor
fusion

1/2/3/4/5 Fisher 50/30/20/30/30
mRMR 50/30/30/30/30
ReliefF 50/50/20/20/40
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Figure 9. Distribution of stability values achieved by the single and ensemble FS versions over the
different sensor configurations and subset cardinalities for each dataset. Fisher score was the most
stable method for DS1–DS3, whereas ReliefF was the superior for DS4. The stability of mRMR is the
lowest, the most variable, and the one that benefits the most from the ensemble technique.

Figure 9 is meaningful to show the overall stability behavior of the different FS
methods. However, when it comes to selecting the best FS method for a PdM system, a case-
specific evaluation should be considered, i.e., with respect to the specific dataset, sensor(s)
and number of features used in the PdM system. Moreover, as mentioned previously,
stability should not be considered solely for evaluating the FS methods but along with the
predictive power. This is what will be shown in the next subsection.

5.6.3. Comparison of the Studied FS Methods (Single and Ensemble Versions) in Terms of
Both Stability and Macro-F1 for Different Numbers of Selected Features

Tables 7 and 8 show the results of stability and macro-F1 of the FS methods for the
datasets (DS1 and DS2) and (DS3 and DS4), respectively. Among the single (or ensemble)
versions of the FS methods, the bold value, for a specific performance indicator, indicates
the superior method for the corresponding combination of dataset, sensor configuration,
classifier, and feature subset cardinality, whereas the underlined values indicate which
of the single and ensemble versions of a specific FS is better for the corresponding case.
Some general observations based on these two tables are that, for a specific performance
indicator, there is no single FS method that is superior for all the cases. Moreover, the
superior FS method might vary depending on whether the single or ensemble FS versions
are compared, owing to the varying influence of the ensemble technique on the different FS
methods for the same experimental case. Similarly, regarding the performance of given FS
method, neither the single version nor the ensemble is always superior.

Starting with the single FS versions in Table 7, Fisher score was the most stable FS
method in almost all the sensor configurations and subset cardinalities for DS1 and DS2.
More specifically, it was the superior for the cases related to the accelerometer (6 out of 6
cases), sensor fusion (10 out of 10 cases), and microphone (4 out of 6 cases). Indeed, the
stability of Fisher score reached 100% in many cases, which is the upper bound value for
the adopted stability measure. As for macro-F1, Fisher score was also mostly the superior,
whereas mRMR was overall ranked the last with respect to the two performance indicators.
The performance difference between the FS methods tends to be more noticeable with
regard to the stability than to the macro-F1. For example, in the case of DS1-sensor fusion-
10 features, the stability of both Fisher score and ReliefF was 100%, while it was 51.06%
for mRMR (a stability difference of 48.94%). However, for the same case, the macro-F1
difference between mRMR and the other two FS methods did not exceed 3.44%, 4.51%,
and 4.79% for the SVM-quadratic, SVM-RBF, and RF, respectively. Moreover, for a specific
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classifier, the difference in macro-F1 between the different FS methods is more significant
when the number of features is lower, which reflects the difference in the predictive power
of the top features selected by each method.

Table 7. Macro-F1 and stability results of the studied FS methods (single and ensemble versions) for
the datasets DS1 and DS2. The ensemble sizes are as defined in Table 6.

Sensor(s)
No.
of
Fea

FS
Method

Dataset DS1 Dataset DS2

Stability (%) Macro-F1 (%) Stability (%) Macro-F1 (%)

SVM-poly2 SVM-RBF RF SVM-poly2 SVM-RBF RF

Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens

Micro-
phone

10 Fisher 89.85 91.30 83.69 83.53 85.10 84.84 89.37 89.49 100 100 77.95 77.95 78.74 78.74 79.09 78.65
mRMR 68.09 84.04 82.03 82.47 82.57 83.15 88.34 88.53 66.84 84.14 72.61 71.35 72.37 70.17 75.40 72.65
ReliefF 94.20 85.49 84.65 84.47 85.57 85.12 88.81 88.85 89.91 94.23 72.40 70.74 71.21 69.34 70.82 68.55

20 Fisher 92.34 94.26 88.86 88.63 89.49 89.62 91.19 91.17 100 100 83.73 83.71 81.95 81.96 82.31 81.86
mRMR 67.49 90.44 86.81 86.97 86.95 87.11 90.82 91.22 71.48 81.95 80.40 80.48 79.04 79.65 81.35 81.65
ReliefF 84.71 88.54 88.65 88.46 89.12 88.87 90.66 90.77 93.34 91.44 83.15 82.11 83.18 81.63 81.96 81.64

30 Fisher 93.27 94.95 90.10 90.31 90.15 90.14 91.30 91.80 90.78 90.78 85.18 85.18 83.21 83.21 83.73 83.60
mRMR 82.33 78.12 89.15 88.73 89.00 88.47 91.61 91.48 74.87 84.08 83.56 83.85 81.55 81.66 82.96 82.56
ReliefF 89.91 92.43 90.43 90.11 90.26 90.55 91.81 91.46 91.62 100 85.07 82.66 83.63 80.92 83.46 82.80

Accelero-
meter

10 Fisher 100 100 83.84 83.84 83.81 83.81 84.46 84.45 100 100 77.39 77.40 75.87 75.87 75.92 76.16
mRMR 71.07 93.92 81.06 76.23 79.53 74.61 82.12 76.59 60.97 83.47 64.68 73.20 61.66 71.50 64.49 72.70
ReliefF 100 100 84.01 84.07 83.95 84.02 84.71 84.72 81.99 90.99 76.34 73.98 73.44 71.86 74.26 72.84

20 Fisher 100 100 84.53 84.53 83.79 83.79 84.81 84.70 100 100 77.98 77.98 76.16 76.16 76.79 76.75
mRMR 66.70 88.55 82.67 82.79 81.97 82.31 83.83 83.97 65.54 82.76 76.43 75.36 75.27 73.45 76.24 74.29
ReliefF 89.59 81.27 83.87 83.60 83.65 83.30 85.05 84.55 82.77 85.81 77.65 76.88 75.76 75.04 76.42 75.82

30 Fisher 96.27 96.27 84.02 84.02 83.60 83.60 85.02 85.14 100 96.40 77.11 77.20 75.67 75.60 76.34 76.64
mRMR 86.04 86.05 83.11 83.13 82.50 82.45 84.38 84.05 79.27 89.18 76.96 76.85 75.68 75.74 76.91 76.95
ReliefF 94.42 94.42 83.76 83.77 83.97 83.78 85.06 85.08 87.39 96.40 77.04 76.80 75.52 75.07 76.44 76.30

Sensor
fusion

10 Fisher 100 100 88.83 88.83 89.84 89.84 93.40 93.50 100 100 86.77 86.77 86.72 86.72 86.54 86.48
mRMR 51.06 77.41 85.39 79.19 85.33 78.80 88.61 85.05 58.95 77.62 62.02 78.75 59.55 78.47 62.13 79.40
ReliefF 100 100 88.07 88.07 89.50 89.50 93.04 93.23 90.05 95.02 79.13 78.87 78.23 77.88 78.37 78.25

20 Fisher 94.76 95.51 93.38 93.63 93.52 93.63 94.63 94.73 97.05 97.05 90.83 90.84 89.70 89.70 88.67 88.77
mRMR 72.30 85.77 89.88 89.01 89.79 88.58 92.44 93.22 58.69 84.50 80.76 82.12 79.59 81.17 83.06 81.71
ReliefF 91.77 90.27 92.57 92.36 93.01 92.62 94.30 94.46 91.88 97.05 85.18 88.43 84.12 87.08 83.70 86.02

30 Fisher 97.66 100 94.90 94.82 94.76 94.77 95.13 95.10 100 100 91.85 91.85 89.89 89.91 89.31 88.93
mRMR 67.23 91.22 92.90 92.72 92.19 92.65 94.50 94.71 69.01 86.24 88.29 83.09 86.88 82.40 88.23 82.40
ReliefF 95.32 94.15 94.85 94.56 94.62 94.57 94.87 94.94 94.84 91.40 91.93 90.25 90.45 88.40 89.52 87.77

40 Fisher 95.43 95.94 95.46 95.42 95.12 95.11 95.42 95.46 100 100 91.88 91.88 89.69 89.69 89.58 89.34
mRMR 81.20 88.31 94.16 93.36 93.76 93.04 94.98 94.73 67.25 86.61 89.14 85.68 87.69 84.55 88.64 84.85
ReliefF 86.77 87.29 95.47 95.21 95.16 94.91 95.42 95.37 92.56 88.59 92.23 90.80 90.25 89.01 89.36 88.85

50 Fisher 98.12 96.72 95.39 95.41 94.85 94.87 95.49 95.50 94.05 94.05 91.86 91.86 89.97 89.97 90.03 89.98
mRMR 84.06 86.88 94.69 93.54 94.07 93.24 95.29 94.88 71.64 85.37 89.82 89.79 88.41 88.27 88.96 88.90
ReliefF 87.34 93.90 95.38 95.36 94.97 94.84 95.52 95.51 90.85 93.14 92.05 90.61 89.88 88.76 89.80 88.90

Bold values indicate the best feature selection (FS) method for the corresponding case and metric. Underlined
values indicate which of the single and ensemble versions of a specific FS is better.

For DS1, all the single FS versions achieved a higher FS stability (or comparable)
with the accelerometer than with the microphone. However, for DS2, the ReliefF stability
with the microphone was always higher than that obtained with the accelerometer, e.g.,
by 10.57% when 20 features were used. As for mRMR in DS2, the superior sensor with
respect to the stability of its features is dependent on the feature cardinality. For a given FS
method, the stability variation over different sensors can indicate the interaction between
the functioning of the FS method on the one hand and the robustness of the sensor’s signals
and its features on the other hand. Compared to the stability with the individual sensors,
the stability of FS methods with the sensor fusion is higher or lower or somewhere in
between. However, regarding macro-F1, sensor fusion is always better than using one
sensor alone for DS1 and DS2.
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As for the impact of the ensemble, it can be noticed from Table 7 that the stability
with the ensemble version is mostly higher or comparable to that of the single version,
with few exceptions, e.g., the case DS1-accelerometer-20 features where the ReliefF stability
dropped by 8.32% with the ensemble. It can be noticed that mRMR is the method most
benefiting from the ensemble in terms of stability. The stability improvement with the
mRMR ensemble reached as high as 26.35% (in DS1-sensor fusion-10 features). The stability
of Fisher score is the least affected by applying the ensemble, and overall it remained the
same. The impact of the ensemble on the macro-F1 also varies with different FS methods.
The ensemble version led to more or less the same macro-F1 as that of the single version in
all the cases of DS1 and DS2 with Fisher score and DS1 with ReliefF. However, there are
cases with ReliefF and mRMR in which the stability improvement brought by the ensemble
was at the expense of the macro-F1, as in the case of DS2-sensor fusion-30 features for
mRMR (a macro-F1 degradation by 5.2%, 4.48%, and 5.83% for the quadratic SVM, RBF
SVM, and RF, respectively) and other cases where the ensemble achieved an improvement
in both the stability and macro-F1, e.g., for ReliefF in DS2-sensor fusion-20 features, where
the ensemble increased the stability by 5.17% and the macro-F1 by around 3% for both
SVM kernels and by 2.32% for RF and for mRMR in DS2-sensor fusion-10 features, where
the ensemble increased the stability by 18.67% and the macro-F1 by an average of 17.64%
over all the classifiers. The biggest macro-F1 improvement/degradation brought by the
ensemble reached 3.25%/2.71% for ReliefF and 18.92%/6.53% for mRMR. Overall, the
biggest ensemble impact was seen with mRMR.

Thus, for DS1 and DS2, Fisher score (both single and ensemble versions) was almost
always superior in terms of both the stability and predictive performance. Even in the few
cases where it was not superior, it showed a high and comparable performance. Hence, it
can be considered globally the best method to select stable and predictive features for TCM
with these datasets.

As for Table 8 showing the results for the datasets DS3 and DS4 which have small
training samples, it can also be seen that different FS methods can differ significantly in
terms of stability. This is especially apparent with the AE and sensor fusion of DS4 where
the stability of ReliefF was considerably higher than that of the other methods, e.g., in
DS4-AE-2 features, the stability of ReliefF single version is 100% whereas that of Fisher
score and mRMR is 58.24% and 28.08%, respectively. While the features selected by all the
FS methods were powerful enough to achieve a high diagnosis performance with these two
datasets, their stabilities suffered in some cases. This indicates that the small size can have
a more negative impact on the FS stability than on the model generalizability. Similarly
to DS1 and DS2, the single version of mRMR with DS3 and DS4 mostly ranks the last
among the three methods in terms of stability. The only case where the mRMR stability
dominated that of the other two FS methods, including DS1 and DS2, is the case DS3-AC
current-2 features in which the mRMR stability was 100%, while the stability of Fisher score
and ReliefF were 77.14% and 54.35%, respectively. The single versions of Fisher score and
mRMR achieved with the AC current sensor an identical or higher stability compared to
the AE sensor. As for ReliefF, its stability tends to be higher with the AE sensor. Among
the numbers of features tested for DS3 and DS4, all the three FS methods seem to be more
stable when only the top feature is selected.
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Table 8. Macro-F1 and stability results of the studied FS methods (single and ensemble versions) for
the datasets DS3 and DS4. The ensemble sizes are as defined in Table 6.

Sensor(s)
No.
of
Fea

FS
Method

Dataset DS3 Dataset DS4

Stability (%) Macro-F1 (%) Stability (%) Macro-F1 (%)

SVM-poly2 SVM-RBF RF SVM-poly2 SVM-RBF RF

Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens

AC
current

1 Fisher 100 100 94.44 94.44 96.83 96.83 100 100 100 100 91.64 91.64 91.64 91.64 85.21 88.38
mRMR 100 35.49 94.44 83.64 100 82.91 100 74.75 100 35.58 92.32 64.60 94.60 62.34 88.98 81.43
ReliefF 100 100 94.44 94.44 96.83 96.83 100 100 100 100 92.32 92.32 94.60 94.60 88.98 88.98

2 Fisher 77.14 100 96.44 100 100 100 100 100 77.25 60.19 94.60 92.32 94.60 94.60 88.38 88.38
mRMR 100 60.08 100 100 100 100 100 94.22 54.47 60.25 89.14 91.05 94.60 91.05 88.98 91.05
ReliefF 54.35 65.79 94.44 96.44 96.83 100 100 100 60.23 60.23 91.05 91.05 94.60 94.60 88.98 88.98

3 Fisher 83.97 100 100 100 100 100 100 100 68.10 68.10 86.38 89.05 89.05 89.05 82.83 85.49
mRMR 59.95 75.97 86.67 100 89.33 100 100 91.05 56.14 48.20 82.98 82.10 88.76 87.87 88.98 91.05
ReliefF 71.97 83.97 100 100 100 100 100 100 64.14 64.14 91.05 91.05 91.05 91.05 88.16 88.16

AE 1 Fisher 100 100 100 100 100 100 100 100 100 100 86.25 86.25 89.21 89.21 88.70 88.70
mRMR 100 100 100 68.44 100 53.27 100 64.44 77.71 55.13 91.83 66.76 91.83 72.87 85.97 67.48
ReliefF 100 100 100 100 100 100 100 100 100 100 89.21 89.21 89.21 89.21 91.87 91.87

2 Fisher 64.46 64.46 96.44 96.44 96.44 96.44 100 100 58.24 75.99 87.05 82.54 87.05 89.21 88.70 88.70
mRMR 46.76 100 100 67.43 97.33 64.48 100 68.44 28.08 57.91 78.25 70.98 76.57 75.49 88.19 78.19
ReliefF 76.33 76.33 89.78 89.78 92.89 92.89 100 100 100 64.14 87.05 87.56 87.05 87.94 91.87 91.87

3 Fisher 58.33 58.33 86.22 86.22 89.78 89.78 96.44 96.44 45.13 49.38 80.16 80.16 89.21 86.32 86.25 86.25
mRMR 24.97 66.64 84.00 86.54 91.11 77.65 91.11 89.33 28.07 45.05 78.35 65.65 79.08 68.70 88.19 74.48
ReliefF 58.33 58.34 86.22 86.22 89.78 89.78 96.44 96.44 70.36 57.97 77.27 83.94 89.21 89.21 89.21 89.21

Sensor
fusion

1 Fisher 100 100 100 100 100 100 100 100 89.44 89.44 84.03 84.03 86.98 86.98 86.48 86.48
mRMR 100 3.95 100 85.33 100 68.54 100 64.76 57.50 25.54 89.60 38.89 89.60 36.81 92.32 54.49
ReliefF 100 100 94.44 94.44 96.83 96.83 100 100 100 46.89 92.32 86.98 94.60 86.98 88.98 89.65

2 Fisher 60.76 77.54 96.44 96.44 100 100 100 100 61.09 61.14 89.65 86.98 91.94 89.27 86.48 86.48
mRMR 49.55 32.69 93.78 92.89 93.78 92.89 100 87.56 33.35 38.79 86.43 68.92 92.32 81.08 92.32 83.98
ReliefF 60.75 66.34 94.44 96.44 96.83 100 100 100 100 77.78 92.16 87.33 94.54 92.38 94.60 89.65

3 Fisher 76.67 76.68 100 100 100 100 97.33 97.33 46.11 46.17 86.98 85.56 89.65 91.49 89.27 89.27
mRMR 53.37 37.83 92.89 92.89 93.78 92.89 100 81.21 30.59 57.64 80.19 75.89 82.63 91.87 83.43 86.98
ReliefF 68.85 84.42 100 100 100 100 100 97.33 73.02 76.90 89.49 86.83 89.49 94.54 89.65 89.65

4 Fisher 81.93 81.93 100 100 100 100 100 100 43.34 49.35 86.98 86.83 89.49 91.87 86.98 89.27
mRMR 45.76 54.82 93.78 92.89 91.11 92.89 96.44 87.49 16.43 67.12 78.76 91.78 80.87 88.98 84.05 91.94
ReliefF 60.82 66.87 96.44 96.44 100 100 100 100 61.18 67.17 89.21 91.87 89.21 91.87 89.21 89.21

5 Fisher 67.76 67.76 92.89 92.89 92.89 92.89 100 100 43.49 50.91 86.83 86.83 86.83 89.21 86.98 89.27
mRMR 33.07 65.31 88.44 100 88.44 96.83 91.11 93.65 16.52 50.81 78.98 82.60 81.14 83.43 84.32 89.27
ReliefF 75.21 67.77 100 96.44 100 96.44 97.33 100 63.19 75.44 89.21 89.21 89.21 91.87 89.21 91.49

Bold values indicate the best feature selection (FS) method for the corresponding case and metric. Underlined
values indicate which of the single and ensemble versions of a specific FS is better.

Regarding the ensemble versions, the stability of Fisher score is more influenced by
the ensemble technique with DS3 and DS4 compared to DS1 and DS2. This can be largely
linked to the statistical nature of the Fisher score that benefits from the large sample size of
DS1 and DS2, which enabled the Fisher score to have a high stability, both in its single and
ensemble versions. The ensemble of Fisher score maintained or improved the stability and
macro-F1 in all the cases of DS3. The same holds true for ReliefF, with the exception being
DS3-sensor fusion-5 features where the ensemble degrades the performance of ReliefF.
Additionally, the ensemble degraded the stability of ReliefF with some cases in DS4, i.e.,
for 2–3 features of AE and 1–2 features of sensor fusion, where the stability of the single
version was 100% in three of them. As for mRMR, when only one or two features are
selected, the ensemble had a detrimental impact on mRMR in terms of stability and/or
macro-F1 for almost all the sensor configurations concerning DS3 and DS4. However, for
some cases of higher numbers of features, the ensemble can still be beneficial to mRMR,
e.g., in the case DS4-sensor fusion-4 features, the ensemble increased the mRMR stability
by 50.69% and the macro-F1 of SVM-quadratic, SVM-RBF, and RF by 13.02%, 8.11%, and
7.89%, respectively. Indeed, for 4–5 features of DS4-sensor fusion, the ensemble was mostly
beneficial to all the FS methods in terms of both stability and macro-F1. It can be noticed
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that, for some cases, the ensemble allows for a more solid choice of the best FS method
given a specific classifier. For example, in DS3-sensor fusion-3 features, both the single and
ensemble versions of Fisher score and ReliefF yielded a macro-F1 of 100% for both SVM
kernels. Regarding stability for the same case, the single version of Fisher score was the best
with a stability of 76.67%. However, the stability of ReliefF ensemble (84.42%) exceeds all
the other stabilities of both the single and ensemble versions of the other methods. Clearly,
the ReliefF ensemble would be superior for this case with respect to both stability and
macro-F1.

Recall that the main difference between the datasets under each pair of (DS1, DS2)
and (DS3, DS4) is the operating conditions. The varying results over each two datasets are
largely linked to the milling operating conditions that affect the sensory features.

5.6.4. Comparison of the Studied FS Methods (Single and Ensemble Versions) in Terms of
the Harmonic Mean of their Stability and Macro-F1

After studying the FS stability and predictive performance separately, it is worth
having an overall expression that jointly reflects both performance indicators. To this end,
we adopted the approach used in [12] in which the harmonic mean of the stability and
classification performance is calculated. Given the performance indicators used in our
paper, i.e., stability (SMA) and macro-F1, the harmonic mean (HM) is given as in (15),
which corresponds to when both performance indicators are equally important.

HM =
2× SMA×macro-F1

SMA + macro-F1
(15)

As it was shown in the previous experiments and analysis, the evaluation was per-
formed for different numbers of features to gain broad insights. However, for the actual
implementation of PdM system, a specific feature subset should be selected. Since the ulti-
mate goal is to achieve an accurate tool condition monitoring, the feature subset cardinality
at which all the FS methods led to a reasonable (maximum or nearly maximum) macro-F1
is selected for the corresponding case. Therefore, to simplify the final evaluation, we will
select only one feature subset cardinality, n, for each pair of dataset/sensor configuration.
For datasets DS1 and DS2, n was set to be 30, 20, and 40 for the microphone, accelerometer,
and sensor fusion, respectively, whereas it was set to 2 for all the sensor configurations of
DS3 and DS4. Even though a macro-F1 of 100% was achieved with only one feature in some
cases of DS3 and DS4, we consider that using only one feature (regardless of the sensor)
might limit the robustness of the monitoring system. Thus, we consider two features for
these datasets.

Table 9 shows the HM results for the FS methods across all the datasets and for the
subset cardinalities specified above. The superior FS method for each combination of
dataset/sensor(s)-classifier, as well as the overall impact of the ensemble can also be found
in this table. For all the sensor configurations of DS1, Fisher score (in its single and/or
ensemble version) was the superior. The same holds true for DS2, with the exception being
DS2-microphone where the ReliefF ensemble was the best. Both Fisher score and mRMR
achieved an HM of 100% in DS3-AC current. ReliefF was superior for the AE sensors for
both DS3 and DS4. Overall, based on all the four datasets, sensor(s), and classifiers, Fisher
score exhibited the superior performance in most of the cases (24 out of 36 cases).

It is noteworthy that the methodology presented in this work to evaluate the FS
methods, including the main experimental design, stability measure, ensembles, etc.,
can also be applied with other PdM applications, i.e., diagnosis tasks of other industrial
components, prognosis tasks, etc., as well as other FS types, i.e., wrapper and embedded
FS methods.
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Table 9. Harmonic mean (HM) of stability and macro-F1 for the FS methods (single and ensemble
versions) across the datasets and sensor(s)

Sensor(s)
No. of
Selected
Features

Feature
Selection
Method

Dataset DS1 Dataset DS2

HM (%) HM (%)

SVM-poly2 SVM-RBF RF SVM-poly2 SVM-RBF RF

Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens Sing Ens

Micro-
phone

30 Fisher 91.66 92.57 91.68 92.48 92.27 93.35 87.89 87.89 86.83 86.83 87.11 87.04
mRMR 85.60 83.09 85.54 82.97 86.72 84.27 78.98 83.96 78.07 82.85 78.70 83.31
ReliefF 90.17 91.26 90.08 91.48 90.85 91.94 88.22 90.51 87.44 89.45 87.35 90.59

Accelero-
meter

20 Fisher 91.62 91.62 91.18 91.18 91.78 91.72 87.63 87.63 86.47 86.47 86.87 86.85
mRMR 73.83 85.57 73.55 85.32 74.29 86.20 70.57 78.89 70.07 77.83 70.49 78.30
ReliefF 86.64 82.42 86.52 82.27 87.26 82.88 80.13 81.10 79.11 80.06 79.47 80.51

Sensor
fusion

40 Fisher 95.44 95.68 95.27 95.52 95.43 95.70 95.77 95.77 94.56 94.56 94.50 94.37
mRMR 87.20 90.76 87.03 90.61 87.55 91.41 76.66 86.14 76.12 85.57 76.48 85.72
ReliefF 90.91 91.08 90.77 90.94 90.89 91.15 92.39 89.68 91.39 88.80 90.93 88.72

Dataset DS3 Dataset DS4

AC
current

2 Fisher 85.72 100 87.10 100 87.10 100 85.05 72.87 85.05 73.57 82.44 71.61
mRMR 100 75.06 100 75.06 100 73.37 67.62 72.52 69.13 72.52 67.57 72.52
ReliefF 68.99 78.22 69.62 79.37 70.42 79.37 72.50 72.50 73.60 73.60 71.84 71.84

AE 2 Fisher 77.27 77.27 77.27 77.27 78.39 78.39 69.79 79.13 69.79 82.07 70.31 81.85
mRMR 63.72 80.55 63.17 78.40 63.72 81.26 41.33 63.78 41.09 65.54 42.60 66.54
ReliefF 82.51 82.51 83.80 83.80 86.58 86.58 93.08 74.04 93.08 74.18 95.76 75.54

Sensor
fusion

2 Fisher 74.55 85.96 75.59 87.35 75.59 87.35 72.66 71.81 73.41 72.57 71.60 71.64
mRMR 64.84 48.36 64.84 48.36 66.27 47.61 48.13 49.64 49.00 52.48 49.00 53.07
ReliefF 73.94 78.61 74.66 79.76 75.58 79.76 95.92 82.28 97.19 84.45 97.23 83.29

Bold values indicate the best feature selection (FS), among all the single and ensemble versions, for the corre-
sponding dataset, sensor(s), and classifier. Underlined values indicate which of the single and ensemble versions
of a specific FS is better for the corresponding case.

6. Conclusions and Future Works

Feature selection (FS) represents an integral part of many predictive maintenance
frameworks. The main aim of this paper is to shed light on the significance of examining
the stability of FS for the PdM applications and to investigate the potential of the FS ho-
mogeneous ensemble in this field. The FS stability reflects the extent to which the selected
features are generic and robust for the monitoring task, and it influences the confidence
in the implemented PdM system, including the built model and selected sensor(s), etc.
The specific PdM application addressed in this paper is classification-based tool condi-
tion monitoring in milling. We used four milling datasets: two datasets generated from
milling experiments that we conducted (called DS1 and DS2) as well as two datasets from
NASA’s repository (called DS3 and DS4). These datasets differ in many aspects, including
the milling machine, operating conditions, sensor(s), data acquisition system, sample-to-
dimension ratios (SDR), number of classes, etc. Such diversified datasets helped to reveal
the behavior of the FS methods with different data characteristics and experimental milling
settings. We conducted a comprehensive performance comparison between three widely-
used filter-based FS methods, namely Fisher score, mRMR, and ReliefF in terms of stability
and predictive performance (expressed by macro-F1 in this paper). This evaluation covers
both the single and ensemble versions of these methods. For each dataset, the comparison
was performed over different sensor configurations (namely two individual sensors and
their fusion) and different numbers of selected features.

The tool condition monitoring was modeled as a five-class classification for our
datasets DS1 and DS2, and a three-class classification for DS3 and DS4. We used three
classifiers: support vector machine with two tested kernels, namely the quadratic and RBF
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kernels, as well as the random forest. Based on the experimental results, the conclusions of
this paper can be summarized as follows:

• The difference in macro-F1 between different FS methods might be marginal, while
the stability difference is quite significant. Such cases promote the role of FS stability
as a decisive performance indicator when it comes to selecting the best FS method for
a specific monitoring task.

• Given run-to-failure measurements of a milling tool, the sensor configuration, and
the number of selected features can affect the FS stability to an extent that depends
on the robustness of the FS method itself. Both Fisher score and ReliefF showed
a considerably higher consistency (lesser variability) in their stability performance
over different settings, compared to mRMR. Further, under the small datasets, the
stability of all the FS methods showed a larger dependence on the underlying settings
compared to the large datasets.

• Regarding the large datasets of our experiments, DS1 and DS2, the results over the
different combinations of sensor configurations, operating conditions, and feature
subset cardinalities showed that Fisher score (single and ensemble versions) was the
superior FS method in terms of both the stability and predictive performance in almost
all the individual cases. Even in the few cases where it was not superior, it showed
a high and very comparable performance to the superior one (mostly ReliefF). Thus,
Fisher score can be considered a global FS solution for these datasets. As for the small
datasets studied in this paper, the results did not suggest a globally superior method,
as it varies with the different cases, with the superior one mostly being Fisher score or
ReliefF. Further, when a final feature subset cardinality was chosen (at which all the FS
methods yielded a reasonable macro-F1) for each dataset/sensor configuration, Fisher
score (single and/or ensemble) showed the highest harmonic mean of stability and
macro-F1 in most of the cases (24 out of 36 cases). Thus, based on the overall results,
we recommend that Fisher score is considered among the top-candidate FS methods
to select both stable and predictive features for diagnosis tasks.

• The impact of the homogeneous ensemble generally depends on the FS method, data
at hand, and number of selected features. The ensemble technique had overall little
impact on Fisher score in the large milling datasets; however, it improves its stability
and predictive power in many cases of the small datasets. For all the datasets, mRMR
is the method that benefits the most from the ensemble in terms of stability. Especially
in the large datasets DS1 and DS2, the mRMR ensemble considerably outperformed
the single version in terms of the overall stability and the stability consistency over
different settings and in some cases also in the predictive power. This indicates that the
ensemble can still be quite beneficial for some FS methods even if the SDR of the data
is too high (SDRs for the single sensor/sensor fusion of DS1 and DS2 are 156.06/78.03
and 192.80/96.40, respectively); most of the existing works in other fields focus only
on the ensemble benefits with the datasets of SDR<<1. However, it should be noted
that there are also cases where the ensemble degrades the stability and/or predictive
power. Thus, its trade-off performance should be inspected for the particular case of
interest.

• The stability of all the FS methods suffered in some cases under the small datasets
and in some cases even after applying the ensemble. This emphasizes the necessity of
examining the FS stability and investigating more solutions to increase the FS stability
for small datasets since, when it comes to facing the challenges of small datasets, the
researches existing in the current PdM literature focus only on how to increase the
generalizability of the predictive models.

The Future research directions are as follows:

• The performance comparison presented in this work included only filter-based FS
methods, which is a limitation that can be addressed in future work by also evaluating
wrappers and embedded methods, e.g., those used in [15,17,24].
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• As shown in the results, different factors can affect the stability of a given FS method
for PdM applications, e.g., size of dataset, sensors, operating conditions, etc. To gain a
more in-depth understanding of the stability behavior with the monitoring data, it is
interesting to experimentally determine the most dominating factor among them all.
Since the real-world datasets carry the combined effect of the different factors, each
factor (e.g., size, operating conditions, etc.) should be changed individually under
the same dataset while keeping the other factors constant to isolate their impact (e.g.,
changing only the size by subsampling the original data with different ratios for the
datasets whose size was originally large or creating augmented data and adding them
incrementally to the original samples of the datasets whose original size is small) and
the resulting variation in stability can be observed.

• Studying the impact of the window size of feature extraction on the joint performance
of the FS stability and predictive performance as well as on the ensemble performance
in PdM applications.
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