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ABSTRACT We present a method employing Answer Set Programming in combination with Approximate
Model Counting for fast and accurate calculation of error propagation probabilities in digital circuits. By an
efficient problem encoding, we achieve an input data format similar to a Verilog netlist so that extensive
preprocessing is avoided. By a tight interconnection of our application with the underlying solver, we avoid
iterating over fault sites and reduce calls to the solver. Several circuits were analyzed with varying numbers
of considered cycles and different degrees of approximation. Our experiments show, that the runtime can be
reduced by approximation by a factor of 91, whereas the error compared to the exact result is below 1%.

INDEX TERMS Answer set programming, approximate model counting, error propagation, radhard design,
reliability analysis, selective fault tolerance, single event upsets.

I. INTRODUCTION
Microelectronic systems have pervaded every aspect of our
life and although many of them are safety critical, resource
usage is often strictly limited. Satellites for instance have
a very tight power budget, because the energy consump-
tion directly translates into the size of the solar panels.
In terrestrial applications, autonomous driving tremendously
increases the performance requirements for on-board signal
processing, whereas the energy consumption directly affects
the range of electric cars. In medical products like wearables
or implantables, both energy and area usage are limited. In sit-
uations like these, protection of all circuit elements against
soft errors is often not possible. For this reason, the design
needs to be thoroughly analyzed to identify the elements,
which have the highest contribution to the overall soft error
rate (SER) and where protection provides most effective
results. Fault tolerance, where the system is only protected
against a subset of all possible faults, is commonly called
selective fault tolerance. The challenge of such an approach
is to efficiently select circuit elements for protection.

The associate editor coordinating the review of this manuscript and
approving it for publication was Qi Zhou.

Fault sites i.e. the circuit elements where a fault occurs can
be characterized by their error propagation probability (EPP).
This is the probability, that a fault propagates and manifests
as an error at the primary outputs. There are electrical, tem-
poral and logic masking effects, which could influence the
fault propagation. Electrical and temporal masking effects are
mainly determined by technology and circuit parameters. The
proposed method is implemented on the gate-level netlist and
the fault model is ‘‘single event upsets (SEUs) in flip-flops’’.
SEUs are bit-flips caused by high-energy particles. In this
context we consider logicmasking effects as themost relevant
for this approach.

There are three main classes of methods for the calcula-
tion of EPP based on logic masking effects: methods based
on fault-injection simulation, analytic methods and methods
based on solving combinatorial search problems.

Fault-injection simulation [1]–[4] might be the most obvi-
ous approach. A high number of simulations is required to
cover all fault sites, circuit states and input sequences.

There are analytic methods, which propagate and accumu-
late signal probabilities along the gate-level netlist [5]–[7].
They rely on procedural algorithms, which comprise exten-
sive preparation of input data, repetitive traversals of data
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structures and computationally intensive arithmetic opera-
tions. They are only applicable to circuits with a few hundred
flip-flops. Some methods rely on structural netlist properties
only, to reduce computational effort but provide insufficient
accuracy [8], [9].

A different class of methods assesses EPP by solving com-
binatorial search problems. Propositional satisfiability (SAT)
and satisfiability modulo theory (SMT) solvers proofed to be
efficient recently [10], [11]. Answer set programming (ASP)
is another approach to modeling and solving of search prob-
lems. SAT is limited to classic propositional formulas in
canonical normal form (CNF), whereas ASP offers a declar-
ative constraint logic programming interface. On the one
hand, this offers more compact problem modeling and easier
integration of application-specific knowledge. On the other
hand, structural information about the problem is preserved
and can support the solving process, whereas in SAT, these
information is lost in flattened CNF.

The availability of efficient ASP solvers, that provide
competitive performance with respect to state-of-the-art SAT
solutions [12], motivates research towards the exploration
of ASP for EPP calculation. In this paper, we present an
EPP estimation method based on ASP and evaluate its com-
petitiveness compared to existing methods. Furthermore,
we investigate the potential of features exclusive to ASP
with respect to fault susceptibility analysis. Methods based
on combinatorial search require counting of solutions for the
calculation of EPP. Because the search space grows expo-
nentially with circuit size and number of considered cycles,
approximation is inevitable for the analysis of large designs.
We use ASP in combination with approximate model count-
ing to enable the application of our method to real-world
circuits. To the best of the author’s belief, this is the only work
performing reliability analysis of digital circuits with ASP.

After all, our research contribution is characterized by the
following key points:
• Demonstration of Answer Set Programming in combi-
nation with Approximate Model Counting as a suitable
method for EPP assessment.

• Temporal behavior is encoded directly to avoid sequen-
tial unrolling.

• Reconvergent paths are considered by design of the
method and do not need to be taken into account
explicitly.

• Similarity of input data format to a Verilog netlist
reduces preprocessing to a minimum.

• Proposal of a design flow for selective hardening
of flip-flops based on the presented EPP assessment
method.

In section II we put the proposed approach into context
with related work and introduce to ASP and approximate
model counting. In section III we describe how we employ it
for the estimation of error propagation probabilities. Exper-
imental as well as methodological results are presented in
section IV. Afterwards, we discuss limitations in sectionV,
before we conclude in sectionVI.

II. BACKGROUND AND RELATED WORK
Let us have a closer look at the different approaches for
EPP assessment and their characteristics. We would like to
classify some of the most prominent methods first, to dis-
cuss their characteristics and limitations but also show recent
improvements.

Simulation based analysis of error propagation is imple-
mented in the following way. A test case from functional
verification is executed and at a point in time an SEU is
injected by flipping the value of a flip-flop. The simulation
is continued then and the values of the primary outputs are
permanently compared to the values of a fault-free simulation
run. If the outputs differ, the fault is considered propagating.
Usually, only one SEU is injected per simulation run. The
fault coverage is determined by the coverage of the test
cases (stimulus), the number of simulated fault sites and the
number of time points where a fault was injected. A fault
injection campaign is called exhaustive, when every possible
fault was simulated, which requires a very high number of
simulations even for medium sized circuits. For almost any
practical use this is not possible, since the simulation needs
to be evaluated also for all different states of the system
where a fault could appear. For non-exhaustive fault injection
campaigns, faults can be either equally distributed in place
and timewith a certain density, or chosen randomly. However,
a high number of simulations is required to achieve sufficient
accuracy [1]–[4].

The class of analytical methods does not require simu-
lation and is based on the analysis of signal probabilities
instead. FIGURE1 shows an example for the propagation of
signal and error probabilities in a small combinational circuit.
Outgoing from the analysis of combinational circuits [13],
various progress has been made by expressing the arithmetics
as matrix operations [14], extending the analysis to sequential
circuits [5], taking signal correlations into consideration [6]
or even considering multiple faults [7]. However, due to
sequential properties and signal correlations of reconvergent
paths [15], the computational effort grows exponentially with
circuit size and number of considered cycles. Additionally,
preprocessing is required to parse the netlist and transform it
to suitable data structures e.g. matrices.

The third class ofmethods is based on combinatorial search
and constraint programming. The idea is to express a prob-
lem in some generic problem domain and to solve it with a
universal solver. Most recent solvers rely on conflict-driven
clause learning (CDCL) [16]–[19], which originates from the
Davis-Putnam-Logeman-Loveland (DPLL) algorithm [20].
A well-known example is propositional satisfiability (SAT),
where a satisfying assignment of a Boolean formula
is searched. CDCL based solvers have made significant
progress during the last two decades. The reduction of prob-
lems to a SAT problem and the solution with SAT solvers has
widespread applications in academia and industry, especially
in electronic design automation (EDA) tools.

The applications can be separated in applications where
a limited number of satisfying assignments is required and
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FIGURE 1. Combinational propagation of signal probabilities. The red
flash marks the fault site. Signal probabilities are typeset in black, error
probabilities in red.

applications where all satisfying assignments are required.
When only the number of solutions is required, we speak of
counting problems, which are associated with the complexity
class #P [21]. The counting problem associated with SAT is
called #SAT. EPP assessment is such an application where
counting is required. The solutions of complex counting
problems often can only be approximated [22], [23]. The
approximation method, which was used for the presented
work, is described in section II-B. How to use a SAT solver
for EPP assessment is shown in [10].

Satisfiability Modulo Theories (SMT) is a generalization
of SAT, extending it by background theories as the theories
of integers, real numbers or data structures as lists and arrays.
This allows more complex formulas. Application of SMT for
EPP calculation is demonstrated in [11]. However, the input
language of SAT and SMT solvers is limited to formulas in
canonical normal form.

A. ANSWER SET PROGRAMMING AND APPROXIMATE
MODEL COUNTING
Answer set programming follows an approach similar to SAT,
but it comes with a more powerful input language. On the one
hand this often leads to a more efficient problem encoding
due to more direct modeling. On the other hand more infor-
mation about the structure of the problem is preserved and
therefore available to the solving process. There are efficient
implementations of ASP solvers, which were even able to
win SAT competitions [12]. Additionally, it is important to
evaluate possible advantages of ASP in applications where
SAT solvers have proven to be successful. Furthermore, ASP
eases the inclusion of background information in the solving
process, which often enables advanced application scenarios
and solving of related problems.

ASPwas introduced byGelfond and Lifschitz in 1988 [24],
combining the syntax of logic programs with stable model
semantics. It is a declarative approach to problem solving.
In contrast to procedural programming languages, problem
solving and problem encoding are separated. A problem is
encoded by a set of clauses, which are processed by a solving
engine to find solutions which fulfill them, so called answer
sets or stable models. The programmer, solving problems
with ASP, can focus on the description of the problem rather
than its solution.

A program is implemented by three types of clauses [25]:

Facts : A0.

Rules : A0:- L1,. . .,Ln.

IntegrityConstraints : :- L1,. . .,Ln.

Facts define expressions that hold unconditionally. Rules
can be read as an implication. L1 to Ln imply A0, so if L1 to
Ln are true, A0 must be true, but A0 can be true with L1 to Ln
being false. The third type of clauses are integrity constraints
which are used to filter the answer sets. The solution will
contain only answer sets where not all of the literals L1 to
Ln hold. The solving process can be divided into grounding
and solving. User-input clauses usually contain variables.
Grounding transforms them into a set of clauses, which is
free of variables and can be processed by a solver based on
CDCL [16]–[19]. The encoding of a problem class and a
specific problem instance can be separated. A problem class
is usually described by a set of rules and integrity constraints.
The problem can then be instantiated by a number of facts.
For the solution of counting problems the solver is called
iteratively, providing one stable model after the other, until
all are found and the solver returns UNSAT (unsatisfiable).
The adaptation of CDCL, which originates from the

domain of SAT solving, to ASP is called conflict-driven
nogood learning (CDNL) [25]. No to overly extend the length
of this article and not to obstruct readability, we sketch
the functioning of the algorithm only briefly. The original
DPLL algorithm is based on guessing and backtracking on
encounter of an invalid solution. This creates a lot over-
head due to wrong guesses and neglects a lot of infor-
mation which could be acquired from wrong guesses. The
idea of CDCL/CDNL is to learn from wrong guesses. Con-
sidering ASP, the learning can happen based on so called
nogoods [25]. A nogood is a set of signed literals which
cannot be contained in any satisfying assignment. Informa-
tion can be acquired from a nogood, if all but one literal
are contained in an assignment. The nogood is then called
unit-resulting and the complement of the violating literal is
added to the assignment. If a nogood is completely contained
in an assignment, a conflict has occured. Instead of backtrack-
ing, the algorithm performs a backjump to the stage where the
violating literal has been added. The algorithm operates in an
iterative manner, until the assignment is complete or it turned
out, that there is no satisfying assignment.

B. APPROXIMATE MODEL COUNTING
If the search space and especially the number of solutions
is too large to enumerate them, the counting problem can
only be approximated. The approximation method is based
on the idea of dividing the search space into subspaces of
approximately the same size to reduce the number of models
to be counted. According to [22], [23], this can be achieved
by adding random parity constraints, i.e XOR constraints.
An important property of XOR constraints is their pairwise
(even 3-wise) independence. This means, that if we know
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the elimination result of a given XOR constraint, we cannot
derive any information about the elimination of satisfying
assignments of any other randomly chosen XOR constraint.
Any added XOR constraint eliminates a satisfying assign-
ment with probability 1/2. A proof based on linear algebra
can be found in [22].

The general complexity of linear programming under
stable model semantics can be derived by simulating a nonde-
terministic Turing machine [26]. The complexity of approx-
imate solutions to the associated counting problems using
pairwise independent hash functions was analyzed by Stock-
meyer in 1983 [27].

1) ILLUSTRATIVE EXAMPLE FOR SAMPLING FROM THE
SOLUTION SPACE WITH XOR CONSTRAINTS
Here, the idea should be illustrated in a less formal way by an
example. A propositional formula is given by

y = ab+ ac+ bd + cd . (1)

Three arbitrary XOR constraints are introduced as

c1 = a⊕ b, c2 = a⊕ c, c3 = a⊕ d . (2)

A truth table for all 16 possible assignments of a, b, c and d
is shown in TABLE1. It can be seen that any XOR constraint
is satisfied by eight assignments, the conjunction of any two
XOR constraints is satisfied by four assignments and the
conjunction of all three XOR constraints c1 ·c2 ·c3 is satisfied
by two assignments. y is satisfied by 9 out of 16 assignments.
The conjunction y · c1 · c2 · c3 is satisfied by one out of
two assignments. This shows how the search space as well
as the solution space are approximately split in half by every
XOR constraint, resulting in a solution space approximately
divided by eight using three XOR constraints.

2) CLASSES OF APPROXIMATE MODEL COUNTERS
There are three categories of algorithms for approximate
model counting [28]. So called (ε, δ) counters return an
approximate count x which lies in the interval [x(1 +
ε)−1, x(1 + ε)] with probability 1 − δ. ε is called tolerance,
δ is called confidence. Then there are bounding counters,
which do not provide any guarantees on tolerance and only
return an lower or upper limit which holds with probability
1− δ. Formal proofs for tolerance and confidence are mainly
based onMarkov’s inequality, Chebyshev’s inequality and the
Chernoff bound [29]. The last category is called guarentee-
less counters, which do not provide any guarantees at all.

3) SCOPE OF THIS ARTICLE
A formal comparison of different approximate counting algo-
rithms is not a core component of our work. The presented
investigations are more of a practical nature and focus on the
general suitability of ASP and approximate model counting
for EPP assessment. For this reason, we investigated the
accuracy of our approach empirically as described in detail
in section IV.

TABLE 1. Example of XOR constraints applied to a truth table.
Satisfaction of XOR constraints illustrated by green highlighting, the
higher the color intensity, the more XOR constraints are satisfied. This
shows how the search space as well as the solution space are
approximately split in half by every XOR constraint.

III. PROPOSED METHOD
In the following section we present a method to calculate
approximate EPP values of flip-flops in digital circuits with
the help of ASP and approximate model counting. The pro-
posed EPP estimation method is supposed to be the main
component of a design flow for selective fault tolerance as
shown in FIGURE2.

At first we would like to give an overview of the design
flow including input and output parameters of our implemen-
tation. We continue with the definition of EPP calculation
based on model counting. Then, we show how to encode
the behavior of digital circuits and fault injection in ASP
and how to generate random XOR constraints afterwards.
Finally, we present our algorithm to iteratively call the solver,
extract information about error propagation and accumulate
EPP values.

We propose a design flow for radiation-hardened digi-
tal circuits, which extends the standard digital design flow
between the synthesis step and physical implementation.
It buils upon a fault susceptibility analysis of the post-
synthesis netlis. The analysis yields a dictionary of flip-flops
with their corresponding EPP values. The n-most critical
flip-flops in terms of fault susceptibility can be selected for
hardening then. The hardening is applied by replacing the
unhardened flip-flops in the netlist with suitable radiation-
hardened variants. Details with respect to the hardening of
a digital standard cell library can be found in our recent
publication [30].

The main input parameters of our implementation are the
gate-level netlist of the circuit under investigation, the num-
ber of considered cycles and the number of applied XOR
constraints, which determines the degree of approximation.
The main output parameter is a dictionary containing the
EPP values per flip-flop using flip-flop instance names as
keys. Then there are technical input parameters (e.g. timeout),
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FIGURE 2. Activity diagram illustrating the proposed flow for selective fault-tolerance by ASP and Approximate Model Counting.

FIGURE 3. Conceptual approach of duplication, fault injection and
comparison for modeling the analysis problem in ASP.

which control the execution and technical output parameters
(e.g. runtime), which are used for the evaluation of the
method. Furthermore, our implementation outputs circuit
parameters, as the number of flip-flops in the circuit, which
are also used for evaluation and comparison. All input and
output parameters are listed in TABLE2.

The definition of error propagation probability (EPP) used
here is the following: the EPP is the probability that a single
event upset is not logically masked, so that it propagates and
manifests as an error at the primary outputs. Logic masking
depends on the circuit state and the stimulus, i.e. the signal
assignments, while the circuit is in a faulty state. The EPP can
be calculated as the ratio of the number of signal assignments
where the fault propagates to the number of all possible signal
assignments:

EPP =
#fault propagating assignments

#all assignments
=

ncnt
nasgn

(3)

A signal assignment consists out of an initial circuit state,
i.e. the values stored in the flip-flops, and an input sequence
with respect to all primary inputs and all considered clock
cycles. The number of all possible signal assignments can be
calculated as

nasgn = 2ninput·ncycle+nff , (4)

with ninput being the number of primary inputs, nff the
number of registers and ncycle the number of considered clock
cycles. The identification of fault propagating assignments
relies on circuit duplication, fault injection and comparison.
The principle is illustrated in FIGURE3.

Throughout this work we use the Potsdam Answer
Set Solving Collection (Potassco) with clingo [31] as

TABLE 2. Description of input and output parameters of an analysis run
with the proposed implementation.

a monolithic application combining grounder and solver
(cf. section II-A). All ASP encodings are presented in the
precise input language of clingo [32]. The proposed method
is based on a similar encoding as the one we have used for
some preliminary investigations in [33] and which is shown
in Listing 1. Now, we would like to go through the five
main parts of the encoding, describing the circuit behavior,
duplicating the circuit, injecting a fault, detecting the error
and spanning the search space.

We start, encoding the circuit elements by describing
the behavior of combinational gates and flip-flops in code
section A©. An OR gate is described in line 1. An atom
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gate(G,F,Q,A0,A1) is introduced, with gate name G,
function F (here ‘‘or’’), output signal Q and input signals A0
and A1. The atom high(Q,T), modeling the value of Q
at time T, holds, if high(Q,T) holds for at least one of
the input signals at the same time T, where T is measured
in cycles. AND gate and inverter (INV) are modeled anal-
ogously. Line 4 describes a flip-flop, where the sequential
behavior is modeled by deriving the atom high(Q,T) for
time T from the input value high(A0,T-1) at previous
cycle T-1. We can directly model the sequential behavior,
due to ASP’s support of variables and the introduction of a
temporal variable, and avoid sequential unrolling as in related
approaches [10], [11].

Code section B© defines a duplicate of the circuit under
investigation to inject faults in it. Throughout the code, the
suffix c (correct) indicates an element of the fault-free circuit
and the suffix f (faulty) an element in the circuit prone to
faults. For instance, line 6 can be understood in a way, that for
every signal in the fault-free circuit sigc with name X, there
is a (possibly) faulty signal sigfwith name faulty(X) in
the circuit instance where faults are injected.

The next paragraph of code, section C©, models fault injec-
tion for inputs and flip-flops. Line 11 states, that the input
signal of the faulty circuit faulty(X) is high, if the input
signal of the correct circuit X is not high and a fault is injected
in it. The other opportunity for the signal in the faulty circuit
to be high is, that no fault is injected and the correct signal is
high (line 12).

Code section D© defines the comparison of the correct and
the faulty circuit. A difference between the values of the
output signals of the correct and faulty circuit is regarded as
an error. A difference between the values of internal signals
is denoted as fault. The signal values are different, if exactly
one of them is high.

Finally, we span the search space in code section F©.
So called aggregates are used to form values from groups of
selected items. Using comparison operators, conditions over
these items can be expressed [25]. Aggregates are another
language feature of ASP which is superior to SAT. Line
by line the following dimensions are described: all possible
initial circuit states, all possible input sequences, a single fault
in a flip-flop at cycle 0, no faults at the inputs. Instead of
injecting faults in one register after the other as in [10], [11],
we search for all solutions where an upset is present in any
single register at cycle zero:

{inject(X,0) : register(X)} = 1.

This significantly increases computational efficiency,
because we require less calls to the solver and the solution
density, which is the ratio between satisfying solutions and
the size of the search space, is higher.

Given this problem encoding, a circuit can be instanti-
ated for EPP analysis as shown in FIGURE4. The pro-
posed analysis is performed on the gate-level netlist obtained
from logic synthesis. The circuit description suitable for our

FIGURE 4. A simple circuit example with schematic and corresponding
enconding as a demonstration of problem instantiation.

ASP encoding is exported by a set of Tcl commands directly
from the synthesis tool.

Passing the presented encoding and a circuit instantia-
tion to clingo, would return answer sets where the error
propagates, as well as answer sets where the error does not
propagate. In order to calculate EPP as described before,
we are interested in the number of answer sets where the fault
propagates. By applying the following integrity constraint,
we filter for solutions where the error propagates:

:{-} not error(_,_).

Here is an exemplary answer set for the circuit example
from FIGURE4 considering three cycles:

high(a,2) high(b,2)
high(faulty(r1_q),0)
inject(r1,0) high(faulty(b),2)
high(faulty(a),2) high(n0,2)
high(faulty(n0),2) error(r1_q,0)

This answer set describes the case, where a fault is injected
in flip-flop r1 at cycle 0. Because r1 is an output register
connected to the primary output r1_q, the fault propagates
immediately, so that there is an error at r1_q at cycle 0.

Standalone clingo with its command-line interface could
be used to generate an exact count, iteratively calling the
solver until all answer sets, where the fault propagates, are
found. In order to generate and solve random XOR con-
straints for approximate counting and to have more con-
trol about the execution, we implemented an application in
Python and directly access clingo’s Application Program-
ming Interface (API). clingo on its own does not support
parity constraints, but it offers a theory propagator interface
to add solution capabilities for background theories [34].
There is a prototype application called xorro [35], which
implements several approaches for the solution of parity con-
straints. Our application reuses some of the code from xorro,
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Listing 1. Problem encoding describing digital circuits elements, circuit duplication, fault injection, error detection and spanning of search space.
Auxiliary clauses are omitted.

but the main algorithm is adapted towards the presented
application of EPP assessment as described in the following.

The algorithm is outlined in Algorithm 1. After read-in of
all input parameters including the circuit instance, we use an
initial grounding and solving to extract the number of inputs
and the number of flip-flops in order to calculate the number
of all possible assignments. Then we generate the random
XOR constraints and add them to the problem.

The implementation of xorro is not specific to any
application. For this reason, the constraint generation
algorithm included in xorro generates constraints from
all symbolic atoms of the problem. Adding XOR con-
straints generated this way can easily cause the problem
to become unsatisfiable because of correlations between
atoms. Due to the pairwise independence of XOR constraints
(c.f. section II-B), we can also generate the constraints from
just a subset of all possible constraints of a certain length. Our
implementation generates XOR constraints based on signal
names from the fault-free circuit and combines them with the
atom high(Q,T), where Q is the name of the signal and T
is a random cycle. By this approach we reduce correlations
between the individual terms of a constraint and the problem
is less likely to become unsatisfiable.

After the random XOR constraints were added, we need
to ground the problem again, before we enter our main loop.
In this loop, we call the solver and if it returns an answer
set, we increment the corresponding dictionary entry of the
flip-flop where the fault was injected by 2nXOR/nasgn. If the
call to the solver does not return another answer set but
instead UNSAT, this means that all answer sets in this sub-
space (defined by the randomXOR constraints) are found and
the analysis is completed.

Algorithm 1 Iterative Solving and Incremental EPP
Calculation
ground()
M ← solve()
(nff, ninput)← extractNetlistProperties(M )
nasgn← 2ninput·ncycle+nff
generateRandomXORs(nXOR)
ground()
while true do

M ← solve()
ifM 6= ∅ then

Dff(ffName(M )) += 2nxor
nasgn

else
return

end if
end while

IV. EXPERIMENTAL EVALUATION AND RESULTS
We evaluated the presented method with respect to its suit-
ability for EPP estimation in order to select flip-flops for
protection in terms of criticality of fault propagation. We per-
formed experiments with several ISCAS89 and ITC99 bench-
mark circuits. The circuits are described in TABLE3.

There is a general challenge inherent to the evaluation of
the proposed method: Due to the nature of the problem an
exact solution can only be found for small circuits and a
small number of considered cycles. Even for a small circuit
like s27 and for only 10 cycles, the search space size is
about 4.5 · 1015 signal assignments.

For more complex problems we add parity constraints for
approximation. As described in section II-B, adding parity
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TABLE 3. Characteristics of analyzed circuits.

constraints divides the search space into smaller subspaces.
Every set of parity constraints defines a certain subspace:
the more constraints, the smaller the subspace. However, the
subspace must contain a representative number of models
to yield a valid approximation. If the subspace is empty,
no solution can be found and the problem instance becomes
unsatisfiable. Even if the subspace is not empty, but the
number of constraints is very large compared to the number
of models to be found, the CDCL algorithm encounters more
conflicts, thus it becomes harder to find a model.

As a consequence of these two issues, our test cases used
for evaluation cannot be too complex, if we want to use
an exact count as a reference. Otherwise the exact counting
would take too long. But the number of parity constraints
which can be added to speed up the computation is limited,
because otherwise the problem instance becomes unsatisfi-
able. We cannot fully leverage the potential of our approxi-
mation method on small problems.

This issue is addressed by evaluating the method in three
steps. First, we investigate runtime and accuracy for small
problems with no approximation or a low level of approx-
imation. Then, we artificially increase problem complexity
by considering a number of cycles larger than the sequential
depths. When increasing the number of considered cycles,
the EPP is constant as long as the influence of sequential
feedback paths is small and the number of considered cycles
is larger than the sequential depth. In the end, we apply
our method to larger circuits, where we cannot calculate the
accuracy, but where we can investigate large scale runtime
behavior and identify bottlenecks and limitations of the pro-
posed method.

Most of the following discussion is led with the circuit s27
as a reference. The circuit is very small so that we are able to
calculate an exact solution fast, but it is complex enough to
yield a non-trivial solution. For investigating larger problems
we initially use s27 with an increased number of considered
cycles, which increases the search space but the EPPs stay the
same.

On the one hand our experimental results are technical,
consisting out of performance parameters of the analysis.
On the other hand we provide methodological results eval-
uating the presented approach with respect to the targeted
application. Let us start with technical results by investigating

TABLE 4. Exemplary error propagation probability results per flip-flop for
circuit s27 for 10 considered cycles with 35 parity constraints representing
a rough estimation.

FIGURE 5. Runtime and accuracy of analysis of several small circuits with
exact counting and different approximations. The number of considered
cycles is 3.

runtime and accuracy for different degrees of approximation
with the exact count as a reference as shown in FIGURE5.
The relative error is calculated as

η =

∣∣∣nmodel|nXOR=0 − nmodel

∣∣∣
nmodel|nXOR=0

(5)

The exact counting takes 1915 s. Adding parity constraints
leads to an exponential decay of runtime. Adding for instance
7 parity constraints reduces the runtime to 21 s, which is a
factor of 91. The error is below 1%.

Progressing towards larger search spaces, we analyze
s27 considering 3 to 5 cycles. The results are shown in
FIGURE6. It can be seen, that, by approximating, the runtime
for all cases can be reduced to a fraction compared to the
exact counting whereas the error stays small. A timeout of
3600 s was set, which explains the result for small numbers
of parity constraints when considering 5 cycles. When apply-
ing 15 parity constraints the runtime considering 5 cycles is
only 41 s whereas the error is still below 1%.

In order to compare our approach to [11], we analyzed a
selection of ITC99 benchmark circuits (b01-b10). The run-
time of these experiments is depicted in FIGURE7. The
timeout was set to 4000 s. The timeout occurred for b10 for all
executions and for b06 for test cases with less than 15 parity
constraints. For all other cases the runtime could be kept
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FIGURE 6. Runtime and accuracy of analysis with increased number of
cycles and rougher approximations for circuit s27 with 3 to 5 considered
cycles.

FIGURE 7. Runtime in dependence of number of XOR constraints for the
same selection of ITC99 circuits as in [11]. Timeout was set to 4000 s.

below the runtime results of [11] choosing an appropriate
number of parity constraints. The SER estimates are not com-
parable directly, because [11] only calculates the errors at the
outputs of the final sequential stage after sequential unrolling,
whereas our approach detects all errors at the primary outputs
independent of sequential depth.

During our work we observed timeout occurrences for
more complex circuits and a larger number of considered
cycles when increasing the number of parity constraints.
From an analytical point of view, solutions should still exist
in the corresponding subspaces. It turned out, that the time-
out occurred even before the first model was found. For
this reason, we started to investigate the time per model.
To guarantee termination of the solving process, the number
of requested models was limited, so that we could investigate
the time per model tmod individually. The results of these
investigations are shown in FIGURE8 for circuit s27 and
in FIGURE9 for the more complex circuit s5378. It can
be seen, that there is a sudden increase of tmod, when the
number of parity constraints increases. We discovered, that
this is caused by an increased number of conflicts (c.f. CDCL
algorithm). As can be seen, also the density q of the XOR
constraints plays an important role for the computational
efficiency. The number of conflicts can be decreased by

FIGURE 8. Number of conflicts and time per model in dependence of the
number of XOR constraints for circuit s27. 20 cycles were considered and
constraints of different densities q were applied.

lowering the density of the XOR constraints, but this could
also reduce the accuracy of the approximation [23]. The gen-
eral reason for this phenomenon is, that the solution of parity
constraints is not inherently supported by the CDCL solver,
because it operates with clauses in canonical normal form
(CNF) [35]–[38]. Parity constraints can be transformed effi-
ciently into CNF by Gauss-Jordan elimination (GJE). A deep
integration of GJE into CDCL solvers and further optimiza-
tions have been shown as a consecutive success in [37]–[39]
and corresponding improvements are part of our ongoing
work. In summary it can be seen, that the degree of approxi-
mation is limited in its current implementation, but that the
proposed method can still be applied to complex circuits.
The reasons for these limitations have been identified and
approaches to address them were referenced [37]–[39]. Lim-
itations are discussed in greater detail in sectionV.

After all, the results show a competitive performance of
the proposed method for the estimation of EPP values of
flip-flops in digital circuits. As stated in the beginning, the
application scenario we have in mind is selective fault toler-
ance. A given circuit should be hardened against soft errors,
e.g. radiation induced SEU, with limited resources in terms of
power and area consumption. The goal would be to protect the
n-most critical flip-flops according to available resources. For
this purpose, an exact value of EPPs is not required. It is rather
important that the order of flip-flops, sorted by their EPP,
is maintained. By the distribution of the values in TABLE4,
one can see that these order is given. An EPP value larger than
one is an effect of approximation. It means that the respective
flip-flop is over represented in the subspace chosen for model
counting. Due to the freely adjustable degree of approxima-
tion, the analysis can be adapted to the specific accuracy
requirements and available computational resources, so that
this method is also applicable when precise information
is required. A worst case runtime can be estimated as

ttotal = tmod · nasgn/2nXOR , (6)
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FIGURE 9. Number of conflicts and time per model in dependence of the
number of XOR constraints. Circuit s5378 was chosen as an example for
large-scale runtime behavior. 20 cycles were considered and constraints
of different densities q were applied.

with tmod being the average time per model and nasgn being an
upper limit for nmodel, assuming that every assignment leads
to fault propagation. The number of requiredXOR constraints
can then be calculated as

nXOR = log2(
tmod

tlimit
· nasgn), (7)

with tlimit being the amount of time dedicated to the analysis.
tmod is usually in the order of several seconds and can be
considered constant for a certain density q over a wide range
of degrees of approximation (cf. FIGURE8). A small test
run prior to the actual analysis can confirm the assumption
for tmod.

In addition to a good performance, we especially consider
the following aspects as important advantages. Due to the
fact, that the input data format of the circuit instance is
similar to a Verilog netlist, no preprocessing is required.
We export a suitable description directly from the synthesis
tool. Automatic transformation from a Verilog netlist based
on a couple of string operations is also possible. Prior to
most formal methods is an extensive preprocessing of the
Verilog netlist to transform it into the required data struc-
tures as graphs or matrices. In many methods certain circuit
aspects require special treatment, as for instance unrolling
of sequential feedback paths [10], [11] or approximation of
signal correlations [40]. In our approach sequential behavior
ismodeled directly, so that no sequential unrolling is required.
Signal correlations are implicitly taken into account as they
are reflected in the set of all possible signal assignments.

In spite of the compact and comprehensive problem encod-
ing, our approach is extensible to cover neighboring problems
or to yield valuable side information. Two examples are
provided as an illustration. The first example addresses the
modification of the error definition. For instance, if errors at
the primary outputs are not a concern, but instead the analysis
should identify flip-flops, where a fault causes the circuit to

FIGURE 10. Runtime behavior of the analysis of medium-sized ISCAS89
circuit s15850.

be still in faulty state C cycles after the fault occurred, the
following integrity constraint could be applied:

:{-} not fault(C),cycles(C).

The second example shows how to narrow down the search
space and speed up the analysis by including functional
information from circuit application level. We could limit the
analysis to valid input sequences. For instance, if it is known,
that two circuit inputs inputa and inputb cannot be high
at the same time for two consecutive cycles, we could use the
following rule and integrity constraint:

invalid :- high(inputa,T),
high(inputb,T), high(inputa,T-1),
high(inputb,T-1), cycles(C), T=1..C.

:{-} not invalid.

Of course, these two examples can only give a glance on
the flexibility of the presented implementation.

V. LIMITATIONS
The analysis of output sensitization of digital circuits has
been proven to be NP-complete [41]. Consequently, EPP
assessment is member of the complexity class #P, which is
the class of counting problems associated with problems in
NP [21]. By approximation we can reduce computational
complexity, but the problem is still NP-hard [27]. Still,
we have shown an exponential decrease of computational
effort by increasing the degree of approximation determined
by the number of XOR constraints. This can be seen in
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Figures 5 to 7. Additionally, we have shown at the end
of section IV, how to reduce the search space by includ-
ing application-level information or modifying the error
definition.

We have also verified our current implementation for
medium-sized circuits like s15850 (cf. TABLE3) and corre-
sponding runtime metrics are shown in FIGURE10. It can
be seen, that the time per model tmod is linearly dependent
on the number of considered cycles ncycle and the number of
parity constraints nXOR, while the number of conflicts nconflct
is nearly constant. Nevertheless, the time per model and the
number of error propagating signal assignments are too high
to complete the analysis in a reasonable amount of time. The
degree of approximation needs to increased further.

However, currently the maximum degree of approxima-
tion is still limited by increasing number of CDCL conflicts
due to a high number of XOR constraints. The reason is
an unoptimized implementation for solving of parity con-
straints. Several improvements, for instance an integration of
Gauss-Jordan elimination, which were successfully applied
in another context [37], [38], are ongoing and part of our
future work. Furthermore, adaptations of the solver as well
as further modifications of the generation of XOR constraints
with respect to this specific application are currently under
investigation.

VI. CONCLUSION
We presented a method for fast and accurate EPP estimation
based on ASP and Approximate Model Counting and we
demonstrated how to use it for the selection of flip-flops for
SEU protection. Modeling the problem with ASP has proven
to be a compact and efficient approach. In combination with
approximate model counting based on random parity con-
straints, i.e. XOR constraints, the method is applicable to
complex problems and shows a competitive performance.

A challenge was identified in choosing an appropriate
density of the XOR constraints, on the one hand to avoid,
that the problem becomes unsatisfiable due to too short XORs
and on the other hand that the computational effort of solving
the parity constraints is not too high due to higher length of
constraints. Additionally, a deep integration of Gauss-Jordan
elimination into our implementation is ongoing work.

Furthermore, we are currently investigating performance
improvements by including further information from appli-
cation level of the circuit to narrow down the search space.
The approach has shown a high flexibility, so that it should be
evaluated also for different fault models and related problems.
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