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ABSTRACT The intensity of cosmic radiation may differ over five orders of magnitude within a few hours
or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probabil-
ity of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early
detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening meas-
ures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The
proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning
model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings
the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing
the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-
grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimi-
zation of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of
hardware accelerator design for the implementation of selected machine learning model and online learning
algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system
employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of
high radiation levels.

INDEX TERMS Solar particle event, single event upset, machine learning, online learning, hardware accel-
erator, reliability, self-adaptive multiprocessing system

I. INTRODUCTION

AS CMOS technology scales into the deep nanometer range,
the design of integrated circuits (ICs) for space missions
becomes more and more challenging. The radiation-induced
Single Event Upsets (SEUs) represent one of the main reliabil-
ity concerns for space-borne ICs. An SEU is a transient bit flip
in storage elements such as flip-flops, latches and SRAM
cells. This effect may occur when energetic particles (e.g.,
heavy-ions, alpha particles, neutrons, protons) pass through
the sensitive regions within the memory elements. As a result
of SEUs, the temporary data corruption and system malfunc-
tion could occur. Therefore, the efficient detection and cost-

effective mitigation of SEUs in electronic systems for space
applications are crucial.
One of the main causes of SEUs in space is the Solar Parti-

cle Event (SPE) phenomenon [1]. During an SPE, a large
number of energetic particles are emitted into space and this
event can last from several hours up to several days. These
energetic particles can induce SEUs either by direct ioniza-
tion or by indirect ionization [2]. Since the particle flux
directly determines the SEU rate of an electronic system,
based on the data obtained from past space missions [3], [4],
the SEU rate may increase hundreds to thousands of times
during the SPE peak periods. Thus, it is important to track
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the variation in particle flux in real-time, and consequently
activate the suitable mitigation techniques to protect the sen-
sitive elements in the on-board electronic systems. An exam-
ple is the adaptive multiprocessing system, which can
dynamically adapt the rad-hard modes (e.g., core-level triple
module redundancy) or low-protection modes (e.g., high per-
formance and low power consumption) as the radiation con-
ditions change [5].
For the detection of SPEs, various commercial or custom-

designed particle detectors are use [6]. The particle detectors
allow for measuring the particle flux or Linear Energy Transfer
(LET) based on the induced soft errors. Themost common par-
ticle detectors used in space missions are diode- [7] and
SRAM-based detectors [8]–[10]. In addition, alternative solu-
tions such as bulk built-in current detectors [11], acoustic
wave detectors [12], and 3DNAND flash detectors [13] can be
also used. Due to the low implementation cost, SRAM-based
detectors have been widely used in space missions. However,
the main limitation of existing SRAM detectors is that they are
mainly implemented as stand-alone devices. For the self-adap-
tive systems, however, it is important to measure accurately
the radiation exposure that directly affects the target system.
Thus, the on-chip radiation detection is imperative.
In order to achieve efficient SEU mitigation and maintain

the functionality of the system, it is necessary to enable the
real-time flux variations prediction, i.e., to predict the upcom-
ing SPEs. In such a way, radiation protection techniques can
be deployed before the burst of particles during SPEs. In order
to facilitate the SPE prediction based on real-time SEU detec-
tion, various machine learning algorithms can be applied to
predict SEU variations. Many works have reported the use of
various machine learning algorithms to forecast the onset and
duration of SPE, as well as for the characterization and optimi-
zation in the rad-hard system design [14]–[19]. However, to
the best of our knowledge, there is no much of publicly avail-
able work on the use of machine learning algorithms for the
prediction of SPEs and SEUs from in-flight detected SEU
data, in order to facilitate the self-adaptive mechanisms in
space-borne electronic systems.
The aim of this paper is to utilize an embedded on-chip

SRAM-based SEU monitor, the supervised machine learning
model as well as historical solar events flux data to forecast
the in-flight SRAM SEU rate, and thus, the occurrence of the
SPEs. The ability to predict accurately the increase in the
radiation levels during SPEs minimizes the risk that the tar-
get system would be exposed to adverse conditions without
being sufficiently protected.
The rest of the paper is structured as follows. Section II

briefly discusses the state-of-the-art and our contributions.
Section III provides an overview of the proposed system.
The historical solar events analysis procedure is detailed in
Section IV. The training and evaluation for supervised
machine learning and online learning algorithm are presented
in Section V. Section VI introduces the architecture of a dedi-
cated hardware accelerator. The analysis of results is detailed
in Section VII. Section VIII evaluates the application of the

proposed design in the self-adaptive dependable multipro-
cessing system. This paper is concluded in Section IX.

II. STATE-OF-THE-ART AND PAPER CONTRIBUTIONS

A. SPACE RADIATION

The space radiation particles can be separated into two cate-
gories: particles captured by the planetary magnetosphere in
the radiation belt and radiation particles from deep-space [1].
The planetary magnetic fields, such as the Van Allen belt
around the Earth, can trap the charged particles, for example,
protons, electrons and heavy ions. The radiation field from
deep-space consists of Galactic Cosmic Rays (GCRs) and
SPEs, which are mainly composed of heavy-ions and pro-
tons. GCR comes from outside the solar system and maybe
originating from explosive events, e.g., the supernova explo-
sion. The SPEs occur due to the eruptive phenomena in the
solar corona, such as the solar flares and Coronal Mass Ejec-
tion (CME).
When an SPE occurs, it can become the dominant contrib-

utor to the space radiation environment. As a result, the
intensity of energetic protons, ions, and electrons in the inter-
planetary space can be rapidly increased. According to the
definition from the National Oceanic and Atmospheric
Administration (NOAA) Space Environment Center [20], the
start of one SPE is the at least three consecutive five minute
intervals flux data points � 10 cm�2s�1sr�1 of proton with
energy � 10 MeV . In addition, the end of the solar event is
defined as the last time the flux � 10 cm�2s�1sr�1. SPEs
may last from several hours to several days, and could reach
the peak flux within tens of minutes to several hours, and
then slowly decay in several hours to several days. More-
over, the SPE peak flux could be two to five orders of magni-
tude higher than the background conditions. Thus, the SPEs
could be strong enough to cause hazards in space applica-
tions. For example, the measured SEU rate of a 4k�32 bit
0.25 mm CMOS SRAM module in a geostationary satellite
during a few SPEs is illustrated in Table 1 [21]. The approxi-
mate value of the background upset rate is obtained by linear
fitting to the monthly average data.

B. PREDICTION OF SPACE RADIATION EFFECTS

In the recent past, different machine learning algorithms have
been employed for the forecasting of space weather in the
space missions for various purposes, such as planning space-
craft and satellite routes/manoeuvres, protecting astronauts,

TABLE 1. Upset Rates (upsets.bit�1.day�1) In A Geostationary Satel-

lite During Large SPEs.

Data Background
Worst five
Minutes

Worst Day
Worst
Weeks

April 15,2001 3:7� 10�8 3:8� 10�5 6:1� 10�7 1:3� 10�7

Nov. 5,2001 3:8� 10�8 2:5� 10�5 7:4� 10�7 2:1� 10�7

Oct. 28,2003 4:4� 10�8 2:5� 10�5 6:1� 10�7 2:1� 10�7

Jan. 20,2005 8:1� 10�8 2:4� 10�5 6:5� 10�7 2:3� 10�7
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etc. E. Camporeale et al. reviewed the current achievements,
forecasting opportunities and future role of machine learning
in space weather [14]. In [15], H. M. Bain et al. applied the
machine learning classification techniques on the existing
Space Weather Prediction Center (SWPC) statistical proton
prediction model. The result showed that the machine learn-
ing model could make a much faster decision than the previ-
ous numerical models. A NASA-invest space intelligence
system was proposed by A.J. Engell [16], which had the
capability for the forecasting of solar-driven events and pro-
vided the high fidelity as well as pre-to-post eruptive transi-
tional forecasts.
However, the SPEs could not be reliably predicted since

the current quantitative prediction methods (e.g., [22])
require the continuous data, such as particle flux data, flare
location, radio burst data, etc. R. Glein et al. [23] used the
BRAMs embedded in an FPGA as the particle detector and
counted the corresponding SEUs to determine the radiation
condition. In addition, by calculating the mean time between
failures based on four measured points, the SPE onset can be
timely detected [24], but this approach cannot provide fine-
grained monitoring of SPE variations.
The machine learning methods have been also used in the

rad-hard system design, such as the optimization of the Soft
Error Rate (SER) characterization. F. Rocha de Rosa et al.
[17] applied the supervised and unsupervised machine learn-
ing techniques on the multicore system, for the purposed of
soft error analysis. In [18], T. Lange et al. used the machine
learning algorithms to optimize the fault-injection simulation
campaigns as well as evaluate the system functional failure
rate. S. Hirokawa et al. [19] exploited the machine learning
method to facilitate soft error discrimination method, and veri-
fied the importance of the multiple sensitive volumemethod.

C. OUR CONTRIBUTIONS

In contrast to the state-of-the-art solutions for the SPE and
SEU prediction discussed in Section II.A, we predict the
upcoming SPE by achieving the fine-grained SEU prediction,
thus, forecasting the solar condition and the system reliability
variations. The presented paper extends our previous work
[25], [26] by implementing the online adjustment of the pre-
diction function parameters, and enhancing the functionality
of the hardware accelerator, which are to the best of our
knowledge not feasible with any of the reported design.
Additionally, we have analyzed the application of the pro-
posed design in a fault-tolerance multiprocessing system, in
order to enable the self-adaptive optimal mitigation techni-
ques selection.
Our solution supports a supervised machine learning

model to provide a fine-grained prediction of the SRAM
SEU rates at least 1 hour in advance. Moreover, an online
learning method, which can further improve the prediction
accuracy of machine learning in real-time, is introduced. The
use of online adjustment allows adapting the system to
completely unexpected situations which could not be pre-
dicted based on the offline training.

A low-cost hardware accelerator is customized to execute
the proposed machine learning prediction model and online
learning algorithm. The cost and area/power overheads of
the proposed hardware accelerator are negligible compared
to the host SRAM. Besides that, the application of the pro-
posed design in the self-adaptive fault-tolerance multipro-
cessing system is analyzed, allowing to trigger the optimal
SEU mitigation methods under variable radiation conditions.

III. SYSTEM OVERVIEW

Our approach for the SPEs and SEUs prediction flow is illus-
trated in Figure 1. The basic principle is the prediction of the
in-flight SEU count rate of an on-board SRAM-based SEU
monitor. Therefore, the upcoming SPEs can be detected from
the rise of the predicted SEU rate. The main reason for using
the prediction together with the SEU measurement, rather
than just measuring the SEU rate, is to minimize the possible
adverse impact of radiation on the system operation. Namely,
if only the SEU measurement is employed, it may be too late
to react once the SEU is detected, because the monitor needs
a certain time period to collect and process the information.
The proposed method consists of two phases:
Offline phase – application of historical space flux data

(from previous space missions) to establish a suitable SEU
prediction machine learning model.
Online phase – measurement of the real-time in-flight

SRAM SEU count rate, and the prediction of upcoming SEU
changes.
There are two main blocks in the offline phase: solar con-

dition analysis and supervised machine learning. In the solar
condition analysis block, the in-flight hourly Soft Error Rate
(SEU rate) of the target SRAM during several historical solar
events is determined, which is discussed in Section IV. The
collected hourly SEU rates are processed for training in the
supervised machine learning block. Based on the off-line
training, a suitable SEU prediction model can be obtained,
which is described in Section V.

FIGURE 1. Block diagram of the proposed prediction method.
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The online phase contains two main blocks: real-time SEU
detection and hardware accelerator. The real-time SEU detec-
tion is performed continuously during the mission. Most
existing SRAM-based monitors [8]–[10] have been imple-
mented as stand-alone particle detectors. However, for the
self-adaptive systems for space applications it is important
that the particle monitor is embedded into the target system
in order to detect the radiation conditions to which the target
system is exposed during the mission. An embedded low-
cost SRAM-based SEU monitor is intended to be used in the
online phase for the real-time SEU measurement [27]. It is
essential to mention that the existing SRAM resources are
utilized for SEU measurement, which minimized the area
and power overhead.
Using the scrubbing approach, Error Detection and Correc-

tion (EDAC) code, and the over-counting detection register
file with a dedicated detection flow [27], the proposed monitor
can ensure accurate counting of all upsets that occur in the tar-
get SRAM, and distinguish the error type in each memory
word. Appropriate EDAC codes can be selected and imple-
mented with the dedicated detection flow for the detection or
correction of SEUs, Multiple-Cell Upsets (MCUs) and perma-
nent faults on memory words, such as SEC-DED (Single Error
Detection-Double Error Correction), SEC-DAEC-TAEC
(Double Adjacent Error Correcting-Triple Adjacent Error Cor-
rection), 3-bit burst ECC [27], etc. Therefore, bit errors and the
corresponding error type in each memory word can be accu-
rately detected. Moreover, in order to provide further protec-
tion against multiple-bit errors in each memory word, we aim
to apply the well-known interleaving technique. This tech-
nique can distribute the memory cells from the same word into
different columns, so that they are physically distant from each
other and the probability that a single particle hits multiple bits
of the same word is drastically reduced. Thus, MCUs in differ-
ent memory words can be corrected or detected by the EDAC
code, and the MCUs in the same memory word can also be
mitigated by using the interleaved SRAM technology. In these
ways, the proposed monitor can provide the accurate in-flight
fault counting capability during run-time, which is essential
for the following prediction.
The number of detected SEUs per hour is stored and proc-

essed by the hardware accelerator. The hardware accelerator
implements the off-line trained machine learning model and
the online learning algorithm. The online learning algorithm
is used in order to enhance the accuracy of prediction, since
the off-line training model may not take into account all real-
istic scenarios, as discussed in Section V.D. Therefore, the
predicted SEU data can be collected and the improvement of
the prediction accuracy can also be achieved during the run-
time, which is detailed in Section VI. Moreover, Triple-Mod-
ule Redundant (TMR) flip-flops [28] are used in components
of the online phase to enhance the robustness against radia-
tion particles.
The functionality of SRAM may also be affected by Single

Event Functional Interrupts (SEFIs) and Single Event Latchup
(SEL) or micro-SEL. It is thus imperative to apply appropriate

design measures to mitigate these effects. Since the SEFIs are
caused by particle strikes in control logic, one such event may
result in hundreds or thousands of upsets. To mitigate these
effects, the control logic should be protected with radiation-
hardening-by-design techniques. We aim to investigate vari-
ous selective protection schemes at multiple abstraction levels,
such as the combination of gate-level TMR and error detection
and correction. We have already conducted extensive research
in relation to SEL protection, and have proposed an SEL pro-
tection switch (SPS) based on inverter as an SEL sensor [29].
The SPS detects excessive supply current flow, as a key mani-
festation of SEL, and restarts the power to restore the normal
operation. It has been tested on a real chip with around 20 000
on-chip SPS cells. Irradiation tests have shown that a chip with
SPS is immune to SEL at a maximum tested LET of 67
MeVcm2mg�1 [29].

IV. SOLAR CONDITION ANALYSIS

The procedure to obtain the in-flight SEU rate from historical
solar events flux data is introduced in this section. This pro-
cedure provides the training data for the machine learning
block. The general steps of this process are:
1) Historical space flux data collection;
2) SPE energy spectra reconstruction;
3) SRAM SEU rate estimation.

A. FLUX DATA COLLECTION

In this study, in order to ensure that the selected solar events
are comprehensive and representative, according to the statis-
tics from NOAA [20], all 36 SPEs which affected the earth
environment during the solar cycle 24 (2008-2019) are
selected as analyzing target. There are several satellites and
instruments that have continuously measured the space ions
flux during the selected events. For the target of this study, sat-
ellites located close to the Earth in the heliosphere and outside
the Earth’s magnetic influence are preferred, where the addi-
tional radiation impact from geomagnetically trapped ions and
the shield protection from the Earth’s magnetic field can be
neglected. As a result, the Geostationary Operational Environ-
mental Satellite-Space Environment Monitor (GOES-SEM)
[30] and Advanced Composition Explorer-Solar Isotope Spec-
trometer (ACE-SIS) [31] public databases have been used for
proton and heavy-ion flux data source, respectively. The
GOES-SEM database has continuously provided high-quality
proton data since 1974. The ACE-SIS database continues to
provide [He, C, N, O, Ne, Na, Ma, Al, Si, S, Ar, Ca, Fe and
Ni] flux data since 1997.

B. SPE ENERGY SPECTRA RECONSTRUCTION

The differential flux for each ion needs to be processed in
order to obtain the energy spectrum, which is required for the
SEU rate estimation. In this study, the target is to reconstruct
the hourly average energy spectrum for the ions and protons,
which is a total of 5107 hours for the selected events. The
flux data obtained from online databases cannot directly be
used for the SEU rate estimation due to: (i) limited types of
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detected heavy ions, (ii) insufficient energy range, and (c) ion
flux data gaps. The common approach to solve the above
problems is to generate the mission flux data from composi-
tion ratios with existing flux information [32].
The CREME 96 [33] suite, which is one of the most

widely used suites for evaluating the in-orbit SEU rate, was
used to assist the analysis and verification in this study. The
CREME96 SPE models (peak five minutes (P5M), worst
week (WW), and worst day (WD)) are based on the corre-
sponding average flux data of the October 1989 event, which
is one of the largest events in past decades.

s xð Þ ¼ ssat 1� e�
x�x0
wð Þs� �

; x > x0
0 ; x � x0

(
(1)

The target SRAM in this study is the COTS SRAM from
Cypress which is designed in 65 nm bulk CMOS technology.
In [34], a series of heavy ion and proton radiation tests have
been carried out on the target SRAM, and the experimental
data has been fitted to the Weibull function, defined by Equa-
tion (1). The Weibull function is characterized by four
parameters: the on-set parameter (x0), the saturation cross-
section (ssat), the width parameter (W), and the dimension-
less exponent (S). In Equation (1), since the Weibull curve is
used for fitting heavy-ion and proton cross-section data, the x
represents either the LET for heavy-ions or the energy for
protons, and x0 is the LET or energy threshold.
There are in total four types of the SRAM cross-section

values obtained from [34]: bit or event cross-section with
static or dynamic operating mode, respectively. The event
cross-section is calculated by counting the number of events
as opposed to the number of bit flips. Whereas bit cross-sec-
tions allow a representation of the SEE sensitivity of the
memory from a usage perspective looking at the output of
how many bits are flipped. Moreover, in the CREME96
HUP model, heavy-ion cross-section must be specified in
bits for the direct ionization-induced SEU rate evaluation.
Besides that, there is a difference in the SRAM cross-section
depending on the operating mode (static or dynamic). Since
the target SEU monitor does not degrade the basic function
of the target SRAM, the SRAM could work in read/write
(dynamic) or idle (static) modes. After evaluating the static
and dynamic SRAM cross-sections on the CREME96 SPE
models, it was observed that higher SEU rate occurs in static
mode. Therefore, as a proof of concept, the SRAM radiation
test result of bit cross-section in static mode is used in this
study. The static Weibull fitting parameters for heavy-ion

and proton bit cross-section of the target SRAM are shown
in Table 2. For heavy-ion cross-section parameters, the ssat

is in cm2/bit, the x0 means the LETth in MeVcm2mg-1, and
W is also in MeVcm2mg-1. For proton cross-section parame-
ters, the ssat is in cm2/bit, the x0 means the Eth in MeV, and
W is also in MeV.
Since the ACE-SIS database only provides 14 types of

heavy-ion flux data, it is important to analyze the effect of
limited types of heavy-ions for this study. Table 3 describes
the target SRAM SEU rate estimated for all ions from He (2)
to U (92) and the ACE-SIS detected ions by using the
CREME96 SPE models, respectively. The results show that
in all three SPE models, the error caused by the incompletely
detected ion type is less than 1%. Therefore, by only using
the ACE-SIS ions for the heavy-ion-induced upsets analysis
is accepted. However, the energy range of the ACE-SIS is
from 5 to 150 MeV, which is quite low and insufficient for
the following SEU rate estimations. In order to reconstruct a
suitable energy spectrum for ACE-SIS ions with a proper
energy range, i.e., from 1 MeV to 1 GeV, the first order
power-law fit [35] is used to extrapolate to a higher energy
range. Moreover, the simple moving average process was
applied to evaluate the hourly fluxes date when the source
data is invalid at some moments.
The proton data from the GOES database has been avail-

able in good quality and sufficient energy range (over 700
MeV) for the energy spectra reconstruction. In this study, the
first-order exponential in rigidity approach is applied for the
proton data. The mathematical fitting expression is:

’ð> EÞ ¼ N0e
�R=R0 (2)

where the ’ð> EÞ is the integral energy fluence in proton/
cm2, N0 is a normalization constant, R is the proton rigidity
(proton momentum) in MV (million volts), and R0 is the
characteristic rigidity in MV. The proton rigidity R is related
to the proton energy (MeV) by:

R MVð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ 2m0E

p
(3)

where the E is the proton energy in MeV and m0is the rest
mass of proton (938 MeV). Since the above approach fit per-
forms not so well when the energy is very low, the power-law
fit method is used when E is less than 10 MeV. In addition,
the proton energy spectrum needs to be estimated in the same
range as the heavy-ion. Thus, the high energy range proton
data (HEPAD energy channel, greater than 375 MeV for
GOES 15) was extrapolated with the power-law fit. Figure 2
shows the ACE-SIS Carbon ion and GOES 15 proton one-

TABLE 2. Weibull Fitting Parameters of the Target SRAM Heavy-

Ion and Proton Static Bit Cross-Section.

dsat x0 W S

Heavy-ion 7:90� 10�8 1.04 23.57 1.43
Proton 1:97� 10�13 3.00 5.02 0.95

TABLE 3. SRAM SEU Rate (upsets.bit�1.hour�1) Sensitivity to Ions

With Different CREME96 SPE Models.

Ions Worst Weeks Worst Day Worst Five Minutes

He(2)-U(92) 2:90565� 10�6 1:33650� 10�5 4:96704� 10�5

ACE-SIS 2:90501� 10�6 1:33631� 10�5 4:9664� 10�3
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hour average flux data and the corresponding fit-extrapolation
obtained with respect to the CREME96 SPE models, respec-
tively. The reconstructed hourly spectrum for March 08,
2012, 00:00, which is before the peak of one solar event.

C. SEU RATE ESTIMATION

By applying the reconstructed energy spectra and the target
SRAM cross-section parameters in the CREME96 suite, the
hourly SEU rate for the selected events can be obtained. The
device shielding is critical for space applications, thus, the first
step is to obtain effective energy spectra after the shielding.
Since this study was not aimed at specific space projects, a 100
mils of aluminum shielding was assumed, which is the conven-
tional equivalent shielding thickness for spacecraft [34].
Since the heavy-ion-induced SEUs depends on the energy

deposition, but not the number of hits like proton-induced
SEUs, the Sensitive Volume (SV) geometry is needed for the
SEU rate estimation. The CREME96 suite uses the RPP
model (Rectangular Parallelepiped Parallelogram) [36] for
direct ionization induced upset events calculation, in which
the bit SV is assumed to have this shape. Choosing the RPP
thickness that conforms to the device cross-section direction
dependence is not trivial [21].
For the sake of simplicity, the RPP value recommended by

CREME96 was selected, in which lateral dimensions x and y
are determined as the square root of the limiting cross-section
for each bit, and the device depth z is 0.5 um. The saturation
cross-section can be determined from the Weibull fitting as
illustrated in Table. 2. Applying the above parameters in the
CREME96 suit, the heavy-ion-induced and proton-induced
hourly SEU rate can be obtained, respectively. Figure 3 and 4

present the obtained proton-induced and heavy-ion-induced
hourly SEU rate with respect to the corresponding ion flux
from March 6 to 11, 2012, respectively. The final hourly SEU
rates for target SRAM during the selected events are the sum
of calculated proton and heavy-ion induced SEU rate.

V. SEU PREDICTION WITH MACHINE LEARNING

This section elaborates how machine learning techniques can
be applied for early detection of the SEU rate changes. The
SEU prediction is intended to operate in conjunction with
real-time in-flight SEU measurement and the approach aims
to predict fine-grained SEU rate in advance by using the
upset rates of the nh last hours provided from the SEU moni-
tor. Therefore, several machine learning regression models
have been trained and evaluated to select the optimal model,
which yields the best prediction accuracy. In addition, an
online learning method is evaluated in order to increase the
prediction accuracy during the online phase.
The regression models were selected based on a low-

resource demand. The model training was conducted offline
in a supervised manner by applying the estimated SEU data
from past events. In this way, an already trained model can
be used online to perform the prediction, which generally
needs fewer computation resources.
To perform the training of themachine learningmodels, first,

the in-flight hourly SEU rate data acquired from historical solar

FIGURE 3. March 6-11, 2012 SRAM hourly SEU rate estimated

from GOES proton database. The particle flux for all of the lower

to higher energy channels are shown, and all channels data are

with good quality.

FIGURE 2. March 08, 2012, 00:00, ACE-SIS Carbon and GOES-15

proton reconstructed hourly energy spectra with respect to the

CREME96 SPE models, respectively. Dashed lines correspond

to the corresponding extrapolation method flux fitting results.

Squares correspond to the ACE-SIS hourly carbon flux. Trian-

gles correspond to the hourly proton in the GOES low energy

detector. Circles correspond to the hourly proton in the GOES

HEPAD detector.

FIGURE 4. March 6-11, 2012, SRAM hourly SEU rate estimated

from ACE-SIS heavy-ion database. The particle ion flux of He, C

and Ni for the lower and higher energy channels are shown, and

the data are with poor quality.
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events are processed and transformed in order to be representa-
tive to actual upsets obtained from the SEU monitor (as
described in Section III). After, themachine learning regression
model is trained with the transformed data acquired from his-
torical solar events. Then, the accuracy of the trained model to
predict the hourly upset rate is evaluated. These steps are
described in detail in the following sections. Additionally, an
algorithm is analyzed to perform online learning after the
model is deployed.

A. PRE-PROCESSING OF THE DATA SET

The in-flight hourly SEU rate data acquired from historical
solar events form the test and training data set for the
machine learning models. The hourly SEU rate values are
obtained by processing the hourly flux database, as explained
in Section IV. The processed hourly flux data together with
the cross-section of the target SRAM are used to calculate
the hourly SEU rate by using the CREME96 suite. In this
way the SEU/bit/day is obtained. Since in the actual system,
the data from the SEU monitor will be an integer ranging
from 0 to the size of the SRAM, the calculated SEU/bit/day
are multiplied by the target SRAM size. In this study, the
SRAM size of 2G bit is selected, which can provide enough
detected SEU resolution during any solar events. Further, to
get the hourly upset rate, the SEU/bit/day values are divided
by 24h. Thus, the SEU rate per hour is obtained as it would
be measured from the SEU monitor in the actual system.
Most machine learning models do not perform well when

the input data has a wide numerical range. Therefore, a min-
max scaling was applied to the data before the training,
which scales the input data to a range from 0 to 1. This is
archived by dividing the hourly SEU rate, obtained from the
previous step, by the next power of two of the highest
expected number of upsets. In this way, no actual division
needs to be implemented in hardware since it is just a differ-
ent representation of the input data as a fixed point integer.

B. MODEL TRAINING

The transformed and pre-processed data is used to train and
evaluate different machine learning regression models in a
supervised manner. The data set was split, where 60% of the
data was used to train the model and the remaining 40% of
the data was used to evaluate the model. In this study, five
well-known regression models have been analyzed: (1) Lin-
ear Regression, (2) Decision Tree Regression, (3) k-Nearest
Neighbors Regression, (4) Multi-Layer Perceptron (MLP)
Neural Network and (5) Recurrent Neural Network (RNN)
with Long Short-Term Memory (LSTM). The Python�s Sci-
kit-Learn [37] and Kearas [38] frameworks were used to
implement the above models.
Usually, machine learning models have internal parameters

or use internal states to adjust their algorithm and to perform
an accurate prediction. These parameters are determined and
optimized based on the training data during the training pro-
cess. In addition to the internal parameters, most of the
machine learning models also have external parameters,

which are called hyperparameters. These hyperparameters are
often used to tune the training algorithm, which determines
the internal parameters. Thus, contrary to the internal parame-
ters, hypermeters cannot be determined by the training algo-
rithm itself. They need to be specified manually by the user
before the training process. In order to find the optimal set of
hyperparameters of a model, a hyperparameter optimization
has to be performed. Therefore, the model is trained and eval-
uated several times with different sets of hyperparameters.
In this paper, the hyperparameters are determined by per-

forming a random search coupled with grid search [39]. In
this approach, the models are firstly evaluated with randomly
generated hyperparameter values. Then, a more detailed grid
search is performed within the region of the best hyperpara-
meter values obtained by the random search.
Besides the hyperparameters, the performance of the

model also depends on the amount of past hourly SEU rate
values are used for the prediction. The length nh describes
how many hours of past SEU rate values are used. Similar to
the hyperparameter optimization, the optimal length for nh
needs to be determined, thus, models were also evaluated for
different history length of the hourly SEU data.

C. MODEL EVALUATION

To evaluate the prediction performance of a model, in this
study, the root-mean-square error (RMSE) and the coefficient
of determination (R2) metrics are used. The RMSE describes
the square root of the quadratic error of the expected values. In
comparison to the mean absolute error, the root-mean-square
error gives a higher weight to larger errors which are then
penalized more. The R2 score is a combined evaluation metric
which takes the RMSE and the variation (dispersion) of the
model into account. Thus, the R2 score provides a measure of
how well future samples are likely to be predicted by the
model. These metrics were calculated by comparing the test
data set with the predicted test data set of the trained model.
In order to obtain a more stable measurement, a cross-vali-

dation strategy with a cross-validation fold of 10 was used.
In this strategy, the data set is split into 10 different train and
test data sets which are used to independently train and eval-
uate the models. Then, the calculated metrics for each inde-
pendently trained and evaluated model are averaged over the
different measurements.
The performance of the models was evaluated for different

length nh of the past hourly SEU data, considering the
hourly intervals between 3 h and 24 h. For each consider-
ed nh , the above described hyperparameter optimization was
performed, and the model performance was measured
according to the specified metrics. Figures 5 and 6 respec-
tively show the R2 scores and RMSE for each regression
model on different history data length. It can be seen that
both the RNN with LSTM and the linear regression model
have the highest accuracy, and the performance of the RNN
is slightly better. The best performances are obtained with a
past hourly SEU data nh of 14 for the RNN and 17 for the
linear regression model.
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Although the RNN with LSTM model has slightly better
performance, the main advantages of the linear regression
model is that it is much simpler and requires significantly
fewer resources [40]. Hence, the linear regression model has
been chosen as the best option for the hardware accelerator,
which is detailed in Section VI.
It is worth mentioning that the current prediction for one-

hour in advance is a case study, which is consistent with the
recommended fault detection period of the target SRAM-
based SEU monitor [27] and the resolution of historical space
flux data from public databases (as shown in Figure 2, the
hourly average flux data are used for energy spectra recon-
struction). Estimation and verification of the prediction for
several hours in advance will be addressed in our future
work, and for that purpose additional in-flight data could be
required.
Moreover, due to the fact that an SPE phenomenon is an

explosive event, the change of space radiation intensity is
abrupt. Therefore, the first SEU instance after the event
explosive cannot be accurately predicted only from the
detected background SEU data. According to our analysis of
all the SPEs in solar cycle 24, the target SRAM SEU rates
for the first detected instance after solar event explosive is
usually 1.5�6 times higher than the background condition,
which is usually less than the recommended self-adaptive
mode trigger thresholds, which we introduce in Section VIII.
In addition, the dependable system would not operate with-
out any protection even at low radiation levels. After detect-
ing the first instance after the event explosive, the proposed
one-hour in advance prediction allows to continuously and
accurately estimate the forthcoming SEUs. Therefore, the
proposed prediction method is suitable for timely adapting
the system to the changing environment before the onset of
high radiation levels.

D. ONLINE PARAMETER ADJUSTMENT

Since the offline trained machine learning model was
obtained according to the historical ion flux data, the pro-
posed model may not perfectly fit the real working environ-
ment and could not adapt to a changing environment. For
example, in deep-space mission the radiation exposure levels
may vary significantly from the SPE levels available in data-
bases used for off-line training. In addition, the SPE data-
bases are available only for a number of possible satellite
orbits. Furthermore, the intensity of new SPEs may vary con-
siderably from the data used for training. Therefore, the
online learning method is needed to improve the existing off-
line trained model through learning from the data obtained in
the actual working environment. The online learning is good
for systems that receive data as a continuous flow and is
based on learning autonomously and incrementally from a
stream of incoming data. Each learning step is fast and cheap
compared to the offline training, thus, the system can learn
about the new data on the fly.
In Figure 7, the online learning process in this study is

illustrated. The SEU monitor can perform real-time SEU
data detection during the online phase. Therefore, the online
system can be trained incrementally by feeding the detected
SEU data from the monitor and predicted SEU data from the
prediction model sequentially. Thus, the parameters of the
offline trained prediction model can be continuously opti-
mized in real-time, thereby, adapt to the changing operating
environment.
In this study, the widely used online learning algorithm,

Stochastic Gradient Descent (SGD), is used to update the
parameters of the selected linear regression model. The SGD
performs the gradient descend on a single instance, which is
the predicted SEU and the corresponding detected SEU data
pair, for each training step. Since very little data is to be
manipulated, the SGD algorithm makes the training process
very fast. Moreover, only one training instance data needs to

FIGURE 6. RMSE (lower the better) for the selected regression

models with varying history data length nh.

FIGURE 7. Block diagram of the proposed online SEU prediction

function parameter adjustment procedure.

FIGURE 5. R2 scores (higher the better) for the selected regres-

sion models with varying history data length nh.
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be stored in memory at each iteration, which is one of the
main reason for the selection of SGD algorithm. For a more
detailed SGD description sees [41] for example.
In order to evaluate the SGD online learning performance,

the data set used in the offline training was re-used here. The
data set was randomly split, where 50% was used to get the
initial linear regression offline training model, 30% of the
data was used for online learning training and the remaining
20% of the data was used for online learning performance
validation. The parameters in the initial linear regression
model are the cornerstone of further optimization. The SGD
algorithm optimizes the initial model based on the online
learning training data set, 1668 instance in this study. The
algorithm detail and implementation of SGD in this study are
described in detail in Section VI.B. After the SGD performs
computing on a single instance each time, the new parame-
ters would be generated and updated to the linear regression
SEU prediction model. After learning of each instance, the
evaluation is performed in the same approach as described in
Section V.C.
Since only one instance at each online learning step is

used, the SGD algorithm is much less regular than the other
gradient descent approaches. The cost function of the SGD
always bounces up and down and decreasing only on aver-
age. Figure 8 presents the performance in terms of the R2

score for the SGD training instances on the test data set. It
can be noticed that as more instances are processed, despite
the evaluation results scores are bounce up and down, the
overall prediction performance has been improved. On the
other hand, the other important parameter for SGD online
learning is the learning rate, which decides the step size at
each training step when calculating the descent. If we set the
learning rate too small, the optimization process would be
slow, while if we choose it too big, the optimization process
will be oscillating or cannot even perform the optimization.
In this example, a small learning rate is selected, which
makes the small variation of scores for each instance. The
detail of selecting the suitable learning rate in this study is
described in Section VII.B.
The above evaluation shows that the online learning algo-

rithm can gradually improve the prediction accuracy when
the online working environment is consistent with the offline
analysis environment. In Section VII.B, the online learning

application of the other two scenarios are analyzed: when
offline flux data are not available, applying online learning
directly forms a prediction function from scratch; when the
online working environment is not the same as the offline
analysis hypothesis, using the online learning to improve the
prediction equation.

VI. HARDWARE ACCELERATOR IMPLEMENTATION

The hardware accelerator implements the machine learning
algorithm based on the linear regression model and the online
learning algorithm based on the SGD. The proposed design is
intended to collaborate with an SRAM-based SEU monitor,
and the offline-trained results from the linear regression
model. Figure 9 presents the architecture of the proposed
hardware accelerator design as well as the connection with
collaboration models. Two register files record the detection
of real-time hourly SEU data from the monitor and the linear
regression training parameters for the SEU data prediction.
An accumulator is used to implement the required calcula-
tion. The control logic selects the inputs and the functionality
of the accumulator as well as the updating of the parameter
register file. The right shifter processes the pro-extended
data, such as the pre-calculated SEU data from the accumula-
tor to obtain the actual predicted SEU data.
The calculation flowchart of the hardware accelerator is

presented in Figure 10. It contains two main stages: SEU pre-
diction and the online model parameter adjustment. The two
stages are used to implement the selected linear regression
module and the SGD algorithm and are explained in follow-
ing subsections, respectively.

A. SINGLE EVENT UPSET PREDICTION

Based on the results from Section V.C, the best accuracy of
the SEU prediction can be obtained when the history data
length of 17 is used. Therefore, the corresponding predic-
tion function for the target SRAM, in this case, can be
expressed as:

FIGURE 8. R2 score for the online learning evaluation on the data

set.

FIGURE 9. Proposed hardware accelerator design with interface

to external logic.
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SEUpred acc ¼ 1:2929 � x1 þ 0:0868 � x2 þ ð�1:1946Þ � x3þ
1:0308 � x4 þ 0:1016 � x5 þ ð�0:9142Þ � x6 þ 0:8201 � x7þ
ð�0:0178Þ�x8þð�0:6824Þ�x9þ0:6575�x10þð�0:0204Þx11
þ ð�0:4687Þ � x12 þ 0:4181 � x13 þ ð�0:0271Þ � x14
þ ð�0:2207Þ � x15 þ 0:1815 � x16 þ ð�0:0732Þ � x17 (4Þ

The coefficients of Equation (4) are obtained from the
trained linear regression machine learning model. The xn in
Equation (4) stands for the detected hourly SEU number
from the monitor in n hours ago. Thus, the above prediction
function can start to predict after the monitor consecutively
works and records the first 17 hours of data. Since this design
is intended to be used as an embedded part of the space-
borne system, simplicity and flexibility are among the most
important concerns. Thus, to avoid floating-point calculation
and reduce the hardware complexity, the coefficients in
Equation (4) are magnified by 2n times and only taking the
integer part to simplify the equation. The magnification fac-
tor needs to ensure that the new prediction equation induced
accuracy variation is less than 1%. In this study, the magnifi-
cation factor 32 is used, and the corresponding prediction
function is as follow:

SEUpred acc ¼ ð41 � x1 þ 3 � x2 þ ð�38Þ � x3 þ 33 � x4 þ 3

� x5 þ ð�29Þ � x6 þ 26 � x7 þ ð�1Þ � x8ð�22Þ � x9 þ 21

� x10 þ ð�1Þ � x11 þ ð�15Þ � x12 þ 13 � x13 þ ð�1Þ � x14
þ ð�7Þ � x15 þ 6 � x16 þ ð�2Þ � x17Þ=25 (5Þ

Two 32�21-bit address register files are used for logging
the historical SEU data and prediction function coefficients,
respectively. Regarding the historical SEU data register file,
a single 21-bit entry consists of a valid entry bit, and a 20-bit
representing the number of detected upsets. According to the
historical solar events analysis for the solar cycle 24, which
is introduced in Section IV, the peak value for the hourly
upsets count of the target SRAM is 118122 upsets/hour/
2Gbit. Therefore, the size of the selected register file can
guarantee regular data storage even during large SPE peak
fluxes. Moreover, up to 32 historical hourly upsets records
can be thus stored simultaneously. If the register file over-
flows, the oldest individual record will be automatically

discarded. For the coefficients register file, the contents are
loaded during the system setup and updated after the online
parameter adjustment procedure, which is described in Sec-
tion VI.B. After being magnified, as shown in Equation (5),
the coefficients are stored in each row, separately.
The accumulator performs repeated addition calculations,

thus implementing the multiplication operation in prediction
function. Therefore, a much longer calculation time that the
traditional multiplier is expected. In this study, for Equation
(5), a total of 262 clock cycles is needed in the accumulator.
Therefore, the minimum required time for the calculation of
Equation (5) is 5.24 ms when the working frequency is 50
MHz. As the historical SEU data register file is updated on
the hourly basis (i.e., the calculation is required only once
every hour), the calculation speed for the accumulator is suf-
ficient for the analyzed application. The accumulator con-
tains a 32-bit full adder, one two�s complement number
converter and a 32-bit register. The register keeps the inter-
mediate arithmetic result from the adder. The inputs for adder
are the selected xn and previous results from the register.
Moreover, the selected xn is converted to the two�s comple-
ment form when the corresponding coefficient identifies a
subtraction operation. Considering the calculation in practi-
cal applications, the overflow is not expected.
The control logic processes the coefficients in order to

select the appropriate xn for accumulator, and to determine
the number of repetitions in SEU prediction mode. The right
shifter is used to shrink the calculation result based on the
previous magnified factor, which is 5-bit right shift for Equa-
tion (5).

B. ONLINE PARAMETER ADJUSTMENT

The SGD algorithm is implemented here to update the SEU
prediction model parameters, thus, adapt to the changing
working environment. Due to the simplicity and low-cost
purpose of the design, the implementation of the SGD algo-
rithm reuses the sa me hardware design as the SEU predic-
tion work, but with new control logic in the current operation
mode. When activated, after a new detected hourly SEU data
is received, the online parameter adjustment is performed
automatically.
According to the SGD algorithm, the update of each

parameter Coefj in the prediction function is based on the fol-
lowing equation:

Coefj :¼ Coefj � a
@J uð Þ
@Coefj

(6)

where the a is the learning rate and the @J ðuÞ
@Coefj

is the gradient of
the cost function with regrad to the model parameter Coefj.
For the SEU prediction Equation (5), the corresponding
learning rate is set to 0.02, thus, in order to avoid dealing
with the floating-point data, the magnified by 2n times for the
learning rate is required. In this study, the magnification fac-
tor 256 for the learning rate is selected. Regarding the partial

derivative function @J ðuÞ
@Coefj

:

FIGURE 10. Decision flowchart for the hardware accelerator.
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@J uð Þ
@Coefj

¼ @ h xð Þ � yð Þ2
@Coefj

¼ 2 h xð Þ � yð Þxj (7)

where the hðxÞ denotes the predicted SEU data from the
selected prediction function, y is the detected corresponding
SEU data and xj stands for the detected hourly SEU data from
the monitor in j hours ago. Due to the limitation of hardware
resources, the online updating of one prediction function
parameter Coefj is broken down into the following steps:
1) Calculate the error between predicted and observed

SEU values E , E ¼ hðxÞ � y;
2) Obtain the corresponding gradient of cost function Gj ,

Gj ¼ 2 � E� xj;
3) Multiply by the learning rate, Lj ¼ a�Gj;
4) Update the Coefj, Coefj : ¼ Coefj � Lj.
In order to update all parameters, i.e., for Equation (5), the

above steps need to be repeated 17 times. All required calcu-
lations are performed by the repeated addition/subtraction in
the accumulator and shift register. The overall calculation
time greatly depends on the size of xj in step 2). However,
even if all xj reaches the maximum number, 118122 upsets/
hour/2Gbit, the required clock cycle to perform all the calcu-
lations is less than 3 M cycles, which corresponds to 0.06 s
when the working frequency is 50 MHz. Although the online
parameter adjustment requires much longer time than the
forecast of SEU, it is still appropriate for this study since the
calculation is only needed to perform once an hour.

VII. ANALYSIS OF RESULTS

A. PREDICTION PERFORMANCE ANALYSIS

In this section, the impact of SRAM size and history data size
for the SEU prediction performance are analyzed. The analysis

in Section VI was done for a large size SRAM with a size of 2
Gbit and with the history data length of 17. However, many
embedded systems do not have the multi-Gbit SRAM resour-
ces, but rather much smaller internal SRAMwith the size from
several Mbit to tens of Mbit. In such a case, the small detection
area of the SRAMmay not provide sufficient sensitivity, and it
is necessary to evaluate the optimal SRAM size that is required
for particle detection. Moreover, the selection of history data
length of 17 means the prediction cannot be done for the first
17 hours, which may be too long for some scenarios where
faster prediction is required. According to the history data
length analysis in Section VI, length 4 also has an excellent R2

score with a slightly worse RMSE performance. For this case,
the prediction equation is:

SEUpred fast ¼1:1939 � x1 þ 0:1105 � x2 þ ð�0:7789Þ � x3
þ 0:4478 � x4 (8Þ

The magnification factor 1024 is used for the above func-
tion, thus, the corresponding function implemented in hard-
ware accelerator is:

SEUpred fast 1024 ¼ð1223 � x1 þ 113 � x2 þ ð�798Þ � x3
þ 459 � x4Þ=210 (9Þ

In Figure 11, the hardware accelerator SEU prediction per-
formance based on functions (5) and (9), for 2 Gbit and 4
Mbit SRAMs, during large and small SPEs, is illustrated.
The SEU rate for the 4 Mbit SRAM was determined by scal-
ing the SEU rate for 2 Gbit, i.e., the scaling factor is deter-
mined as the size ratio of the two SRAMs. This approach is

FIGURE 11. Hardware accelerator SEU prediction performance for 2Gbit and 4 Mbit SRAM during large and small SPEs, respectively.

The Equation (5) is the prediction function with history data length 17 and magnification factor 32. The Equation (9) represents the pre-

diction with history data length 4 and magnification factor 1024.
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adopted because the SEU rate is roughly proportional to the
SRAM produced in the same technology and using the same
bit-cell architectures [42]. However, it is important to men-
tion that this is a rough approximation because the cross-sec-
tion may differ among different SRAMs. In order to facilitate
the comparison of the evaluation scores, the RMSE scores in
Figure 11 are scaled with the corresponding SRAM size.
It can be seen that functions (5) and (9) can predict the

SEU variation fairly accurately for the small and large SPEs
with 2 Gbit SRAM. However, in the case of 4 Mbit SRAM,
only the large SPE can be observed. Neither of these equa-
tions can provide sufficient accuracy during a small SPE.
The main reason is that the SEU monitor with 4 Mbit SRAM
does not have sufficient resolution to provide valid SEU data
for prediction during the SPE on-set period.
In Figure 12, the prediction performance for 20 Mbit

SRAM during the same small SPE as previous is shown. It
can be observed that the 20 Mbit SRAM can predict the small
SPEs. In addition, due to not considering too much historical
SEU data with low resolution, the function (9) has a better pre-
diction performance than function (5). In order to get a
smoother prediction curve than in Figure 12 and thus ensure
good quality of SPE prediction, a larger SRAM area needs to
be used. In addition, in order to ensure the sensitivity to small
variations of space flux, thus, solar condition changes can be
accurately detected. We recommend that the SRAM size can
guarantee to detect at least one SEU per hour under the back-
ground condition. For the target SRAM, the size of 35 Mbit is
recommended for online real-time detection.

B. ONLINE LEARNING PERFORMANCE ANALYSIS

For the online learning process, the learning rate is a critical
parameter for the SGD algorithm which determines how fast
the system adapts to the changing data. The high learning
rate allows the system to quickly adapt to new inputs. How-
ever, an excessively high learning rate may induce the sys-
tem to quickly forget the old data, which may reduce the
accuracy. Conversely, a low learning rate makes the system
less sensitive to changes in new data. Thus, it is necessary to
evaluate an appropriate learning rate for the online parameter
adjustment. Moreover, applying online learning to obtain the
SEU prediction function from scratch is also analyzed, which
is important when the offline training data is not available,

such as in deep-space missions. In addition, since the online
environment may be inconsistent with the offline analysis
hypothesis, the prediction optimization from online learning
has also been analyzed.
Figure 13 presents the gradient descent with the contour

plot of the online learning cost function with respect to the
SEU prediction coefficients Coef1 and Coef3, which are the
two most weighted coefficients in the prediction function,
regarding the different learning rates. The RMSE cost func-
tion was used to perform the analysis. The numbers on the
contour line stand for the expected RMSE prediction error
with the corresponding coefficients, thus, the smaller the bet-
ter for the model performance. Four online adjustments with
different learning rates were performed, and all of them have
the same starting point, where Coef1 is 1.11154 and Coef3 is
-0.88478.
It can be found that as the online adjustment progresses,

although there will be fluctuations, the prediction errors in
Figures 13(a) and 13(b) are steadily decreasing. However, as
the learning rate increases in Figures 13(c) and 13(d), the
online adjustment could cause a large prediction error, which
induces the cliff drop in the prediction performance. The
main reason is that a large learning rate may cause abnormal
data to have an excessive impact on prediction performance.
In addition, the online learning is based on the results from

FIGURE 12. Hardware accelerator SEU prediction performance

for 20 Mbit SRAM during a small SPE on Mar 08, 2011.

FIGURE 13. The gradient descent with contour plot respect to the

Coef1 and Coef3 under the different learning rate.
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offline training, thus, a small learning rate is more suitable in
this study. However, a too-small learning rate could cause a
much longer time to adapt to the new working environment.
Thereby, the learning rate of 0.02 is selected in this study.
Since the SGD algorithm supports the learning from the

new data on the fly, the training approach to abandon offline
learning and directly applying online learning to form a pre-
diction function from scratch is possible. In Figure 14, the
prediction performance with the online learning on several
amounts of instances for 2 Gbit SRAM is illustrated. The
training starts from a linear regression model in which all the
coefficients are set to 0. With constant inputs of detected
SEU data, the SGD algorithm is used to update coefficients.
In this example, it shows that after the SGD algorithm takes
about 1000 instances, a relatively well-performing SEU pre-
diction equation can be obtained. Due to the requirement of
quickly adapting to a new environment, a high learning rate
is expected in the initial stage. However, as the prediction
error continues to decrease, the gradually reduce learning
rate should perform. Moreover, since the SPE phenomena
don’t occur frequently, the purely online learning process
from scratch could take a long time to achieve a good predic-
tion accuracy for space applications.
The offline training is based on a limited data set and cer-

tain parameter assumptions, with may not be the same as the
online condition. Thus, in the actual application, there are
many other possible reasons that would affect the accuracy
of the offline algorithm, such as the actual shielding parame-
ter, changing of the satellite orbits, variation of solar cycles,
etc. For example, during the offline data set collection phase
in Section IV.C, 100 mils of aluminum shielding were
assumed. However, the actual shielding parameters may not
be the same. In order to analyze the shielding impacts, a new
data set has been collected as the same approach in
Section IV, but with a new aluminum shielding parameter,
10 mm (394 mils), which is used in [32]. The prediction
function Equation (5) and the online learning algorithm are
used to evaluate the new data set. Figure 15 shows the new
data validation results, and the trained 0 instance means the
prediction performance when only uses Equation (5) for the
new data set evaluation. The results show that the prediction
based on Equation (5) has a decline during the SPE peak
period, and with the online learning assistance, the forecast
results can be gradually improved. Detailed analysis of the

performance of online learning in the various environments
will be our future work, such as with different orbits, solar
cycles, offline analysis parameters, etc.

C. SYNTHESIS RESULTS

As the overall idea is to implement the SRAM monitor and
hardware accelerator together with the target system on a sin-
gle chip, it is necessary to investigate the introduced power
and area overhead. The synthesis results presented in this Sec-
tion have been obtained for the IHP’s 130 nm bulk CMOS
technology with the supply voltage of 1.2V, and the operating
frequency of 50 MHz. Although the synthesis analysis in this
section uses different technology than the analyzed SRAM,
the results are of significant value for hardware consumption
comparison because the proposed design is general and can
be implemented in different technologies. The choice of the
target technology will define the SRAM’s cross-section which
is obtained from irradiation experiments.
In Table 4, the total area and power consumption for 20

Mbit SRAM, SEU monitor and proposed hardware accelera-
tor are given. Although the power consumption of the pro-
posed hardware accelerator design are about 18 times larger
than that of SEU monitor, compared with 20 Mbit SRAM,
the induced area and power consumption are only 4.55% and
0.95%, respectively. Moreover, regarding the hardware
accelerator, two 32�21-bit address register files are one of the
main contributors to the area consumption, which can be
reduced in the real case. Besides that, the power consumption
for the proposed design is the pessimistic estimation which
supposes it always keeps running. However, the hardware
accelerator is only expected to perform once an hour, thus,
the actual power consumption would be much lower. Thus,
these results indicate that the cost and overhead for the hard-
ware accelerator are negligible compared to the host SRAM.

VIII. APPLICATION OF THE PROPOSED DESIGN

The proposed design is for the highly dependable and self-
adaptive multiprocessing systems employed in space applica-
tions, which aims to achieve the trade-off between reliability,
power consumption and performance. Due to the inherent
hardware redundancy in the multiprocessing systems, the
reconfigurable/dynamic mechanisms are convenient for
deployment, such as the core-level N-Module Redundancy
(NMR), dynamic voltage frequency scaling, dynamic task

FIGURE 14. The prediction performance for online learning from

scratch.

FIGURE 15. The prediction performance for online learning opti-

mizes the offline prediction function on the new data set.
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scheduling, etc. The proposed design can be used for the pre-
diction of the changes in harsh radiation environments. As a
result, the optimal operating modes can be selected according
to the radiation condition and the reliability requirements.
In Figure 16, the decision flow for the optimal operating

mode selection from the proposed design is illustrated. The
proposed decision flow is intended to be used in the self-
adaptive platform and contains three main phases: real-time
detection, design-phase analysis and real-time mode selec-
tion. The goal is to guarantee the reliability of the self-adap-
tive multiprocessing system. Our proposed design works in
the detection phase, which provides the in-flight predicted
hourly SEU data.
With the information on the cross-section of SRAM detec-

tor, obtained through the irradiation experiment, the pre-
dicted particle flux wPRED in the following time period T (T
¼ 1 hour) can be computed as,

’PRED ¼ SEUPRED

sSRAM � T
(10)

where SEUPRED is the predicted number of upsets in the tar-
get SRAM in the following hour and sSRAM is the cross-sec-
tion of the target SRAM and ’PRED is in particle/cm2.
In the analysis phase, the system failure rate �s and reli-

ability function RsðtÞ of the target system are computed. The
failure rate of the target system depends on the design, oper-
ating conditions and particle flux. In terms of operating con-
ditions, the clock frequency and supply voltage affect the
failure rate. Higher supply voltage decreases the failure rate
due to higher robustness to particle strikes, while higher fre-
quency increases the failure rate due to higher error latching
probability. If the system is tested under a predefined nomi-
nal flux ’NOM , clock frequency f and supply voltage VDD,
the system failure rate under the predicted flux ’PRED can be
calculated as,

�s SYS ¼ ’PRED

’NOM
� �s NOM f ; VDDð Þ (11)

where �s NOMðf ; VDDÞ denotes the nominal system failure
rate for a given frequency and supply voltage. The nominal
failure rate can be determined either from irradiation experi-
ments or by simulation/analytical evaluation. If the nominal
failure rate is obtained for different operating conditions, a
look-up table can be used to store these values and the table
readout can be employed to obtain the appropriate value for
each operating mode.

For the sake of simplicity, the system failure rate can be
denoted as �s; i.e., �s ¼ �s SYS . Assuming that the system
reliability decreases exponentially over time t , the system
reliability function RsðtÞ can be expressed as:

Rs tð Þ ¼ e��st (12)

The optimal operation mode should be determined in the
selection phase from the system reliability requirements and
the available reconfigurable mechanisms during run-time. The
IEC 61508 standard [43] proposes four Safety Integrity Levels
(SIL), SIL 4 being the most dependable and SIL 1 the least,
and is commonly referred by high-reliability systems such as
space applications. The Probability of Failures per Hour
(PFH) requirements is determined for different SIL levels1.
The PFH of the system can be calculated by [44]:

PFHs ¼ 1� Rs tð Þ with t ¼ 1h (13)

Therefore, from the above equations, the mapping relation-
ship between the SEUPRED and PFHs can be established,
thereby, determining the real-time system SIL based on the
radiation condition. As a case study, the proposed design can
be integrated into a 4-core multiprocessing system which sup-
ports the core-level NMR mitigation technique [5]. Three
operating modes are performed in the multiprocessing system:
1) De-stress mode. Three of the cores are powered off and

one core is active. Thus, one core system reliability
function is:

Rcore tð Þ ¼ e��ct (14)

2) Fault-tolerance mode. Two, three or all four cores simul-
taneously execute the same program in a Dual, Triple or
Quadruple Modular Redundant (DMR, TMR or QMR)
configuration, respectively. According to [45], the corre-
sponding reliability functions are:

RDMR tð Þ ¼ e�2�ct (15Þ
RTMR tð Þ ¼ 3e�2�ct � 2e�3�ct (16Þ
RQMR tð Þ ¼ 4e�3�ct � 3e�4�ct (17)

TABLE 4. Area (in mm2 ) and Power (in mW) Comparison.

Area Power

20 Mbit SRAM 14 384
SEU Monitor 0.0957 0.211
Hardware Acc. 0.6363 3.629

FIGURE 16. Decision flow for the optimal operationmode selection.

1SIL 1: PFH¼10-5 � 10-6 ; SIL 2: PFH¼10-6 � 10-7 ; SIL 3: PFH¼10-7 � 10-8 ;
SIL 4: PFH¼10-8� 10-9.
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3) High-performance mode. All cores execute different
tasks, and the reliability function for each core is equal
to Equation (14).

By adjusting the “redundancy” and “power-off” states of
the processing cores to switch operation modes, the system
reliability and performance can be dynamically customized.
Regarding the radiation-induced transient faults: the DMR
enables fault detection at the module output but cannot
reduce the system PFH; the TMR can mask one core error
and support the decrease of system PFH; the QMR can mask
up to two core errors simultaneously, thus, potentially to fur-
ther attenuation the system PFH.
From the predicted in-flight SRAM SEU, the system PFH

can be finally calculated in real-time. Therefore, according to
a required SIL level, when the current PFH value exceeds an
operation mode-specific threshold during the run-time, the
system can load the operation mode autonomously. As an
example, Table 5 presents the connection between the pre-
dicted SRAM SEU rate and the different operating modes as
well as the average hours for corresponding SEU rates in one
year average. The SEU rate classification is determined from
the published empirical results as seen in Table 1, and the
accurate SEU rate classification for the mode selection in the
target multiprocessing system will be our future work. The
average SEU rate duration time in one year is the merging of
SEU rates under different solar conditions into a one-year
average, detailed in [23].
In addition to triggering the on-demand operating mode, the

proposed self-adaptive mode switching approach can also
effectively reduce the power consumption of the target multi-
processing system. Table 6 illustrates the power consumption
comparison in one year of different operating modes for the
target system. The cumulative core energy per year for the self-
adaptive mode switching can be calculated as Pyear ¼
5460rþ 2 � 3120rþ 3 � 162rþ 4 � 18r ¼ 12258r, where
r expresses the energy consumption of one core per hour.
Comparing with the fault-tolerance modes which have the
same performance with the self-adaptive model switching, the
power consumption of the proposed approach is even lower
than the DMRmode.

IX. CONCLUSION

In this work, an approach for the in-flight SEU prediction of
the SRAM-based SEU monitor system in space-borne elec-
tronic systems is proposed. Thus, the upcoming flux varia-
tion, and the corresponding SPE, can be predicted from the

rise of SEU count rate at least one hour in advance. The fine-
grained hourly tracking of the SEU variations during the
SPE, as well as under normal conditions, is supported. More-
over, the optimization of the prediction function during run-
time is realized, thus, the prediction system can adapt to the
changing environment. The proposed concept combines the
embedded SRAM-based particle detector for online SEU
detection, the supervised machine learning prediction model
offline trained with the public flux database obtained from
past space missions as well as the online optimization algo-
rithm. A dedicated low-cost hardware accelerator for imple-
menting the prediction and online learning system has been
proposed, which is intended to support the self-adaptive opti-
mal model selection in the multiprocessing systems. Our
analysis has shown that the proposed system has an outstand-
ing prediction accuracy for the analyzed application and with
a negligible cost.
A number of open issues have still to be addressed in our

future work. Firstly, the prediction accuracy can be further
improved, such as providing the real-time measurement of
particle LET which can be used as an additional input param-
eter for the machine learning algorithm. Furthermore, the
integration of the proposed prediction system in a self-adap-
tive multiprocessing system, and verification with irradiation
experiments, will be performed.
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