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A B S T R A C T

This work introduces an embedded approach for the prediction of Solar Particle Events (SPEs) in space applications by combining the real-time Soft Error Rate (SER)
measurement with SRAM-based detector and the offline trained machine learning model. The proposed approach is intended for the self-adaptive fault-tolerant
multiprocessing systems employed in space applications. With respect to the state-of-the-art, our solution allows for predicting the SER 1 h in advance and fine-
grained hourly tracking of SER variations during SPEs as well as under normal conditions. Therefore, the target system can activate the appropriate mechanisms for
radiation hardening before the onset of high radiation levels. Based on the comparison of five different machine learning algorithms trained with the public space flux
database, the preliminary results indicate that the best prediction accuracy is achieved with the recurrent neural network (RNN) with long short-term memory
(LSTM).

1. Introduction

The Solar Particle Events (SPEs) represent the periods of intense
radiation bursts resulting from solar storms on the Sun's surface [1].
During these events, the energetic particles such as heavy ions and
protons are emitted in space, and the particle fluxes are orders of
magnitude higher than the background level. These particles pose a
severe reliability threat for electronics employed in space missions.
Namely, the passage of an energetic particle through the sensitive re-
gion of a digital circuit may cause the Single Event Upsets (SEUs), i.e.
temporary bit flips in storage elements (flip-flops, latches and SRAM
cells). The SEUs (also known as soft errors) may result in malfunction
and failure of the complete system. It is therefore essential to provide
efficient mitigation of SEUs in electronic systems intended for space
applications.

According to data from various space missions [2,3], the SEU rate
for commercial Static Random Access Memories (SRAMs) can increase
by several orders of magnitude during the SPEs. Since the high radia-
tion levels during an SPE can last for hours or even days [4], it is vital to
detect the changes in the radiation exposure and activate the suitable
radiation hardening measures to protect the critical elements of the
system. A typical solution would be in the use of adaptive multi-core
processing system based on configuring the cores into a rad-hard mode
(e.g. Triple Modular Redundancy) when the high radiation levels are

detected. Alternatively, under low radiation levels the cores can be
configured for high performance or low power consumption, as re-
quired by the application [5]. This concept enables to achieve the op-
timum system performance with highest possible robustness to ionizing
radiation and minimum power consumption under variable operating
conditions.

The detection of SPEs is achieved with particle detectors which
allow for measuring the soft error rate (SER) in terms of the particle flux
in real-time. Once the particle flux and SER are determined under given
radiation conditions, the suitable hardening measure can be activated.
However, in order to achieve efficient SEU mitigation and prevent the
data loss, it is important to be able to predict the increase in particle
flux or SER, i.e. to predict when an SPE will occur. To accomplish this,
various machine learning algorithms can be applied to train the system
for predicting the variations of SER from the real-time SER measure-
ments.

Numerous works have reported the use of different machine
learning algorithms to predict the onset and duration of SPEs for var-
ious purposes such as space weather forecasting, planning the space-
craft and satellite routes/manoeuvers, protection of astronauts in space
missions, etc. [6–9]. The machine learning algorithms have been also
used for optimization of the SER characterization in the rad-hard
system design phase [10–12]. Furthermore, the use of machine learning
for dynamic control of the fault tolerant mechanisms in cyber security
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applications has been reported [13].
However, to the best of our knowledge, there is no much of publicly

available work on the use of machine learning algorithms for predicting
the SPEs from in-flight SER data, as a means of enabling the self-
adaptive fault tolerance in space systems. This issue has been addressed
to a certain extent in [4], where the BRAMs embedded in an FPGA are
used as particle detectors and the SPE onset is detected by measuring
four SER values to calculate the mean time between failures. Such
concept allows only to classify the SPE into five static levels but the
real-time variations of the SPE cannot be monitored. Moreover, due to
the variable detection time which depends on the mean time between
failures, some SPE peak values may not be detected [4].

In contrast to the approach in [4], this work proposes the use of an
embedded on-chip SRAM as a particle detector and the supervised
machine learning model to predict the SER of SRAM and thus the oc-
currence of an SPE. Our solution enables to predict the hourly changes
of SER, providing a fine-grained representation of the SER variation at
least 1 h in advance. Moreover, the prediction period does not depend
on the measured real-time SER, which eliminates the risk of not de-
tecting the presence of SPE. The importance of such solution is the fact
that the ability to predict the increased radiation levels minimizes the
risk that the target system will be exposed to adverse conditions
without being sufficiently protected.

The rest of the paper is structured as follows. Section 2 gives a brief
description of the proposed method. Section 3 explains the analysis
procedure of historical solar condition, i.e. how the SEU rate is ex-
tracted from the available database. The machine learning models and
training results are detailed in Section 4. The conclusion and main di-
rection for future work are outlined in Section 5.

2. Proposed approach

In Fig. 1, our approach for the prediction of SPEs is illustrated. The
main idea is based on the prediction of SER of an on-board SEU
monitor, and the rise of SER is used as the indication for an upcoming
SPE. Thus, the two main phases in the proposed SPE prediction ap-
proach are:

• Online phase – measurement of SER (SEU rate) of an SRAM-based
SEU monitor in real-time and prediction of SER variations.

• Offline phase – use of historical hourly flux data to establish/train a
SER prediction model.

The online SER measurement is conducted continuously during the
mission. Important is to mention that the existing functional SRAM

resource are used for the real-time SER measurement. A detailed de-
scription of the corresponding concept can be found in our work [14].
Based on the prediction model and the real-time measurements of SER,
the expected SER of the SEU monitor in the following hour can be
predicted. Since the SER of an electronic system exposed to radiation is
linearly related to the particle flux [15], the predicted SER information
should then be used to estimate the SER of the target fault tolerance
system, but this is beyond the scope of this work. The hardware design
for the prediction block, which implements the trained machine
learning model from the offline phase, is also not the scope of current
work.

The offline phase performs two main tasks: historical solar condition
analysis and prediction model training. In the historical solar condition
analysis, several SPEs are analysed and the corresponding hourly SER
data of selected SRAM is collected, which is discussed in Section 3. The
hourly SER data is used to train and validate the machine learning
models, as described in Section 4.

3. Solar condition analysis

In this section, the procedure to obtain the in-flight SER data using
real historical SPE flux data is described. The general steps of the
procedure are:

(1) Collection of historical solar events flux data;
(2) SPE energy spectra reconstruction;
(3) SER estimation.

3.1. Flux data collection

The data on the past solar activities, collected by the orbital sa-
tellites, is publicly available and can serve as a basis for the offline
analysis of solar activities and prediction of SPEs for future missions.
According to the large events list from the National Oceanic and
Atmospheric Administration (NOAA) [16], all 36 SPEs which occurred
during the solar cycle 24 (2008–2019) are selected for this analysis. The
Geostationary Operational Environmental Satellite-Space Environment
Moni-tor (GOES-SEM) database [17], which continuously provides the
data since 1974, has been selected as the proton data source. The Ad-
vanced Composition Explorer-Solar Isotope Spectrometer (ACE-SIS)
database, which continuously provides the [He, C, N, O, Ne, Na, Ma, Al,
Si, S, Ar, Ca, Fe and Ni] flux data since 1997, has been chosen for heavy-
ion data source [18]. The working environments for the GOES and ACE
satellites are close to the Earth in the heliosphere, but outside the
Earth's geomagnetic influence. Therefore, the additional radiation im-
pact from geomagnetically trapped protons and the shield protection
from the Earth's magnetic field can be neglected during the following
SER calculation.

3.2. SPE energy spectra reconstruction

The flux data obtained from online databases cannot be used di-
rectly for the SER estimation due to the data gaps, low energy range and
incomplete ion type measurements. Therefore, the common approach
to address the above issues is to generate the missing ion fluxes from
composition ratios with existing flux information [19].

In this study, due to the incomplete ion types, the heavy-ion induced
SEU rate calculation by using only the ACE-SIS ions has the error of
about 6%. Moreover, the energy range from ACE-SIS is from 5 to
150 MeV, which is insufficient for SEU rate estimations. Therefore, the
energy spectrum has to be extrapolated to a higher range, i.e. from 1 to
10 GeV. The first order power-law fit is used for heavy-ion energy
spectra in this study, which can provide a good fluencies in the high-
energy range. Different from the data from ACE-SIS, the proton data
from GOES database has a good quality and energy range, which is over
700 MeV. To ensure the estimation of proton energy spectra in the same
range as heavy-ion, the exponential in particle rigidity fitting methodFig. 1. Proposed SPE prediction flow.
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and the first-order power-law method are used for lower and higher
(HEPAD energy channels, larger than 375 MeV for GOES 15) energy
range fitting, respectively. The detailed description of the above energy
spectra reconstruction methods can be found in [19].

3.3. SER estimation

The CREME96 [20,21] suit was used for estimation of hourly SER of
SRAM-based SEU monitor. It is an update of the Cosmic Ray Effects on
Micro-Electronics code, and is one of the most widely used suites for
creating the ionizing radiation environment models and evaluating the
in-orbit soft error rate for space applications.

The SRAM used in this study is a 65 nm COTS SRAM in bulk tech-
nology from Cypress. Fig. 2 shows the Weibull fit for heavy-ion and
proton cross-section curves for the target SRAM obtained from radia-
tion tests [22].

In the CREME96, the environmental models are generated from
each selected event ion fluxes and with 100 mils of device shielding
before the SER calculation, which is a conventional equivalent shielding
thickness for spacecraft [22]. Since the heavy-ion induced upsets de-
pend on the energy deposition, but not the number of hits like proton-
induced upsets, the Sensitive Volume (SV) geometry is necessary for the
following calculation [23]. The CREME96 uses the RPP model (Rec-
tangular Parallelepiped Parallelogram) [24] for direct ionization in-
duced upset events calculation, in which the bit SV is assumed to have
this shape. Choosing the RPP thickness that conforms to the device
cross-section direction dependence is not trivial [25].

For simplicity, we choose the recommended RPP value in
CREME96, in which lateral dimensions x and y are determined as the
square root of the limiting cross-section for each bit, and the device
depth z is 0.5 um. The limiting (saturation) cross-section is obtained
from the Weibull fitting as shown in Fig. 2. Using the above values, the
in-flight SER data of the target SRAM during the selected SPEs can be
calculated from CREME96. Figs. 3 and 4 present the obtained proton-
induced and heavy-ion-induced hourly SER respect to the

corresponding ion flux from March 6 to 10, 2012, respectively. The
observed SER for the target SRAM on the monitor is the sum of the
calculated proton and heavy-ion induced SER.

4. SER prediction with machine learning

The aim of the presented approach is to obtain a model which is
able to predict fine-grained SER 1 h in advance. For this purpose, the
use of machine learning models is investigated in this section. Since the
prediction is intended to operate in conjunction with the real-time SER
measurement, regression models are used to predict the future SER
values.

The analysed machine learning models were chosen based on the
low-resources requirement. The models are trained in a supervised
manner and the training can be conducted off-line by using the in-flight
data from historical solar events (as described in section 3.). This allows
to use a trained model for the on-line prediction which usually requires
fewer computation resources. In the following, the model training and
evaluation methodology are described and the model performances to
predict future SER values are evaluated. Therefore, the hourly SER data
set (obtained as described in Section 3.) is split into training (60%) and
test data set (40%). The training data is used to train the machine
learning models and the test data set to measure the performance of the
prediction.

4.1. Model training and hyperparameter optimization

Usually, machine learning models are represented by internal
parameters or an internal state. These internal parameters or this state
are determined during the training process by the machine learning
algorithm. Additionally, most of the machine learning algorithms can
be controlled by hyperparameters. In contrast to the internal para-
meters or the state, these hyperparameters are not derived by the
training algorithm and need to be set manually before the training
process. The problem of finding the optimal set of hyperparameters for
the model is called hyperparameter optimization. Therefore, several
instances of the model need to be trained and evaluated for different
tuples of hyperparameters. The tuple that minimizes a predefined loss
function or evaluation metrics yields an optimal model. A random
search method combined with a grid search method is a common ap-
proach to perform the optimization. There, the model is first evaluated
for parameter values randomly generated in a given distribution.
Afterwards, a more detailed grid search is performed within the region
of the values obtained by the random search [26].

Additionally, to the hyperparameters, the optimal length for the
historical hourly SER data needs to be determined. Therefore, models
were also evaluated for different history length of the hourly SER data.

4.2. Model evaluation

To measure the performance of the selected models the models are
predicting the SER values of the test data set. This prediction is com-
pared against actual values and quantified by using different metrics:
The mean absolute error (MAE), the maximum absolute error (MAX),
the root-mean-square error (RMSE), and the coefficient of determina-
tion (R2) are used.

This ensures that the model is not only trained for one particular
training and test data set, but the performance is also measured by
using cross-validation. In this approach, the model is trained and
evaluated against multiple train and test splits of the data. Several
subsets, or cross-validation folds, of the data set, are created and each
fold is used to train and evaluate a separate model. Then the average
across the folds is calculated and thus, instead of relying only on one
single training and test data set, a more stable performance measure is
obtained which indicates how the model is likely to perform on average
[27].

Fig. 2. Weibull fit curves and parameters for the proton and heavy-ion ex-
perimental SEU cross-section measurements of the 65 nm SRAM from Cypress.
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4.3. Evaluated regression models

For the analysis in this paper the following five regression models
have been considered: (1) linear least squares regression, (2) decision
tree regression, (3) k-nearest neighbors regression, (4) multi-layer

perceptron neural network and (5) recurrent neural network (RNN)
with long short-term memory (LSTM). The models were implemented
by using Python's Scikit-Learn [28] and Keras [29] frameworks. The
investigated models are briefly described in the following (for a more
detailed description see [30] for example).

1) Linear Least Squares Regression: The Linear Least Squares algorithm,
is based on a linear model. The target output variable is represented
as a linear combination of the input variables. The algorithm aims to
minimize the squared sum of the difference between the true value
in the training dataset and the predicted value by the linear ap-
proximation.

2) k-Nearest Neighbors Regression: The k-Nearest Neighbor (k-NN) al-
gorithm uses similarity in the input variables to predict values of
new data points. During the training phase, the training data set is
only indexed and stored into a database. A new data point is pre-
dicted based on how closely it corresponds to the points in the
training set. A weighted average of the k-nearest neighbors is used to
predict the value. The main hyperparameters of the model is k, the
number of nearest neighbors used for the prediction.

3) Decision Tree Regression: Decision Trees models recursively parti-
tioning the input feature space by inferring simple decision rules
from the training data set. The data is represented by a tree struc-
ture. The branches of the tree are representing the decision rules and
the leaves contain the trained values. The main hyperparameters for

Fig. 3. Proton-induced SER (SEU rate) from GOES database for March 6–10, 2012. The particle flux for all of the lower to higher energy channels are shown, and all
channels are with good quality.

Fig. 4. Heavy-ion-induced SER (SEU rate) from ACE-SIS database for March 6–10, 2012. The particle ion flux of He, O and Fe for the lower and higher energy
channels are shown, and high-energy channels data are of poor quality.

Fig. 5. R2 score for selected models in terms of history data length.
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this model are sued to control the structure of the tree, such as the
maximum depth, the maximum number of leaf nodes and the bal-
ance of the tree. During the hyperparameter optimisation it has been
noted that the model performs at best when the tree structure is not
constrained.

4) Multilayer Perceptron Neural Network: A multilayer perceptron (MLP)
belongs to the class of feedforward artificial neural networks (ANN).
An MLP Neural Network consists of at least three layers of nodes.
The first layer is the input layer, followed by one or more hidden
layers and an output layer. Except for the input nodes, each node is a
perceptron. A single perceptron has one or more inputs, a bias, an
activation function, and one output. The received input is multiplied
by a weight and passed to the activation function, which produces
the output. The main hyperparameters for this model are the acti-
vation function and the network topology.

5) Recurrent Neural Network with Long Short-Term Memory: The
Recurrent Neural Network (RNN) is a generalization of feedforward
ANN and is extended by an internal memory. This means, that the
output of the current input depends on past computations. In the
other considered models, all the inputs are independent of each
other, but with the help of the RNN's memory, all the inputs are
related to each other. The Long Short-Term Memory (LSTM) is a

special kind of RNN, to overcome some of its issues to learn de-
pendencies over longer sequences. This means RNN with LSTM are
designed to process sequences of input data and this makes them
applicable for time series data. The main hyperparameter of this
model is, similar to the MLP Neural Network, the network topology.

4.4. Measured model performances

The model performance for each model was measured considering
different history length of the hourly SER data. For each considered
length the optimal hyperparameter for the model were searched by
using the described random and grid search approach and a cross va-
lidation fold of 5.

The performance in terms of the R2 score for each model for a
varying history data length is shown in Fig. 5. The maximum R2 score
which can be achieved is 1.0 and lower performance results in lower
values. It can be seen that that in general the model performance does
not significantly increase with history data length higher than 5. For the
k-NN model the performance is even decreasing. The Fig. 5 also shows
that the RNN w/ LSTM gives the best performance. Moreover, the linear
regression gives almost similar good results.

Table 1 summarizes the best performances for each model (optimal

Table 1
Prediction performance of the evaluated machine learning models.

Model History data length MAE MAX RMSE R2

Linear Least Square 25 3.19e−03 4.67e−01 1.80e−02 0.94
k-NN 5 5.77e−03 4.73e−01 2.92e−02 0.85
Decision Tree 10 6.61e−03 7.13e−01 3.55e−02 0.76
MLP Neural Network 5 4.56e−03 4.49e−01 2.02e−02 0.89
RNN w/ LSTM 20 3.17e−03 4.65e−01 1.78e−02 0.95

Fig. 6. Prediction of SER over a period of 300 h for one SPE by using linear regression model.

Fig. 7. Prediction of SER over a period of 300 h for one SPE by using RNN with LSTM model.
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history data length and optimal hyperparameters). Figs. 6 and 7 show
the SER prediction of one SPE from the test data set for the Linear Least
Squares and the RNN with LSTM model, respectively. The ´Actual SER´
data in these figures are collected from the solar condition analysis
phase, which is the one described in Section 3.

5. Conclusion and future work

In this work, an approach for predicting the in-flight SER variation
of the on-board SER monitor system in space applications is proposed.
Thus, the upcoming SPEs can be indicated from the rise of predicted
SERs at least 1 h in advance. The approach is intended to serve as an
enabler of adaptive switching of operating modes within a multi-core
processing system. The concept combines the online SER measurement
with an SRAM-based particle detector and supervised machine learning
prediction model trained offline with publicly available flux databases
from past space missions. Preliminary results indicate outstanding of
the recurrent neural network (RNN) with long short-term memory
(LSTM) machine learning prediction algorithm.

Although the initial results are promising, there are still open issues
which have to be addressed in future work in order to make this ap-
proach fully operational. The accuracy of the prediction model can be
further improved, and the prediction time can be extended beyond 1 h.
Then, the optimum hardware implementation of the prediction model
should be designed. Moreover, the accuracy can be improved by pro-
viding the real-time measurement of the particle energy or LET, which
can be used as additional input parameters for the machine learning
algorithm. Besides that, it is necessary to integrate the proposed ap-
proach in an adaptive multicore system on a single chip, establish a
model for estimating the SER of the multicore system in terms of the
SER of SEU monitor, and finally test the complete solution under real
irradiation.
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