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Resistive Random Access Memory (RRAM) has gained considerable momentum due to its non-
volatility and energy efficiency. Material and device scientists have been proposing novel material 
stacks that can mimic the “ideal memristor” which can deliver performance, energy efficiency, 
reliability and accuracy. However, designing RRAM-based systems is challenging. Engineering a new 
material stack, designing a device, and experimenting takes significant time for material and device 
researchers. Furthermore, the acceptability of the device is ultimately decided at the system level. 
We see a gap here where there is a need for facilitating material and device researchers with a “push 
button” modeling framework that allows to evaluate the efficacy of the device at system level during 
early device design stages. Speed, accuracy, and adaptability are the fundamental requirements of 
this modelling framework. In this paper, we propose a digital twin (DT)-like modeling framework 
that automatically creates RRAM device models from device measurement data. Furthermore, the 
model incorporates the peripheral circuit to ensure accurate energy and performance evaluations. We 
demonstrate the DT generation and DT usage for multiple RRAM technologies and applications and 
illustrate the achieved performance of our GPU implementation. We conclude with the application 
of our modeling approach to measurement data from two distinct fabricated devices, validating its 
effectiveness in a neural network processing an Electrocardiogram (ECG) dataset and incorporating 
Fault Aware Training (FAT).
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Resistive Random-Access Memories (RRAMs) are promising due to their built-in non-volatility and since they 
can perform Vector-Matrix-Multiplication (VMM) of arbitrarily large inputs with constant computational 
complexity O(1). Large crossbars can be constructed, implementing both memory and also serving as a compute 
element, breaching the boundaries of traditional von-Neumann architectures. Additionally, multiple devices can 
be stacked vertically, further increasing overall design density1. These attributes render them an ideal candidate 
for the implementation of Artificial Neural Networks (ANNs), which involve an ever-increasing computational 
complexity. Unfortunately, the current generation of devices suffers from device variation, reliability issues are 
still being addressed at the fabrication level. A device which was programmed to store a given value a might 
actually store a different value. This field of research is moving fast, new generations and types of devices 
are proposed frequently and researchers try to optimize the corresponding programming algorithms and 
surrounding circuits. This poses a challenge for system-level RRAM research which strives to develop systems 
which can cope with the underlying device variation since these efforts require models which are both fast to 
evaluate and true to device behaviour.

Surprisingly, despite attempts to address this challenge, we found that there is a lack of models which are 
(a) fast to simulate, (b) accurate and (c) easy to adapt to new devices and/or programming algorithms. While 
various modelling approaches exist, these tend to be lacking in one or more of these criteria, hindering system-

1IHP - Leibniz Institut für innovative Mikroelektronik, Frankfurt (Oder), Germany. 2BTU Cottbus-Senftenberg, 
Cottbus, Germany. 3Indian Institute of Technology Bombay, Mumbai, India. 4University of Rostock, Rostock, 
Germany. 5Fraunhofer IIS, Erlangen, Germany. 6Forschungszentrum Jülich GmbH, Jülich, Germany. 7FAU Erlangen-
Nürnberg, Erlangen, Germany. 8University of Potsdam, Potsdam, Germany. 9Newcastle University, Newcastle 
upon Tyne, UK. 10Cognigron and Bernoulli Institute, University of Groningen, Groningen, The Netherlands. email: 
fritscher@ihp-microelectronics.com

OPEN

Scientific Reports |        (2024) 14:23695 1| https://doi.org/10.1038/s41598-024-73439-z

www.nature.com/scientificreports

http://www.nature.com/scientificreports
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-44448-1&domain=pdf


level development and - subsequently - adoption. These efforts are fundamental for RRAM research since recent 
research indicates that e.g. individual instances of artificial neural networks react quite differently to device 
variations2. A given device variation might be acceptable for network a while a given network b might struggle to 
maintain reasonable accuracy. Furthermore, different programming algorithms might have severe impact on the 
overall fraction of erroneously stored data in a memristive crossbar3–5. Fault-Aware Training (FAT)6 (sometimes 
also referred to as Hardware Aware Training (HAT)) aims to enhance ANN resilience by injecting device faults 
into the ANN during the training procedure, but is reliant on accurate variability modelling. Unfortunately, 
existing frameworks have encountered performance issues, requiring significant amounts of compute time on 
recent networks7.

In this work, we propose a solution to the before-mentioned challenge. We implemented an end-to-end 
modelling flow for the generation and usage of Digital Twins (DTs) in a fully automated manner, as depicted 
in Fig. 1. A new model for a modified fabrication approach, individual wafer or programming algorithm can 
be created effortlessly, with the push of a button, by inputting measurement data into the DT generation block 
(Fig. 1A). These models are application-agnostic and can be integrated into various environments (Fig. 1B) to 
evaluate an application and architecture. Additionally, we developed a GPU backend to support the needs for 
applications such as FAT. We have taken great care to ensure that this model can undergo simulations at high 
speed, enabling the evaluation of large systems at an effective simulation speed of multiple GB s−1 when run on 
a GPU. This modeling process encompasses both the RRAM devices and the surrounding circuitry.

We showcase the versatility and effectiveness of our proposed model through its application to three distinct 
domains. Firstly, leveraging the inherent non-volatility of RRAMs, we explore their potential application as 
memory, where ongoing research focuses on diverse error correction approaches. Secondly, we illustrate the 
suitability of RRAMs for real-time applications at the Edge, particularly in tasks like Edge detection. Lastly, we 
investigate the suitability of two distinct different device technologies for the implementation of ANN. We derived 
measurement data for HfO2 based devices fabricated at IHP (Leibniz-Institut für innovative Mikroelektronik) 
and a TaOx based device fabricated at FZJ (Forschungszentrum Jülich) respectively and apply our proposed 
modeling approach to both to emphasize its flexibility. Subsequently, we use the proposed approach to implement 
an ANN processing an ECG dataset and incorporate FAT to render the network implementations resilient to 
individual device fault characteristics. Both network implementations ultimately yield reasonable classification 
accuracy, indicating the relevance and importance of this work.

This is not the first work attempting to model memristive devices, significant efforts have been spent on creating 
simulation environments for both memory and compute applications of memristive devices at different levels 
of abstraction: At the lower levels of abstraction researchers have devised atomistic8, monte carlo/finite element 
mthod9 and compact circuit models10. However, adequately defining the involved partial differential equations 
has proven to be difficult11. This ultimately yields simulation times prohibiting a reasonable investigation when 
attempting large-scale simulations. At the higher levels of abstraction researchers have devised many (partially 
domain specific) simulators. NVSIM12, which extends the Cacti13 cache simulator with Memristor support, is a 
tool to evaluate many different memristive technologies. However, the possibilities to fit models to a given device 
(including variation) are both rather limited and work-intensive. DNN+NeuroSim14, which has been created 
for the simulation of ANN embedding RRAM, is an adaptation of Neurosim15 to the PyTorch framework16. 
However, two issues hinder its usage: Firstly, significant parts of the Neurosim code run on CPU, leading to 
training times in the tens of hours7. Secondly, adapting the simulation model to a new wafer of devices is a 
tedious process. Mnsim17 allows for detailed architecture investigations, but is limited regarding RRAM device 
variation, since it only supports a single uniform distribution to model different variations. DL-RSIM18 supports 
sophisticated mapping strategies but only supports inference simulations and is limited regarding variance 
modelling. Additionally, it does not support modelling of the surrounding circuitry. Memtorch19 extends the 
PyTorch NN framework with Memristor models. However, it is implemented as a “wrapper” to traditional 
RRAM models such as VTEAM20 or the Stanford PKU model10, which involve a multitude of device parameters 
which need to be adapted to new devices manually. While data-driven models such as the implementation 
developed by Messaris et al.21 have been integrated recently, manual fitting is still required.

To the best of the authors knowledge none of the existing works can achieve simulation speeds which are 
competitive with the results reported in this work while being as easy to fit to new measurement data and/or a 
different application domain. Furthermore, limiting RRAM models to the mere device itself lacks substantial 
information about the surrounding circuit, both regarding area and power draw. Subsequently, we integrated 
the capability to model surrounding circuitry. This approach has been used successfully to design and evaluate a 

Fig. 1. Proposed approach. Generating Digital Twins from measurement data is fully automated (brown box). 
This can be used to create many individual Digital Twins, each covering a different variability aspect (middle). 
These can be integrated seamlessly in various simulation environments in order to validate a given application 
or system architecture (yellow box).
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RISC-V22 based ANN-accelerator platform embedding RRAM-crossbars3 and could easily be adapted to other 
applications such as stochastic computing23 or random number generation8.

Results
Overview—fully automated flow
One of the key contributions of the proposed modelling technique lies within the fully automated flow from 
raw measurements to system-level evaluation; A new generation of RRAM devices, a different wafer or a novel 
programming algorithm can be modelled by pressing a single button (Fig. 1A), allowing for a fast evaluation 
within an application or architecture (Fig. 1B). We have been able to successfully use the proposed flow to create 
individual digital twins for each combination of programming algorithm and type of RRAM device (HfO2, TaOx
). Individual sources of device variation can be included by providing corresponding measurements. We used 
both measurements of 4096 devices and the parametrization of an implemented ADC as the ground truth for 
these modelling efforts. Creating 20 individual DTs for the 20 steps of a given programming algorithm from 
raw data for a given device technology is fully automated and takes about 5 minutes using a single CPU core 
of an Intel i9-12900K CPU. This can be parallelized easily if more performance is needed. These models do not 
need any specific adaption to be integrated into the different environments outlined later. The remainder of this 
section will provide details regarding utilized devices, our modelling approach and the achieved performance.

Generation of digital twins
Electrical characterization of HfO2 devices
A significant number of devices have to be characterized to adequately capture the device behavioural model. 
To ease this measurement phase, the HfO2 devices have been put in series with a transistor, and the resulting 
1T1R cell has been deployed in a 4 kbit array. The transistor serves a twofold purpose: Firstly, selecting the cell 
inside the crossbar and secondly fixing the compliance current during the SET operations. The array has been 
divided into 4 batches of 1024 cells each. Each of these sub arrays has been programmed to a different nominal 
conductance level (three low resistive states (LRS) and one high resistive state (HRS)) leading to currents of 
10µA (LRS0), 20µA (LRS1), 30µA (LRS2) and 40µA (LRS3). The devices have been cycled for 1000 times 
between that state and a HRS with a target conductance of 5µA. The cells have been programmed with an 
Incremental Step Pulse with Verify Algorithm (ISPVA) scheme5. This algorithm has been selected to serve as an 
example for creating a digital twin, future work will be to use this approach to select the best writing algorithm 
for an individual task. The ISPVA was performed using the following parameters:

• Forming voltage sweep: 2.0 V to 5.0 V using steps of 0.01 V and a pulse duration of 10µs.
• Reset/set voltage sweep: 0.5 V to 2.0 V using steps of 0.1 V and a pulse duration of 1µs.
• Read operation: A single 0.2 V pulse. The results of this operation are depicted in Fig. 2. Albeit each device 

which was meant to be programmed to the same target state was programmed using the same current target 
the actual implementation yields a distribution of currents. The D2D and C2C variability of HfO2 devices 
have been investigated and compared in24,25 (e.g. Ref.25, Fig. 6b). The authors found that the C2C variation 
might play a larger role than the D2D variation for this type of device.

Electrical characterization of TaOx devices
We fabricated and characterized 35 devices at FZJ, using the TaOx stack structure in 0T1R (passive) configuration. 
We use a different set of measurements as described in Fig. 9 (later section) to model this device to emphasize 
our approach’s flexibility. A compliance current of 500µA is enforced externally in order to make up for the 
missing transistor. We derive the current state of a given device by computing the inverse of the I-V curve 
slope at low voltages (between 0.1 V and 0.3 V) of the SET hysteresis; The inverse slope of the positive part 
yields the HRS resistance while the inverse slope of the negative part yields the LRS resistance. The results of 
these measurements are depicted in Fig. 4a. These measurement campaigns allow extracting information about 
two stochastic effects for this type of devices, namely D2D and C2C variabilities for both devices. A thorough 
investigation of the D2D and C2C variability of the TaOx devices has been done in26. The authors found that the 
D2D and C2C variations follow the same order of magnitude.

Fig. 2. This figure depicts one individual set of underlying measurement data (histograms) and a 
corresponding fitted PDF for the HfO2 device after using the ISPVA algorithm to program a 1T1R crossbar of 
4096 devices to five distinct states.
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Model for the analog digital conversion
A simple Flash-ADC has been designed for IHP SG13S as depicted in Fig. 3a. This circuit serves as an example 
how circuit parameters can be integrated into the Digital Twin. It consists of a voltage divider between the 
RRAM devices and a shunt resistor. Five operational amplifiers in comparator configuration compare the current 
voltage at Vdivider to a reference voltage and switch their respecting output to 1 when this threshold is reached. 
This ADC can be calibrated to a given device by appropriately modifying Vref(1..5). We perform DC simulations 
to relate the resistance to currently-read-out state and export this information for later usage within the Digital 
Twin (Fig. 3b). We relate the ADC input voltage Vdivider which is present at the voltage divider between Rmem 
and Rref  (dotted line) for a given RRAM device resistance to the different state conversion outputs. The outputs 
out1 to out5 switch to a logical one when Vdivider is above Vref(1..5) (other lines).

Figure 3c depicts the current consumption of the entire circuitry for each given state. It becomes apparent 
that the higher resistance states should be used predominantly to save on overall power consumption. This data 
can be extracted as well to allow for a “weight storage power consumption” estimate for a given NN. An actual 
implementation would most likely embed a more sophisticated ADC circuit to mitigate the comparatively large 
power consumption.

We extract the results of the simulations depicted in Fig. 3b and c for integration it into the DT. This enables 
our DT to relate a given resistance of a device (or the outputs of a crossbar) to a digital ADC output as it would 
occur for a given implementation. Modeling a different ADC merely requires rerunning the beforementioned 
simulations.

Statistical model for HfO2 based devices
Firstly, we prepared scripts to pre-process the measurement data coming from the utilized measurement 
equipment. Subsequently, we derive the individual DT as follows; The percentage of stuck-at-HRS devices can 
be derived automatically by counting the occurrences of high-resistive (e.g. x≥ 200MΩ) measurements and 
dividing it by the total number of devices. The percentage of stuck-at-LRS3 devices can be derived by doing 
the reset measurement procedure and counting the number of shorted devices. Doing the before-mentioned 
measurements and using SciPy to fit about a hundred different distributions to the LRS0 state leads to a set 
of distributions approximating the raw data. While some distributions appear to be a good fit, others do not 
manage to approximate the data well. This set of fittings serves as the basic block for our modeling efforts; 
Subsequently, the best fit is selected by calculating and selecting the fit with the smallest Root Mean Squared 
Error (RMSE) and its parameters are exported. This is combined with the ADC model we derived as described 
in the previous section and can be imported within an arbitrary simulation framework by writing an appropriate 
import wrapper. This can be achieved with a few lines of code since the modelling logic itself is already built 
into the model. We provide appropriate wrappers for C/C++, Python running on CPU, Python running on a 
NVIDIA GPU and PyTorch. Creating a wrapper for a specific programming language takes little effort since we 
put emphasis on using as few language-specific features as possible.

Statistical model for combined TaOx based devices
The measurements taken for the TaOx devices are shown in Fig. 4a. Each device has been programmed to its 
LRS and HRS (see previous section for details). As one can see, the HRS shows significant variance, rendering 
the definition of two separate LRS states difficult. Such a high HRS variance in TaOx devices has previously been 
reported and investigated by others27,28. However, when dealing with NNs, providing an uneven number of 
states eases the training procedure. Subsequently, we use two devices to increase the number of individual states 
which can be stored reliably (Fig. 4c). Similar to resistors, the equivalent resistance of serial memristors is given 
by Eq. (1) while the equivalent resistance of parallel devices is given by Eq. (2).

 RM1+M2 =RM1 +RM2  (1)

Fig. 3. (a) Depicts a simple non-optimized Flash-ADC circuit. (b) Depicts the result of running DC 
simulations for this schematic, ranging the resistance of a theoretical RRAM device from 0 kΩ to 100 kΩ. (c) 
Depicts the corresponding current, indicating that the power consumption strongly depends on the device’s 
resistance.
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RM1||M2 =

RM1 ×RM2

RM1 +RM2
 (2)

Given that the HRS of these devices is spread significantly, only the parallel implementation yields reasonably 
separable states. Subsequently, we selected the parallel version for our evaluations. The derived states are 
depicted in Fig. 4b, they are realized by combining both LRS states for LRS1, one HRS and one LRS state for 
LRS0 and by setting both devices to HRS for the HRS state. Integrating these approaches into our proposed 
modelling methodology was achieved by pre-processing the measurement data accordingly. Since these devices 
are ultimately combined on a simulative level we performed measurements of parallel devices in order to validate 
these results (details outlined in Supplementals/Fig. 3).

Integrating digital twins into application-specific simulators
This section describes key aspects of rendering the proposed model fast enough to support both large crossbars 
and the evaluation of large systems. The model itself is application agnostic, a given Digital Twin can be seamlessly 
evaluated across application domains. More details are described in the Methodology section.

Fundamental concept
The fundamental concept can be summarized as follows: Firstly, the to-be-written state is selected by the 
application. Next, the model samples the “baseline” from the first to-be-used distribution which has been found 
for a given variation type (typically device-to device variation), including the mean. Further variations are added 
arithmetically by ignoring the mean of the corresponding distribution. The resulting energy usage (provided 
by the model annotations) is provided to the application. Secondly, during the read operation, the simulated 
resistance value is compared to the parametrized ADC, determining which digitized state this would correlate 
to, again providing the energy usage for the system-level evaluation. This procedure has to be repeated for 
each individual device. We found that this can be implemented on GPU without major data dependencies by 
spawning an individual CUDA thread per RRAM device. This ultimately leads to impressive overall simulation 
performance while only moderately taxing GPU memory (up to about 1.25× 109 devices fit into the 80GB of 
HBM provided by a recent GPGPU). This approach does not directly transfer to CPUs (since they do not allow 
for spawning massive amounts of threads), but constructs such as the map operator can be used to have strong 
control over thread scheduling.

Variation modules
There are two fundamental approaches to integrate a digital twin containing multiple variation modules into 
a simulation environment. Firstly, one could sample each kind of distribution for each kind of device and 
each individual variation module and store the result in memory. This is advisable when a lot of operations 
are required since the computational complexity of retrieving the current state of the memristor is ∼ O(1); 
Unfortunately, the amount of required memory increases exponentially with the number of variation modules, 
it is equivalent to Nm, where N depicts the required number of memristors while m depicts the number of 
variation modules. This will quickly drain the memory of a recent GPU, even for moderately sized networks. 
Fortunately, pre-initializing all these variation modules is unnecessary. In contrast, it is imperative to pre-
initialize some of the variation modules (like stuck-at and D2D variations); Others can be sampled on access, 
vastly reducing the memory footprint. Since the D2D and the stuck-at matrices can be combined, this reduces 
the overall memory requirements to m×N  while only moderately increasing the computational complexity 
to ∼ O(NlogN), which resembles the worst-case for sampling discrete distributions. This results in a vastly 
reduced memory footprint, which is well within the limits of current GPUs. A graphical representation of the 
corresponding memory footprints is provided in the supplemental (Fig. 4).

We implemented a prototype to evaluate whether this holds for an actual simulation. We evaluated its 
performance by programming to 1× 106 RRAM devices using an increasing number of variation modules 
running on a single CPU core. This leads to the real-world relative simulation performance as shown in Fig. 5c. 

Fig. 4. HRS/LRS characteristics of TaOx devices (a) and simulation of three states by using two devices in 
parallel (b). The serial and parallel configuration of memristors (c) allows the programming of more than 
two states. The additional pins 3 and 4 are required to facilitate the forming and programming of individual 
devices.
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Adding multiple variation modules leads to a moderate decrease in overall performance, which aligns with the 
earlier theoretical estimations. Subsequently, this approach allows for the investigation of large systems.

Performance and accuracy of the proposed model
Memory simulator
We have implemented a memory simulator using the proposed concept. A memory block is accessed randomly, 
setting individual RRAM devices to individual states. In order to achieve sufficient performance we ported our 
model to CUDA and ran it on a NVIDIA H100 GPU. The achieved equivalent simulation speed for differently 
sized memory blocks is depicted in Fig. 5a. We ran 100 individual simulations per matrix size and depict the 
deviations as error bars. The simulation performance is lower for smaller memories, probably as a result of these 
not fully utilizing the GPU. However, the simulation speed scales linearly with the number of devices until the 
GPU is fully utilized. This simulation speed is similar to the performance of a recent SSD, enabling thorough 
application evaluations.

Real-time application
We have implemented an application which uses individual (simulated) HfO2-based MVM blocks to perform 
edge detection using Sobel filter kernels29. The input is given by a video camera. A different number of HfO2 
based RRAM crossbars is utilized, splitting up the input image into differently sized partitions. We use this 
setup to evaluate both differently sized crossbars and different steps of the ISPVA programming algorithm 
regarding the quality of the edge detection. The output of the calculations are shown on the laptop display. The 
resulting Frames Per Second (FPS) when using two CPU cores on a recent laptop are depicted in Fig. 5b. For 
a small number of crossbars the performance is capped by the 30 FPS provided by the camera. Apparently the 
implemented model is fast enough to evaluate real-time applications.

Simulation performance impact of combining multiple variation modules
RRAM devices tend to be affected by multiple types of variability (such as e.g. device-to-device and cycle-
to-cycle variations) simultaneously, which need to be taken into consideration for system-level evaluations. 
Subsequently, multiple types of device variability need to be simulated simultaneously, ultimately slowing down 
the achieved simulation speed. We performed multiple simulations which program 1× 106 RRAM devices using 
an increasing number of variation modules running on a single CPU core to evaluate the performance impact. 
This leads to the real-world relative simulation performance as shown in Fig. 5c. Simulating 5 different types of 
device variation (e.g. D2D (1), C2C (2), drift (3), retention (4) and read disturb (5)) simultaneously leads to a 
moderate increase of simulation time of about 1.5×.

Validating the model
This section describes the validation of the D2D module using a separate set of data received from HfO2 based 
devices.

Firstly, a model has been created using measurement data from a specific wafer of HfO2 devices “wafer a”; 
A multitude of devices has been programmed, data has been extracted, and a Digital Twin has been derived. 
Subsequently, in order to validate this model, 500 weights each, containing the states-1, 0 and 1, have been 
programmed to a total of 1500 devices on a different wafer, “wafer b”. This equals to programming LRS0, LRS1 
and LRS2 states to individual devices. To avoid any overfitting of the model, this data has only been made 
available after the modeling process was finalized.

The histogram drawn from these write operations on wafer b is depicted in Fig.  6a. Stuck devices have 
been pre-filtered to avoid intermixing different variation types. Subsequently, we evaluated whether the fitted 
distributions fit the resistances as they are observed for devices on wafer b. In order to achieve this, the cumulative 
density function (CDF) of each individual resistance distribution as simulated by the DT (as created for wafer 

Fig. 5. (a) Illustrates the achieved throughput when emulating differently sized memories on a single Nvidia 
H100 GPU. Apparently the performance scales linearly with the number of devices, indicating an efficient 
implementation. (b) Depicts the achieved FPS for a real-time application embedding different counts of 
crossbars on a CPU. For less than 180 HfO2 RRAM crossbars the CPU performance is limited by the 30 FPS 
provided by the camera (dashed line). (c) Depicts the performance impact of evaluating different variation 
types simultaneously as indicated by the relative runtime (see text for more details).
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a) has been compared to the observed actual empirical resistance distribution (see Fig.  6b). The observed 
distributions seem to match the simulations done using the DT well. A slight statistical shift could be explained 
by using different wafers.

Our efforts to validate the usage of parallel TaOx devices are part of the supplementals.

Integration of the digital twin model into a NN framework performing fault aware training
Given the notable speed of the proposed model, it seamlessly integrates into widely used NN frameworks. This 
integration facilitates the introduction of device faults to the network during the training phase, empowering the 
model to enhance its resilience to such faults. While the concept itself is not new, the rapid processing capabilities 
of our model allow its application across NNs of varying sizes. We exemplify this by employing the model to 
implement FAT in an NN designed for detecting cardiovascular diseases using ECG data sourced from the 
“China Physiological Signal Challenge 2018 (CPSC)” dataset30. The utilized network architecture is illustrated in 
Fig.7a, and the training process for two distinct RRAM device stacks is presented in Fig.7b and c. Our training 
setup introduces device faults starting from epoch 100, revealing that both networks swiftly recover, maintaining 
reasonable accuracy. More details regarding the dataset and the utilized network architecture are given in the 
first section of the Supplemental.

Discussion
Within this work we have demonstrated a modelling approach which helps mitigate two crucial aspects: Firstly, 
it outperforms existing modelling works by multiple orders of magnitude (as a result of being fully GPU 
compatible). Secondly, it resembles a push-button approach to modelling, being easy to fit to new devices or 
individual programming algorithms. While this model cannot predict the behaviour of hypothetical devices due 
to the fact that it is not a physics-based model it can emulate existing devices with high accuracy. Furthermore, we 
have illustrated its portability by integrating it into quite different application domains. Our memory emulation 
benchmark achieved multiple GB/s of effective simulation speed on a HPC GPU, which - to the best of the 
authors knowledge - outperforms any previous work. We illustrated that this model can be ported to a CPU 
implementation seamlessly, allowing for the evaluation of a real-time application. Lastly, our model enabled 
us to apply Fault Aware Training to a neural network, allowing the training procedure to adapt to two different 
types of RRAM devices. More implementation details are outlined in the next section.

Methodology
The implemented approach is summarized in Fig.  8. It consists of multiple steps, ranging from creating the 
Digital Twin (red box) to Validation (blue box). This section provides an introduction to these individual parts. 
Further details are given in the supplemental.

Fig. 7. (a) Illustrates the utilized network architecture, consisting of multiple convolutional layers and a single 
linear layer. (b) Depicts the first 250 epochs of the FAT training procedure for the HfO2 device. (c) Depicts 
the same procedure done for the TaOx device. Device variations were included starting from epoch 100 as 
indicated by the dashed line.

 

Fig. 6. Results: (a) depicts the resulting histogram after programming the LRS0,1,2 states to 500 devices each 
on a separate wafer (wafer b). (b) depicts the CDF using the DT we created using data from wafer a and the 
empirical distributions we observed on wafer b.

 

Scientific Reports |        (2024) 14:23695 7| https://doi.org/10.1038/s41598-024-73439-z

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


RRAM device fabrication and measurements
Device fabrication
Although a materials exploration is beyond the scope of this work, we selected two different RRAM devices in 
order to evaluate the technological independence and flexibility of our framework. This section describes the 
fabrication of the two types of devices.

The HfO2 RRAM device has been realized using a Metal-Insulator-Metal (MIM) stack consisting of a 150 nm 
TiN top electrode, a 7 nm Ti layer (under the TiN TE), and an 8 nm HfO2 switching layer grown by atomic layer 
deposition at IHP31. The MIM cell area is 0.4µm2. This device is fabricated within a 4 kbit 1T1R crossbar.

The TaOx device also is an oxide-based memristor, but the stack is different and is composed of a 25 nm Pt 
top electrode, a 15 nm Ta layer, a 10 nm TaOx switching layer, and a 30 nm Pt bottom electrode fabricated at 
FZJ32. We used a small number of individual MIM devices for characterizing this device.

Figure  9 shows the I-V characteristics of both devices. One device each has been programmed to their 
respective conductance states for 100 (HfO2) and 50(TaOx) cycles. The I-V characteristics for the HfO2 device 
are generated using a triangular-shaped DC voltage measurement. The input ranged from ±1V  with a step size 
of 0.1 V and current compliance set to 300µA during the SET operation. A triangular pulse ranging from ±2V  
with a slew rate of 0.65 v/s and current compliance of 500µA during the SET operation has been used for thÿe 
TaOx device.

Modelling—creating the digital twin
This section describes how to create an individual DT from raw measurement data (Fig. 8A). The measurements 
are implemented as described it in the previous section. This procedure is repeated for each individual metric 
(number of programming pulses, variation type, programming algorithm, ...) which is of relevance to the 
researcher. Since this is a fundamental aspect of this work the details have already been introduced in the results 
section and will not be repeated here.

Application integration—using the digital twin
Within this section we will explain how we rendered the proposed approach universal and ensured it meets 
performance requirements (Fig. 8B). The DT does not require application-specific adaption, the same device 
model can be used seamlessly across application domains.

Fig. 8. Proposed framework: The evaluation begins with taking measurement data of RRAM devices (covering 
a given variation type) and combining them with circuit parametrizations to create a Digital Twin (red box). 
After selecting variation types (green box) these can be integrated into different applications to evaluate and/or 
mitigate the effects of device variations (yellow box). Lastly, the individual DT can be validated with additional 
measurement data (blue box).

 

Fig. 9. I-V characteristics of the utilized memristive devices. The black line depicts the median of individual 
measurements.
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Memory simulator—GPU implementation
GPUs use the Single Instruction Multiple Threads (SIMT) approach to process many threads in parallel. A 
prominent example, namely ANN applications, have mostly moved to GPU processing since these provide 
significantly more compute capacity (about 67 TFLOP/s on a recent NVIDIA H10033 GPGPU vs about 5 TFLOP/s 
on a recent AMD EPYC 9754 CPU with 128 Cores34). Unfortunately, as of now, this compute capacity is not yet 
available for most simulation models embedding RRAM, so either the computations need to be performed on 
the CPU core or the data needs to be moved between CPU and GPU constantly, yielding a substantial bottleneck.

Fortunately, RRAM devices are largely independent from each other, which allowed us to spawn threads 
without data dependencies without being bottlenecked by data transfers. Subsequently, we spawn one thread 
per RRAM device and spread them on the SMX units containing CUDA cores using the grid interface provided 
by the CUDA API. Locality effects can be covered using either the grid-thread mapping interface or by setting a 
cutoff distance (as typical for MD simulation frameworks) accordingly, preventing data movement bottlenecks. 
However, this needs to be easily accessible from an implementation-agnostic interface - the RRAM researcher 
should not have to deal with implementation details. Subsequently, we implemented this by initializing a 
PyTorch tensor per memory block accordingly and using CUDA kernels to act on them. This combination 
allows for eased integration into a given framework while still providing the full control of using CUDA directly. 
This GPU implementation can be ported to any language which is interoperable with CUDA without the need 
to rewrite the model itself.

We used this implementation to perform a memory simulation using RRAM-blocks as storage simulating 
differently sized memories. This yields the performance as reported in Fig. 5a when run on a NVIDIA H100. 
Since a given number of threads is required to fully utilize the GPU the performance is lower for small matrices 
and saturates for larger ones. The performance scales linearly with problem size (using an increasing fraction 
of the GPU), indicating an efficient implementation not yielding major bottlenecks. The performance slightly 
decreases by a few % when fully utilizing the GPU, possibly since at this point threads need to be rescheduled 
within a single memory operation. The total number of simulated devices is limited by the GPU memory, up to 
about 1.25× 109 devices can be simulated in this manner when using the 80 GB of HBM provided by this GPU. 
Multiple GPUs can be combined if this is insufficient for a given simulation.

Real-time application—CPU
While a CPU is fundamentally easier to program than a GPU, creating as many threads as on a GPU is not 
feasible. Nevertheless, a model needs to be compatible since a lot of devices such as laptops or embedded devices 
might not have a dedicated GPU. Fortunately, a lot of effort has been spent on rendering CPU implementations 
of iterator patterns within programming languages reasonably fast35,36. Subsequently, unlike for GPUs, where 
we would manually assign threads, we found that using iterator patterns such as numpy.enumerate in Python, 
the std::map operator in C++ or the “@” map operator in functional languages such as Mathematica yield 
performance advantages over manual thread scheduling.

We used this approach to evaluate the suitability of HfO2 RRAM crossbars for a real-time application, namely 
edge detection filter kernels. Firstly, we gathered input images from a video camera at 30 FPS. Subsequently, 
we cut the input image into smaller sub-images and used simulated RRAM-crossbars to apply a Sobel edge-
detection filter. The simulated results are displayed in real-time to allow for a reasonable investigation. We 
repeated this process with sub-images of different sizes, which allows to apply more parallelism to the edge-
detection task since more RRAM-crossbars can be utilized in parallel. Using this approach we could evaluate 
whether we could stop a programming algorithm (consisting of 20 programming steps when done completely) 
early while still maintaining reasonable edge detection performance. Exemplified results for 48 crossbars and 5 
and 15 steps respectively are depicted in Fig. 10. We set an entire crossbar to zero when an individual weight 
contains an error to ease interpreting the results. Apparently the RRAM crossbars are suitable for the task when 
applying 15 programming steps, but struggle to meet requirements when merely five programming steps have 
been applied to the individual crossbars.

The CPU needs to simulate an increasing number of crossbars while still meeting real-time requirements. 
Fortunately, as depicted in the performance graph in Fig. 5b the effective simulation speed of our model is fast 
enough for these evaluations.

Fig. 10. Results: We use the DT to evaluate the suitability of HfO2 RRAM-crossbars for an edge-detection task. 
(a) Depicts the input image, consisting of an FPGA board and the laptop running the simulation. (d) Depicts 
the desired edge detection result. (b) and (c) depict the results when 5 and 15 pulses have been applied to the 
individual crossbars.
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Implementing fault aware training for an artificial neural network running on ECG data
The concept of FAT has been proposed by Zahid et al.6 as a means to mitigate faults caused by radiation faults 
within an FPGA performing ANN inference. The approach involves presenting device faults/inaccuracies 
to the model during the training phase to enable the model to train itself to be resilient to device faults. We 
implemented this approach for the training of ANNs storing their weights using (possibly faulty) RRAM devices. 
We use the Xilinx Brevitas framework (which builds on PyTorch) as basis for our RRAM-ANN implementation. 
PyTorch provides a powerful ANN environment which has already proven usefull for custom extensions37. 
Brevitas extends Pytorch with fine-grained quantization support. We have extended this by adding a custom 
quantizer, a custom device variation module and our own gradient handling.

PyTorch provides the “tensor” data structure, yielding objects that can be stored and evaluated fast on a GPU. 
However, this proved not flexible enough to cover all aspects of RRAM models. Subsequently, we have split up 
our implementation into parts which can be implemented using Tensors and parts which need to be implemented 
with CUDA and combined them into one coherent implementation. The performance characteristics are similar 
to the memory simulation described earlier.

Quantized ANNs with implemented RRAM device variabilities Since not all networks can be quantized 
appropriately, the proposed flow allows for evaluating the quantizability of a given network. We have written 
a custom quantizer block for Brevitas to implement different quantization techniques. Additional modules, 
such as noise or device variations, can be added before and after this module. While the approach to gradient 
calculation implemented within Brevitas (straight-through estimator38), works well for traditional architectures, 
maintaining a continuous gradient while being true to the device variations is a bit more difficult since errors 
such as stuck-at errors are - by definition - non-continuous. For others, such as D2D variation, an analytical 
description of the error might help to maintain the gradient. Keeping with the separation offered by the straight-
through estimator does not seem reasonable since the training algorithm would keep trying to change weights 
which ultimately can never be changed (since the device is stuck).

This approach tries to find a middle ground: For the forward pass, the device faults are applied in a way 
that is similar to the quantization. To do so, a wrapper for the Digital Twin has been integrated into a custom 
pre/postquantizer block utilized within the custom Brevitas implementation. A matrix correlating to the stuck 
devices is constructed for the backward pass. Firstly, each element is initialized with ones (Eq. 3).

 
Gmodstuck =

(
w11 w12 w13

w21 w22 w23

)
=

(
1 1 1

1 1 1

)
 (3)

Subsequently, each weight gradient update that is to be stored within a stuck RRAM device is multiplied by 
0 < x < 1; The precise number is an optimization problem between maintaining continuity and staying true to 
the devices. Empirically 0.5 < x < 0.7 has yielded good results. This yields a matrix as shown in Eq. (4) which 
is reused during the training procedure.

 
Gmodstuck =

(
w11 w12 w13

w21 w22 w23

)
=

(
0.7 1 1

1 0.7 0.7

)
 (4)

During each backpropagation step, each gradient is element-wise multiplied with this matrix, in an attempt to 
encourage the training procedure to not depend too much on individual weights. This can be further enforced by 
repeatedly reinitializing the devices during the training procedure, causing different devices to be stuck. Other 
types of device errors are integrated similarly, by introducing further modifications to the gradient in a cautious 
manner to ensure trainability of the ANN.

Performance of fault aware training on an ANN using ECG data This implementation was used to train a network 
on the CPSC dataset30, detecting eight individual cardiovascular diseases and a healthy patient (denoted as 
SNR) using ECG data. We started from a floating point implementation, added quantization aware training and 
lastly performed fault aware training for both the HfO2 and TaOx devices. The training procedure when using 
floating point numbers is depicted in Fig. 11a, which indicates that the proposed network architecture is mostly 
suitable for this task. Unfortunately the network fails to detect Premature Atrial Contraction (PAC) reliably. This 
result serves as a baseline - apparently using this network architecture and merely using three input leads (see 
supplementals for more information) prevents detecting this morbidity. Subsequently, the network performing 
poorly regarding PAC when applying quantization and device variations would not be a result of the former, but 
a limitation of the utilized architecture.

As described in a previous section coupling two RRAM devices to form a single weight was neccesary when 
training for the TaOx device since these devices could not store more than two states reliably by themselves. A 
single RRAM device was used to store the weights when using the HfO2 devices.

Subsequently, we applied both quantization aware training and FAT using the proposed DT approach. We 
configured the training procedure in such a way that device variation effects would start occuring from epoch 
100. The resulting training procedure for the first 150 epochs when using the TaOx device is depicted in Fig. 11b. 
The accuracy drops shortly after introducing device variations but recovers within a few epochs. Averaging 
the individual accuracies leads to the plots as depicted in Fig. 11c and e. Apparently both networks recover 
when presented with device variations, yielding acceptable application performance which is comparable to the 
floating point implementation. More details regarding dataset and network architecture are provided as part of 
the supplemental.
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Data availability
The data that support the findings of this study are available from the corresponding author on reasonable re-
quest. The CPSC dataset containing the utilized ECG data has been published in an open access database by its 
creators30.
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