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Abstract— In this work, we propose a Deep neural network-
assisted Particle Filter-based (DePF) approach to address
the Mobile User (MU) joint synchronization and localization
(sync&loc) problem in ultra-dense networks. In particular, DePF
deploys an asymmetric time-stamp exchange mechanism between
the MUs and the Access Points (APs), which, traditionally,
provides us with information about the MUs’ clock offset and
skew. However, information about the distance between an AP
and an MU is also intrinsic to the propagation delay experienced
by the exchanged time-stamps. In addition, to estimate the
angle of arrival of the received synchronization packets, DePF
draws on the multiple signal classification algorithm that is fed
with the Channel Impulse Response (CIR) experienced by the
sync packets. The CIR is also leveraged to determine the link
condition, i.e. Line-of-Sight (LoS) or Non-LoS. Finally, to perform
joint sync&loc, DePF capitalizes on particle Gaussian mixtures
that allow for a hybrid particle-based and parametric Bayesian
Recursive Filtering (BRF) fusion of the aforementioned pieces
of information and, thus, jointly estimates the position and
clock parameters of the MUs. The simulation results verify
the superiority of the proposed algorithm over the state-of-the-
art schemes, especially that of the extended Kalman filter- and
linearized BRF-based joint sync&loc. In particular, only drawing
on the synchronization time-stamp exchange and CIRs from a
single AP, for 90% of the cases, the absolute position and clock
offset estimation error remain below 1 meter and 2 nanoseconds,
respectively.

Index Terms— 5G, joint synchronization and localization,
Bayesian particle Gaussian mixture filter, deep neural network,
time-stamp exchange.
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I. INTRODUCTION

THE fifth-generation (5G) of mobile communication net-
works is expected to deploy Access Points (APs) with

a high spatial density to meet the increasing demand for
mobile data traffic. As a result, Mobile Users (MUs) are
expected to be most of the time in Line-of-Sight (LoS) of
several APs. This also lays the ground for an accurate MU
localization, which is in particular of crucial importance for
services such as user tracking and location-assisted beamform-
ing [1], [2]. Furthermore, such APs are likely to be equipped
with antenna arrays and they are expected to support Fine
Time Measurement (FTM) capability introduced in several
standards, e.g., IEEE 802.11 [3]. The former facilitates the
Angle of Arrival (AoA) estimation, while the latter allows
for the AP-MU time-stamp exchange, by means of which
synchronization and distance measurements are enabled. The
synchronization itself also plays a decisive role when per-
forming time-based localization. In particular, for many of
the state-of-the-art MU localization techniques to function,
the clock parameters of the MUs need to be known (or to
be continuously tracked). Therefore, it appears that the MU’s
clock parameter estimation and MU localization are closely
intertwined and need to be tackled jointly.

The joint MU synchronization and localization (sync&loc)
problem has been extensively addressed in the literature
[4]–[9]. The authors in [5] rely on symmetric inter-agent
(AP-MU, inter-MU, and inter-AP) time-stamp exchange and
Belief Propagation (BP) to jointly estimate MUs’ locations and
clock offsets. A similar approach has been adopted by [6], [7]
with the aid of asymmetric time-stamp exchange mechanism
proposed in [10]. While time-stamp exchange is expected to
be supported in 5G networks [3], the high number of message-
passings required by BP renders the approach limited in
practice. Additionally, [3], [5]–[7], [10] provide the estimation
of the sync&loc parameters at MUs, whereas for the location-
based services to be delivered, these parameters need to be
computed at the network side. Another drawback is the strong
assumption of a fully cooperative network (also made in [11]).
That is, in addition to inter-AP and AP-MU communications,
the MUs can also communicate with each other, which is not
envisioned in 5G mobile networks. Nevertheless, the cooper-
ation capability between the APs and the Base Stations (BSs)
can be drawn on to perform hybrid synchronization as done
in [12], [13], laying the ground for an accurate MU joint
sync&loc.
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Moreover, in [8], [9], the authors leverage Extended Kalman
Filtering (EKF) to obtain the estimation of clock and posi-
tion parameters in ultra-dense networks. In particular, they
assume accurate inter-AP synchronization and perform MU
joint sync&loc in the presence of uncertainty about the time
of arrival and AoA parameters. The level of uncertainty is
then determined based on the derived Cramer-Rao bound.
Another approach called Linearized BRF (L-BRF), which is
based on linearizing the filter, has been employed in [14], [15],
albeit the perfect inter-AP synchronization assumption is
lifted. Instead, the APs and their backhauling BSs are assumed
to be synchronized using cooperative hybrid synchronization
introduced in [12], [13]. While EKF and L-BRF can partially
mitigate the destructive impact of nonlinearities in the mea-
surements, they are likely to diverge if a reliable estimate of
the initial state is not available [16]. Another weakness of
these filters is the underestimation of the covariance matrix.
A promising approach, on the one hand, to avoid such short-
comings of EKF/L-BRF, and, on the other hand, to boost the
accuracy of position estimation, is estimating the (prediction,
measurement likelihood, and posterior) distributions by means
of Particle Gaussian Mixture (PGM) filters introduced in [17].
Specifically, in this approach, instead of approximating each
distribution as a single Gaussian function, they are approxi-
mated with a sum weighted of Gaussian functions, or, alterna-
tively, Gaussian mixtures [18]. Nevertheless, the problem that
immediately arises when using PGM filters is dimensionality,
rendering the approach computationally expensive for multi-
variable estimations. To overcome this drawback, we resort
to a hybrid parametric and particle-based approach where we
capitalize on the linear relations between the measurements
and the clock parameters to reduce the dimensionality. In com-
parison to the standard PF, this approach features a strictly
lower estimation variance as a result of Rao-Blackwell’s
lemma discussed in [19], and leads to more accurate estimates
given the same number of particles [18]. Specifically, PGM’s
performance stands out when the uncertainty increases.

Even the PGM-based localization techniques can suffer
from divergence under certain conditions, e.g., improper tun-
ing of the filter’s hyper-parameters and faulty measurements,
resulting mostly from Non-Line-of-Sight (NLoS) links [20].
The former must be addressed when designing the filter, while
the latter can be dealt with using NLoS mitigation methods
such as those proposed in [21]–[23]. The technique in [21]
relies on the multipath components of NLoS links to enhance
the positioning accuracy. However, such a method functions
well only in the presence of strong multipath components and
prior statistics on NLoS-induced errors. The latter are also
estimated and utilized along with trajectory tracking in [22]
to perform indoor positioning. The authors in [23], however,
take another approach and model the measurement noise by a
two-mode mixture distribution and approximate the maximum
likelihood estimator using expectation maximization. Such
approaches add an extra computation overhead that may not
be necessary in dense networks where the LoS probability is
around 0.8 and increases with the AP density [24]. Therefore,
to mitigate the estimation inaccuracy stemming from the faulty
measurements, we draw on NLoS identification techniques to

identify the NLoS links and discard them. Such an approach
boosts the accuracy and features less complexity compared to
the methods proposed in [21]–[23].

There is a wide spectrum of NLoS identification approaches
adopted in the literature, e.g., hypothesis testing as in [25],
the statistical approach taken in [26], and Machine Learning
(ML)-based methods such as that of [27]. However, recently
ML algorithms, particularly DNN-based approaches such as
AmpN [28], have drawn substantial attention in classification
problems. In particular, DNNs exhibit a remarkable perfor-
mance due to their ability, on one hand, in implement-
ing almost any classifier function, and, on the other hand,
in extracting task-related features from the input data [29],
[30]. Other approaches such as Support Vector Machine
(SVM), or Bayesian sequential testing require human inter-
vention that may be, given the limited intuition, flawed, and
erroneous. Furthermore, DNN units are also expected to be
part of the communication devices as they are the cornerstone
of many solutions for different communication problems such
as slice management and anomaly detection [31]. Therefore,
a DNN-based NLoS identifier appears to be a reasonable
choice. The input to the DNN can be signals containing
class-relevant features such as received signal strength or
Channel Impulse Response (CIR). The CIR turns out to be
more informative about the communication environment and
link condition. Therefore, for the sake of prediction accuracy,
we rely on AP-MU CIRs in this work.

In addition to NLoS-identification, the CIR can also be
fed into one of the state-of-the-art AoA estimation algorithms
to obtain the signal’s direction of arrival. AoA estimation
has been extensively investigated in the literature. Algorithms
such as MUSIC [32], reduced-dimension MUSIC [33], and
ESPRIT [34] can accurately estimate the AoA. A detailed
comparison between them has been conducted in [35] con-
cluding that the difference is negligible, albeit MUSIC slightly
outperforms the others and, therefore, it is employed for the
purpose of this work.

In this paper, we propose a DNN-assisted PF-based (DePF)
joint sync&loc algorithm that draws on the CIR to estimate
the AoA and to determine the link condition, i.e., LoS or
NLoS, thereby excluding the faulty measurements to enable
a more precise parameter estimation. It then estimates the
joint probability distribution of MU’s clock and position
parameters using a PGM filter. The dimension of the PGM
filter is then reduced by revealing and exploiting the existing
linear sub-structures in the measurements, thereby tackling the
dimensionality problem. To the best of our knowledge, this is
the first work employing a PGM filter in a hybrid particle-
based and parametric manner to perform joint sync&loc.

The contribution of this paper is summarized as follows:
• We present and discuss the principles of asymmetric

time-stamp exchange and AoA estimation. The former
assists in the estimation of the clock skew, offset, and
the AP-MU distance, while the latter aids in the position
estimation by providing the direction of an MU relative
to the position of its serving APs.

• We develop a DNN for NLoS identification based on
AP-MU CIRs. The outcome of such a DNN helps to
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Fig. 1. An example where MU joint sync&loc can be carried out.

identify erroneous measurements, i.e., time-stamps and
AoAs, and discard them, thereby preventing large errors
in the estimation.

• We propose a DNN-assisted particle filter-based joint
sync&loc algorithm that estimates the clock parameters
and the position of an MU in a hybrid parametric and
particle-based manner. Such an approach not only boosts
the estimation accuracy but also overcomes the dimen-
sionality problem that arises in particle Gaussian mixture
filters due to the high number of parameters.

• We analyze the performance of the proposed approach
with the aid of detailed simulations in a challenging
real-world scenario. In particular, the MUs’ movement
profile comprises acceleration, deceleration, and constant
speed. Furthermore, the APs are distributed to provide
signal coverage for the MUs.

The rest of this paper is structured as follows: In Section II,
we introduce the system model and the preliminaries.
Section III describes the details of the DePF algorithm for
joint estimation of the clock and position parameters. Further-
more, the simulation results are presented and discussed in
Section IV. Finally, Section V concludes this work and points
to future works.

Notation: The boldface capital A and lower case a letters
denote matrices and vectors, respectively. The n-th element of
vector a is indicated by a[n]. The symbol “·” shows the inner
scalar product of two (or multiple) vectors of the same dimen-
sion. Moreover, IN and 0N represents N × N dimensional
identity and all-zero matrices, respectively. 1N indicates an
N -element all-one vector. Notation U(a, b) denotes a continu-
ous uniform probability distribution in the interval between
a and b with the probability level of 1

b−a . Furthermore,
N (x|μ,Σ) stands for probability density function (pdf) of a
Gaussian random vector x with mean vector μ and covariance
matrix Σ. A diagonal matrix with the diagonal elements
(x1, · · · , xK) is denoted by diag(x1, · · · , xK). Symbol ∼

stands for “is distributed as” and the symbol ∝ represents the
linear scalar relationship between two real-valued functions.

II. SYSTEM MODEL AND PRELIMINARIES

We consider a network of multiple APs with known loca-
tions, all backhauled by BSs. The APs are assumed to feature

multiple-input multiple-output Uniform Planar Arrays (UPAs),
which allow for accurate azimuth and elevation AoA estima-
tions. A further assumption is that they are able to continu-
ously synchronize themselves with the backhauling BSs using
the hybrid synchronization algorithm described in [12], [15].
This, in particular, guarantees a low time error among the
neighboring APs, enabling a more precise cooperative local-
ization. Moreover, at each sync&loc period T , a set of APs
denoted by Ii, can periodically exchange time-stamps with the
i-th MU using the FTM feature embedded in the communi-
cation devices and implemented by an existing protocol, e.g.,
precision time protocol [36]. From the packet containing these
time-stamps, the APs can also estimate the CIRs and AoA. The
AP-MU link condition is probabilistically determined and can
be either LoS or NLoS. It is known from [24], that, for such
a scenario, the LoS probability is around 0.8, even growing
to 0.95 when the AP density is 40 meters. A DNN trained
using CIRs is employed to distinguish the LoS condition
from NLoS, permitting the localization unit to neglect the
measurements conducted under the NLoS condition, thereby
augmenting the accuracy of synchronization and localization.
In what follows, we firstly present the clock model for the
APs and the MUs. Then, we explain the time-stamp exchange
mechanism in detail. Subsequently, we discuss the DNN that
allows for a reliable NLoS identification. Lastly, the principles
of MUSIC algorithm are briefly described.

A. Clock Model

We begin with defining a clock model for MUs and APs.
For each node i, we can write

ci(t) = γit + θi, (1)

where t represents the global reference time. Furthermore, γi

and θi denote the clock skew and the clock offset, respectively.
Although the parameter γi is generally random and time-
varying, it is common to assume that it remains constant
in the course of one synchronization period T [37]–[39].
Given that, the first goal of the joint sync&loc algorithm
is to estimate and track the clock parameters γi and θi

(or transformations thereof) for each MU. In the sequel,
we further clarify the components constructing θi as well as
the time-stamp exchange mechanism required to estimate the
above-mentioned parameters.

B. Offset Decomposition and Time-Stamp Exchange

1) Offset Decomposition: To elaborate on the constituents
of the offset θi, we break it down as shown in Figure 2.
The parameter tj /ti is the time taken for a packet to leave
the transmitter after being time-stamped, dji/dij represents the
distance between the nodes j/i and i/j, vc is the speed of light,
and ri/rj represents the time that a packet needs to reach the
time-stamping point upon arrival at the receiver. Generally,
the packets sent from node j to node i do not necessarily
experience the same delay as those sent from node i to node j.
In other words,

tj +
dji

vc
+ ri �= ti +

dij

vc
+ rj .
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Fig. 2. Decomposition of the clock offset into its constituent components.

Fig. 3. Asymmetric time-stamp exchange between MU i and AP j.

The variables Tij = tj + ri, and Rij = ti + rj (and
correspondingly tj , ti, rj , and ri,) are random variables due to
multiple hardware-related random independent processes and
can, therefore, be assumed i.i.d. Gaussian random variables,
whereas dji and dij are usually assumed to be deterministic
and symmetric (dji = dij) [1], [38]. The random variables Tij

and Rij are assumed to be distributed as N (Tij |μT , σ2
T ) and

N (Rij |μR, σ2
R), respectively. As mentioned in [37], [38], [40],

while it is typical to assume that μT = μR, and parameters
σT and σR are known, having any information about the value
of μT and μR is highly unlikely. Therefore, we construct the
joint sync&loc algorithm assuming no knowledge on μT and
μR except for μT = μR.

2) Time-Stamp Exchange Mechanism: We draw on the
asymmetric time-stamp exchange mechanism shown in
Figure 3, proposed in [10], and employed in [6], [37]. Node j
transmits a sync message wherein the local time cj(tk1) is
incorporated. Node i receives the packet and records the local
reception time ci(tk2). After a certain time, the process repeats
again with cj(tk3) and ci(tk4). Subsequently, at local time
ci(tk5), node i sends back a sync message to node j with
ci(tk2), ci(tk4) and ci(tk5) incorporated. Upon reception, node
j records the local time cj(tk6). Given this mechanism, at the
k-th round of time-stamp exchange (and correspondingly k-th
round of joint sync&loc), we expect the localization unit to
have collected the time-stamps

ck
ij =

[
cj(tk1), ci(tk2), cj(tk3), ci(tk4), ci(tk5), cj(tk6)

]
.

The collected time-stamps will be exploited in Section III to
design a joint sync&loc algorithm. In the following subsec-
tions, we firstly use the CIRs to identify whether the MU-AP
link condition is LoS or NLoS. Later on, the same CIRs are
utilized to estimate the AoA.

C. NLoS Identification and Channel Impulse Response

The ability to estimate the CIR is highly ubiquitous among
the APs. Therefore, relying on the CIR to develop a localiza-
tion algorithm appears to be a realistic approach. The AP-MU

Fig. 4. The DNN employed for NLoS-identification. It has lH = 2 hidden
layers with nH neurons and two output neurons.

CIR is a rich source of information about the condition of
the communication link, e.g., LoS or NLoS, and the location
of the MU. More precisely, the former is crucial to know
when estimating the latter as the accuracy of the distance/time
and AoA measurements significantly decline when conducted
under NLoS conditions.

Figure 4 shows the architecture of the DNN deployed for
NLoS-identification. The input layer has one channel fed with
N samples, i.e., the magnitude of the CIR. The number of
hidden layers and neurons in each hidden layer is set to lH
and nH , respectively. The rationale to rely on when selecting
these numbers is that, according to [29], any classifier function
can be realized by two hidden layers, i.e., currently there is
no theoretical reason to use more than two. However, the lack
of evidence does not imply that the DNNs with more hidden
layers do not improve the accuracy of classification, it rather
suggests that the number of required hidden layers does not
follow a well-established logic and is mostly determined by a
trial-and-error process. Therefore, for the algorithm proposed
in this work, we empirically determine the lH that delivers
the best performance. Furthermore, as a rule of thumb, the
number of neurons is suggested to be between the number of
inputs and that of the outputs to prevent under/overfitting.

Let the output probability vector of the DNN be
[1 − p̂nlos, p̂nlos], where p̂nlos denotes the probability of the
CIR being corresponded to an NLoS link. For the NLoS-
identifier, we seek to train the DNN such that the output
probability vector is as close as possible to [1, 0]/[0, 1] for
the LoS/NLoS CIRs. In other words, from the optimization
point of view, we aim to design a loss function whose output
is small when the DNN returns the correct vector and it is
large otherwise. It turns out that the function that possesses
the above-mentioned property is the logarithmic function [41].
Mathematically, the loss function is given by [30]

L = − 1
Mc

Mc∑
i=1

pi
nlos log(p̂i

nlos) + (1 − pi
nlos) log(1 − p̂i

nlos),

(2)

where pi
nlos denotes the true label corresponding to the i-th CIR

sample in the data set and is one if the CIR corresponds to an
NLoS link and zero otherwise. Furthermore, Mc represents the
total number of CIRs in the training set. The formulation in (2)
is also known in the literature as the binary cross-entropy loss
function. The goal of training is then to adjust the weights
of the neurons such that (2) is minimized. Finally, when the
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trained DNN is employed in the context of joint sync&loc
algorithm, the decision on the link condition is fed into the
algorithm using the binary parameter ζi, which is set to one
when p̂nlos > 0.5 and zero otherwise. Specifically, if ζi is
zero, the communication link is considered NLoS and any
measurement corresponding to it, i.e., time-stamp exchange
and AoA, is dropped.

In the sequel, we present the principles of the AoA estima-
tion algorithm, which draws on the CIRs employed for NLoS
identification.

D. Angle of Arrival

The CIR fed into the DNN to identify the link condition
can be treated as an input signal to the MUSIC algorithm to
obtain the AoA. We present the principles of AoA estimation
for UPAs based on [42]–[44]. The estimated AoA is given by

(ϕij , αij) = argmax
ϕ,α

1
an(ϕ, α)HNNHan(ϕ, α)

, (3)

where ϕij and αij are the azimuth and elevation AoA of the
signal received from the MU i at AP j, respectively. Parameter
an(ϕ, α) is the signal vector rotation on the n-th subcarrier
and is given by (4), as shown at the bottom of the page,
where Nant denotes the number of AP antennas in one row
(or column). Matrix N is constructed by N2

ant − 1 most right
columns of the eigenvectors obtained when performing the
eigen decomposition of the covariance matrix of the received
signal. That is

R = VAVH , (5)

where matrices A and V contain the eigenvalues and eigen-
vectors, respectively. Furthermore,

R =
1

Ns

Ns∑
n=1

xnxH
n , (6)

where the vector xn is of dimension N2
ant × 1 and represents

the n-th element of FFT of the CIRs. The number of sub-
carriers, or, alternatively, the size of FFT is denoted by Ns.
It is worth mentioning that, when constructing N, the eigen
decomposition in (5) is assumed to sort the eigenvalues in
decreasing order. Lastly, each AP is assumed to have N2

ant
CIRs at its disposal.

III. CLOCK PARAMETERS AND POSITION ESTIMATION

In this section, we discuss an estimation method for the
clock and position parameters. It relies primarily on the
components analyzed in the previous section, i.e, time-stamp
exchange, AoA estimation, and NLoS identification. In partic-
ular, given Section II-B2, and considering AP j as the master

node, we can write

1
γ̃i

(ci(tk2) − θ̃i) = cj(tk1) +
dij

vc
+ T k,0

ij , (7)

1
γ̃i

(ci(tk4) − θ̃i) = cj(tk3) +
dij

vc
+ T k,1

ij , (8)

1
γ̃i

(ci(tk5) − θ̃i) = cj(tk6) − dij

vc
− Rk

ij , (9)

where tk1 /tk2 , tk3 /tk4 , and tk5 /tk6 are the time points where MU i
and AP j send/receive the sync messages, respectively. Para-
meter dij =

√
(xi − xj)2 + (yi − yj)2 denotes the Euclidean

distance between nodes i and j. We note that, in Figure 3,
instead of a global time reference c(t) = t, we take node j
as the master node. It is straightforward to see that 1

γ̃i
= γj

γi
,

θ̃i = θi − γ̃iθj , d̃ij + T̃ k
ij = γj(dij + T k

ij), and d̃ij − R̃k
ij =

γj(dij − Rk
ij). For the sake of simplicity, as done in [1],

we assume d̃ij = dij , R̃k
ij = Rk

ij , and T̃ k
ij = T k

ij . This is valid
because γj ≈ 1 and the values of dij + T k

ij and dij − Rk
ij

are small. In what follows, we first give the probabilistic
representation of the problem. Subsequently, the principles of
the estimation method are presented.

A. Probabilistic Formulation of the Problem

Let ξk
i be the state of the vector variable ξi �[

ϑ̃i pi

]T
after the k-th round of time-stamp exchange, where

ϑ̃i =
[

1
γ̃i

θ̃i

γ̃i

]
and pi =

[
xi yi

]
. Parameters xi and yi

denote the position of node i on the x and y axes, respectively.
The aim is then to infer the pdf corresponding to the k-th state,
which can be written as

p(ξk
i |{c1:k

ij , ϕ1:k
ij , ζ1:k

ij }∀j∈Ii)

=
∫

p(ξ0
i , · · · , ξk

i |{c1:k
ij , ϕ1:k

ij , ζ1:k
ij }∀j∈Ii)dξ0

i · · · dξk−1
i ,

(10)

where the superscript 1:k indicates the collection of measure-
ments from the first round until the k-th. Applying Bayes rule,
we can rewrite (10) as

p(ξk
i |{c1:k

ij , ϕ1:k
ij , ζ1:k

ij }∀j∈Ii)

∝
∫

p({c1:k
ij , ϕ1:k

ij , ζ1:k
ij }∀j∈Ii |ξ0

i , · · · , ξk
i )

× p(ξ0
i , · · · , ξk

i )dξ0
i · · · dξk−1

i . (11)

Figure 5 depicts the temporal evolution of ξk
i as well as its

relation with the measurements at each time step. Such a
structure is referred to as dynamic Bayesian Network (BN),
in which a basic BN repeats itself in each time step [45]. The
states of a dynamic BN, i.e., all the variables with the same

an(ϕ, α) =
[
1, ei 2πd

λ sin(α)(sin(ϕ)+cos(ϕ)), ei 2πd
λ sin(α)(sin(ϕ)+2 cos(ϕ)), · · · ,

ei 2πd
λ sin(α)((Nant−1) sin(ϕ)+(Nant−2) cos(ϕ)), ei 2πd

λ (Nant−1) sin(α)(sin(ϕ)+cos(ϕ))
]T

1×N2
ant

(4)
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Fig. 5. Dynamic Bayesian network representing the temporal evolution of
the vector variable ξi and its relation to the measurements. ξk

i is obtained
through time-stamp exchange while ϕk

j and ζk
j are estimated with the aid

of CIR.

time index, satisfy the Markov property1 [46], enabling us to
carry out the following mathematical simplifications. In par-
ticular, knowing that the measurements are independent and
assuming the Markov property, we reformulate the integrands
in (11) as

p({c1:k
ij , ϕ1:k

ij , ζ1:k
ij }∀j∈Ii|ξ0

i , · · · , ξk
i )

= p({ck
ij , ϕ

k
ij , ζ

k
ij}∀j∈Ii |ξk

i ) · · · p({c1
ij , ϕ

1
ij , ζ

1
ij}∀j∈Ii |ξ1

i ),

p(ξ0
i , · · · , ξk

i ) = p(ξk
i |ξk−1

i ) · · · p(ξ1
i |ξ0

i )p(ξ0
i ), (12)

where p(ξ0
i ) denotes the prior knowledge on ξi. Plugging (12)

into (11) leads to

p(ξk
i |c1:k

ij , ϕ1:k
ij , ζ1:k

ij )

∝
∫

p(ξ0
i )

[
k−1∏
r=1

p(ξr
i |ξr−1

i )p(cr
ij , ϕ

r
ij , ζ

r
ij |ξr

i )

]
p(ξk

i |ξk−1
i )

︸ ︷︷ ︸
=p(ξk

i |c1:k−1
ij ,ϕ1:k−1

ij ,ζ1:k−1
ij )

× p(ck
ij , ϕ

k
ij , ζ

k
ij |ξk

i )dξ0
i · · · dξk−1

i . (13)

Finally, we can write

p(ξk
i |{c1:k

ij , ϕ1:k
ij , ζ1:k

ij }∀j∈Ii)

∝ p(ξk
i |{c1:k−1

ij , ϕ1:k−1
ij , ζ1:k−1

ij }∀j∈Ii)p(ck
ij , ϕ

k
ij , ζ

k
ij |ξk

i ).
(14)

The term p(ξk
i |{c1:k−1

ij , ϕ1:k−1
ij , ζ1:k−1

ij }∀j∈Ii) is referred to as
prediction step while the term p(ck

ij , ϕ
k
ij , ζ

k
ij |ξk

i ) is considered
as correction step [46]. If the Gaussian assumption about
ξ0

i held and the relation between all the states in Figure 5
were linear, we could conclude that the marginal in (14) would
also be Gaussian distributed. Unfortunately, that is not the case
in the joint sync&loc problem as the measurement equations
(and consequently the correction steps) are partially non-linear.
In concrete terms, the aforementioned problem stems from the
nonlinear relation between the location parameters (xi, yi) and
the time-stamps in (7), (8), (9) on one hand, and the measured
AoA in (3) on the other hand.

1It postulates that the state of the system at time t depends only on its
immediate past, i.e. its state at time t − 1.

There are several approaches to tackle the nonlinearity
problem and, consequently, to estimate the non-Gaussian pos-
terior distribution. In [14], it is proposed to undertake the
Taylor expansion of the nonlinear terms around the prediction
point, while [8], [9], [47] have employed EKF to address the
non-linearity. In addition to being prone to divergence, which
is hard to mitigate analytically, all of these methods require
initialization and even then are only able to deliver medium
accuracy. In what follows, we discuss the details of a novel
joint sync&loc approach based on PGM filters.

B. Particle Gaussian Mixure Filter

The idea underpinning PGM filters is to approximate a pdf
by the sum of weighted Gaussian density functions (gdfs) [17].
Leveraging this idea, we can write the posterior in (14) as

p(ξk
i |{c1:k

ij , ϕ1:k
ij , ζ1:k

ij }∀j∈Ii) =
F∑

f=1

wk
fN (ξk

i |μk
f ,Σk

f ), (15)

with
∑F

f=1 wk
f = 1, wk

f ≥ 0∀f , where μk
f =[

μ(ϑ̃i)k
f μ(pi)k

f

]
and Σk

f =
[
Σ(ϑ̃i)k

f 02

02 Σ(pi)k
f

]
denote the

mean vector and covariance matrix of the f -th gdf in the k-
th round of estimation, respectively. Parameter F represents
the total number of gdfs. Furthermore, μ(ϑ̃i)k

f /μ(pi)k
f and

Σ(ϑ̃i)k
f /Σ(pi)k

f represent the mean vector and covariance
matrix corresponding to the vector variable ϑ̃i/pi, respectively.

Seeking to further simplify (15), we reformulate (7), (8),
and (9) as follows. Subtracting (7) from (8) leads to

1
γ̃i

(ci(tk4) − ci(tk2)) = cj(tk3) − cj(tk1) + T k,1
ij − T k,0

ij , (16)

while summing up (8) and (9) gives

1
γ̃i

(ci(tk4) + ci(tk5) − 2θ̃i) = cj(tk3) + cj(tk6) + T k,1
ij − Rk

ij .

(17)

It is straightforward to observe that ϑ̃
k

i , on one hand, is lin-
early dependent on the time-stamps, and, on the other hand,
does not depend on pi. This suggests that, although the
p(ck

ij , ϕ
k
ij , ζ

k
ij |ξk

i ) is not Gaussian distributed in general, it is
indeed Gaussian across the ϑ̃i axis as both Tij and Rij are
Gaussian distributed. We capitalize on the linear Gaussian
substructures in the model to keep the state dimensions low.
Consequently, the gdfs can be employed only across the pi

axis transforming the structure of (15) into the multiplication
of a single gdf across ϑ̃i and sum weighted of multiple gdfs
across pi (visualized in Figure 6). Such a structure not only
lays the ground for the hybrid parametric and particle-based
implementation of BRF-based joint sync&loc estimation but
also dramatically reduces the computational burden. Given
above, (15) can be simplified as

p({c1:k
ij , ϕ1:k

ij , ζ1:k
ij }∀j∈Ii |ξk

i )

= N (ϑ̃
k

i |μ(ϑ̃i)k,Σ(ϑ̃i)k)×
F∑

f=1

wk
fN (pk

i |μ(pi)k
f ,Σ(pi)k

f ).

(18)
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Fig. 6. An example distribution of the ξi for a given time-stamp measure-
ment.

We note that when Σ(pi)k
f approaches 0, the term

N (pk
i |μ(pi)k

f ,Σ(pi)k
f ) tends towards δ(pk

i −μ(pi)k
f ), where

δ(·) denote the Dirac impulse function. Such a function forms
the basis of the classical particle filter. In what follows,
we further delve into the steps of parameter estimation of the
above-mentioned distribution. Firstly, the details of prediction
step are described, where all the parameters are denoted by
(·)−. Next, we obtain the likelihood of the measurements
whose parameters are represented by (·)+. Lastly, we compute
the parameters of the posterior distribution in (18) and perform
the resampling.

1) Prediction: Given the linear dynamics of MUs’ clocks
and movements, a reasonable prediction for ξk

i is given by

p(ξk
i |{c1:k−1

ij , ϕ1:k−1
ij , ζ1:k−1

ij }∀j∈Ii)

= N (ϑ̃
k

i |μ(ϑ̃i)k
−,Σ(ϑ̃i)k

−)

×
F∑

f=1

wk
f−N (pk

i |μ(pi)k
f−,Σ(pi)k

f−), (19)

where

wk
f− =

1
F

1F , μ(pi)k
f− = μ(pi)k−1

f + nf ,

with nf being the noise vector derived from the distribution
N (n|0,Qn(pi)), for Qn(pi) = diag(σ2

x, σ2
y). In practice,

we initialize Σ(pi)k
f− ∝ diag(F−0.4, F−0.4), which is proved

in [16] to be the optimal choice. Furthermore, according
to [12],

μ(ϑ̃i)k
− = Fμ(ϑ̃i)k−1 + u, (20)

Σ(ϑ̃i)k
− = FΣ(ϑ̃i)k−1FT + Qn(ϑ̃i), (21)

with

F =
[
1 0
T 1

]
, u =

[
0
T

]
, Qn(ϑ̃i) = diag(σ2

γ , σ2
θ).

The matrices Qn(ϑ̃i) and Qn(pi) denote the covariance of
the zero-mean Gaussian noises on each gdf across the ϑ̃i and
pi axes, respectively. In general, the design of Qn(·) is a

difficult task. In particular, if it is too small, the filter will be
overconfident in its prediction model and will diverge from the
actual solution. In contrast, if it is too large, it will be unduly
dominated by the noise in the measurements and perform sub-
optimally [48]. Similar to [1], [37], [39], we set σ2

γ and σ2
θ ,

such that the external noises as well as the residues from the
previous iteration are accounted for. Furthermore, to determine
the value of σ2

x and σ2
y , the design model discussed in

[47], [48] is followed. That is, opting for a noise variance
that is large enough to allow the gdfs to assign a reasonable
probability to the locations where the MU might be. In the
urban scenario, for example, the maximum permitted speed is
50 km/h (≈14 m/s), resulting in σx = σy = 14 × T.

2) Measurement Likelihood and Weight Update: The same
structure as (18) is imposed on the likelihood of the measure-
ments. That is,

p(ck
ij , ϕ

k
ij , ζ

k
ij |ξk

i )

= N (ϑ̃
k

i |μ(ϑ̃i)k
+,Σ(ϑ̃i)k

+)

×
F∑

f=1

wk
f+N (pk

i |μ(pi)k
f+,Σ(pi)k

f+). (22)

To obtain the parameters of the above likelihood, we firstly
transform (16) and (17) into the matrix form. That is,

Bk
ijϑ̃

k

i = rk
ij + zij , (23)

where zij ∼ N (z|0,Rk
ij) with Rk

ij = diag(2σ2
Tij

,

σ2
Tij

+ σ2
Rij

), and

Bk
ij =

[
ci(tk4) − ci(tk2) 0
ci(tk4) + ci(tk5) −2

]
, rk

ij =
[
cj(tk3) − cj(tk1)
cj(tk3) + cj(tk6)

]
.

The mean and covariance matrix of the gdfs across the ϑ̃i axis
can be written as

μ(ϑ̃i)k
+ = Ak

ijr
k
ij , Σ(ϑ̃i)k

+ = Ak
ijR

k
ij(A

k
ij)

T , (24)

where Ak
ij = ((Bk

ij)
T Bk

ij)
−1(Bk

ij)
T .

To obtain the location parameters corresponding to each
gdf, we can assume that the measurement equations are linear
in the vicinity of the point predicted by the prediction step.
That is, to approximate them with their first-order Taylor
expansions, the details of which are thoroughly explained
in [14], [15].2 The measurement equations we rely on to
estimate the parameters of the likelihoods are (9) and

arctan(
yi − yj

xi − xj
) = ϕk

ij , (25)

where ϕk
ij is calculated as explained in Section II-D. Carrying

out the necessary mathematical manipulation, we can write the
same relation as (23) for each gdf. That is,

Bk
ij,fp

k
i = rk

ij,f + zij,f , (26)

where zij,f ∼ N (z|0,Rij,f ) with Rij,f = diag(σ2
Rij

, σ2
ϕ).

Furthermore, Bij,f =
[
ak

j bk
j

]T
with the vectors ak

j and bk
j

2Note that this is equivalent to EKF, e.g. that of [47]. Nevertheless, to keep
consistency with the approach taken in this work, i.e., Bayesian representation
of the filtering process, we avoid the EKF representation.
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calculated by means of (27) and (28), as shown at the bottom
of the page, respectively. Finally, rij,f is constructed as in (29),
as shown at the bottom of the page. We note that (27) and (28)
are computed by means of the Taylor expansion of (9) and (25)
around the predicted point μ(pi)k

f− with the known μ(ϑ̃i)k
+

obtained by (24). Given (26), and similar to (24), we can
write

μ(pi)k
f+ = Ak

ij,fr
k
ij,f ,

Σ(pi)k
f+ = Ak

ij,fR
k
ij,f (Ak

ij,f )T , (30)

where Ak
ij,f = ((Bk

ij,f )T Bk
ij,f )−1(Bk

ij,f )T . Furthermore, it is
straightforward to see that

wk
f+ = N (pk

i = μ(pi)k
f+|μ(pi)k

f+,Σ(pi)k
f+). (31)

In other words, the weights are equal to the likelihood of the
mean of each gdf.

3) Posterior Estimation: Having taken the necessary steps,
we can now compute (18) as an approximation for the
posterior distribution in (14). Multiplying (19) and (22), the
parameters of (18) can be given by

μ(ϑ̃i)k =
[
Σ(ϑ̃i)k

− + Σ(ϑ̃i)k
+

]−1

×
(
Σ(ϑ̃i)k

+μ(ϑ̃i)k
− + Σ(ϑ̃i)k

−μ(ϑ̃i)k
+

)
, (32)

Σ(ϑ̃i)k =
[(

Σ(ϑ̃i)k
−

)−1

+
(
Σ(ϑ̃i)k

+

)−1
]−1

. (33)

The final estimation of the clock skew and offset can then be
given by

γ̃k
i =

1
μ(ϑ̃i)k[1]

, θ̃k
i =

μ(ϑ̃i)k[2]
μ(ϑ̃i)k[1]

. (34)

Furthermore, each gdf can be updated across pi axis by

μ(pi)k
f =

[
Σ(pi)k

f− + Σ(pi)k
f+

]−1

× (
Σ(pi)k

f+μ(pi)k
f− + Σ(pi)k

f−μ(pi)k
f+

)
,

(35)

Σ(pi)k
f =

[(
Σ(pi)k

f−
)−1

+
(
Σ(pi)k

f+

)−1
]−1

. (36)

Next, the weights can be updated as

wk
f =

wk
f−wk

f+∑F
f=1 wk

f−wk
f+

. (37)

Given (35), (36), (37), the final position estimation can be
given by

p̂i
k =

F∑
f=1

wk
fμ(pi)k

f . (38)

4) Resampling and Tuning: Resampling is one of the most
crucial steps when performing PGM filtering. Without the
resampling step, the filter would suffer from sample depletion.
That is, after a while all the gdfs but a few will have negligible
weight. Consequently, the posterior will be approximated with
only a few gdfs, leading to its underestimation. To overcome
this shortcoming, in each iteration we replace the minor-
weight gdfs with new ones whose means are sampled from
the approximated posterior. The sample depletion can be
monitored throughout the filtering process by calculating the
number of effective gdfs as

Neff =
1∑F

f=1(w
k
f )2

. (39)

As can be seen, Neff attains its maximum when all the weights
are equal to 1

F and falls to its minimum when all but a single
weight is equal to zero. In this work, the resampling is carried
out when the Neff < 2

3F.
All above-mentioned steps are summarized in algorithm 1.

Algorithm 1 DePF Joint sync&loc

1: Initialize p(ξ0
i ) as in (18).

2: for all the APs in Ii do
3: Perform the time-stamp exchange mechanism described

in Section II-B2 and Figure 3.
4: Estimate the CIR using QuaDRiGa channel model.
5: Estimate the AoA and the link condition ζk

ij using the
CIR and (25)

6: for all LoS links (ζk
ij = 0) do

7: Construct Bk
ij , Bk

ij,f , Rk
ij , Rk

ij,f , rk
ij and rk

ij,f by
means of the time-stamps and the AoA.

8: Update the parameters of the posterior distribution
using (32), (33), (35), and (36).

9: end for
10: end for
11: Estimate the clock and position parameters using (34)

and (38).
12: if Neff < 2

3F then
13: Perform resampling.
14: end if
15: Go to step 2.

C. Complexity of the Algorithm

The computational complexity of different types of BRF and
PF filters including L-BRF and PGM has been extensively

ak
j,f =

1
vc

∣∣μ(pi)k
f− − pj

∣∣ , ak
j,f =

1
v2

cak
j,f

(
μ(pi)k

f− − pj

)
, (27)

bk
j,f = arctan(

ak
j,f [2]

ak
j,f [1]

), bk
j,f =

1
ak

j,f

[−ak
j,f [2], ak

j,f [1]
]
. (28)

rij,f =
[
cj(tk6) − ak

j,f + μ(pi)k
f− · ak

j,f − [
ci(tk5) −1

] · μ(ϑ̃i)k
+, ϕk

ij − bk
j,f + μ(pi)k

f− · bk
j,f

]T

(29)
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TABLE I

COMPLEXITY COMPARISON OF L-BRF AND PGM FILTER

discussed in [18], [49]. Parameters l, n, and F denote the
number of linear state variables, nonlinear state variables, and
gdfs (or mixtures), respectively. For the sake of simplicity,
we only consider the number of multiplications to evaluate
the complexity. Table I shows the complexity for each step
of L-BRF and PGM. For the prediction step, it can be seen
from (19) and (21) that two squared matrix multiplications
and a matrix-vector multiplication are needed. We note that
the computation cost of generating random variables is O(1).
The same holds for the likelihood computation given in (24)
and (30). In the PGM, however, the L-BRF is repeated F
times for each gdf across the nonlinear state variables. For
the estimation step, the L-BRF needs 4 matrix inversions
and 3 matrix-vector multiplications. The same number of
multiplications is necessary for each gdf of the PGM. This
is in addition to the multiplications between the weights and
the particles essential to obtain the final estimation. Finally,
we need to perform a cumulative sum to perform resampling,
whose complexity is considered to be O(F ). It is apparent that
PGM adds an overhead, however, it turns out that, according
to [18], [49], PGM is more efficient, especially when the
uncertainty of the measurements increases.

IV. SIMULATION RESULTS AND DISCUSSION

In this section, we evaluate the performance of the tech-
niques employed in this work. In particular, we first evalu-
ate the performance of a DNN-based NLoS identifier. Next,
we present the result of AoA estimation. Finally, the perfor-
mance of the joint sync&loc algorithm developed in this work
is thoroughly analyzed.

A. DNN-Based NLoS Identification

To perform NLoS identification, the DNN in Figure 4 needs
to be trained first. The training data is obtained using the
QuaDRiGa channel model, the details of which are given
in [50]. Specifically, the MU’s movement profile can be
implemented under the Urban Micro (UMi) cell scenario
(denoted by “3GPP_38.901_UMi” in the QuaDRiga documen-
tation), which corresponds to the densely populated urban
areas. We collect 5000 CIR realizations for each scenario,
i.e., LoS and NLoS, 80% of which is used for the training
purpose while the remaining 20% is treated as the test set.
To prepare the CIRs to be fed into the DNN, we first input
them into a 64-point FFT to obtain the Channel Frequency
Responses (CFRs). Subsequently, we take the magnitude of
the CFRs and normalize each to its maximum component so
that all magnitudes are between 0 and 1. Such normalization
is proved to result in faster learning and convergence [51].

Fig. 7. Comparison of two ML schemes when performing NLoS-
identification. Pf (LoS)/Pf (NLoS) denotes the probability that the true con-
dition of the links detected as LoS/NLoS is NLoS/LoS.

The normalized magnitudes of the CFRs are then fed into a
DNN with 2 hidden layers, each comprising 50 neurons with
a rectified linear unit activation function. The loss function
in (2) is then optimized using Adam optimizer to obtain
the weights of each neuron. Furthermore, the probability that
a CFR corresponds to a LoS and NLoS link condition is
indicated by the DNN’s two output neurons with a softmax
activation function.

Figure 7 depicts the accuracy of the NLoS-identifier
based on SVM, a classical ML algorithm, and DNN,
the method proposed in this work. As can be seen, the DNN-
based method delivers higher accuracy, outperforming the
classical method. Specifically, DNNs are more powerful when
it comes to estimating the classifier function, and, therefore,
they turn in superior performance. The performance remains
high even if we employ the DNN in an environment other than
that of the training data, i.e., Urban Macro (UMa) cells instead
of UMi. If the environment is too dissimilar, the performance
will drastically deteriorate. In our simulations, we observed a
poor accuracy of 61% for the rural-urban scenario, which is
highly different from the UMi or UMa.

As mentioned before, the extremely high accuracy provided
by the DNN is crucial as determining the link condition is
among the most important decisions to be taken. In particular,
false detection of NLoS links as LoS, Pf (LoS), not only can
result in a poor estimation of the MU position and clock
parameters, but also may lead to divergence of the filter. This
occurs since the AoA estimation as well as the time-based
distance measurement (which in the case of this work is carried
out through time-stamp exchange) are highly inaccurate for
NLoS links.

B. AoA Estimation

To evaluate the performance of the MUSIC algorithm,
we arrange a specific simulation setup (shown in Figure 8)
where an MU moves with the velocity of 2 m/s along the x
axis from the point [x = 0, y = 0, z = 1.5] until [x = 70,
y = 0, z = 1.5]. An AP with a Nant × Nant UPA and tilted
20◦ is located at [x = 35, y = −5, z = 10], equally distant
from the two edges of the trajectory. Figure 8 depicts such
a setup where the MU’s trajectory and AP’s coverage area
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Fig. 8. Simulation setup for calculating the AoA.

Fig. 9. AoA estimation accuracy.

(for 23 dBm power allocated to each antenna element) are
observable. Furthermore, the elements are assumed to be patch
antennas with 90◦ and 180◦ beam opening in the elevation and
azimuth plane, respectively. Such a setup covers all possible
angles that an MU might have with respect to an AP, i.e., from
6◦ to 171◦. Furthermore, it represents the basic movement of
the MUs in an urban scenario, e.g., the movement profile of
the users shown in Figure 1 can be seen as the combination
of that depicted in Figure 8. Lastly, at each time step, the
AoA is estimated using the MUSIC algorithm fed with the
corresponding CIR generated by QuaDRiGa. The algorithm
estimates the azimuth and elevation AoA using the binary
exhaustive search up to the 0.5 degree accuracy level, where
the number of search bins are 40 and 20, respectively.

Figure 9 depicts the Root Mean Square Error (RMSE)
of the AoA estimation for several UPA sizes. As can be
observed, the RMSE of azimuth AoA estimation remains
under 1.5◦ for almost all the investigated UPAs, which paves
the way for precise localization of the MUs. Nevertheless,
in our simulations, we observed that for smaller UPAs the
RMSE increases drastically due to the large errors at the
edges of the trajectory. Although such cases rarely occur,
they can potentially lead to filter divergence. Moreover, the
same behavior is observed for the elevation AoA estimation.
Generally, as can be seen in the figure, the RMSE is slightly
higher for the elevation AoA since the MU is always in
the [10◦ − 50◦] angle sight of the AP. We know that UPA’s

estimation performance deteriorates as we move towards the
edges. In practice, due to the density of the APs, the MUs are
expected to be in the azimuth angle range of [20◦−150◦], and
in the elevation angle range of [20◦−50◦], i.e., AP density of
fewer than 60 meters.

C. Joint sync&loc

We perform analysis for the scenario shown in Figure 1,
which is regarded in [8], [9] as challenging. A car commences
its journey by accelerating to reach the velocity of 14 m/s
(=50 km/h). It continues moving with constant velocity and
decelerates upon approaching the intersection until it com-
pletely stops (e.g., due to the red light). The same repeats
between the two intersections. At the second intersection,
it begins moving, then takes a turn, and continues to accelerate
to 14 m/s limit until it exits the map. All the turns, as well as
the acceleration coefficients, are chosen randomly. During its
journey, at each joint sync&loc round k, the MU exchanges
time-stamps with a fixed number of APs (NAP) in Ii, the
link to each of which is LoS/NLoS with the probability of
0.8/0.2. The APs are grouped into Ii based on the distance
criteria, that is, Ii includes the NAP closest APs to the i-th MU.
A further assumption is that, at each joint sync&loc period T,
Nant × Nant CIRs are available at each AP connected to the
MU. In our simulations, the CIRs are obtained using the
QuaDRiGa channel model. More explicitly, at each round
k, knowing the true MU-AP distance and the link con-
dition, i.e., LoS or NLoS, the CIRs are generated using
the “3GPP_38.901_UMi” scenario of the QuaDRiGa channel
model. Moreover, the RMSEs obtained by [8], [9] serve as
the baseline to our approach. The second scheme with which
we compare our proposed algorithm is the L-BRF filtering
proposed in [14], [15]. The aforementioned approaches are the
most relevant as they draw on the same inputs as our proposed
method does.

We initialize all the clock offsets from the U(−103, 103)
ns. The initial skews of all the clocks are drawn from the
uniform distribution U(1−10−4, 1+10−4), which corresponds
to skew values between 0 and 100 part-per-million (ppm).
The covariance of the clock process noise Qn(ϑ̃i) is set to
diag(10−5, 100) to account for the residual errors from the
previous iterations as well as the external noises on the clock
skew and offset. The covariance of position process noise
Qn(pi) amounts to diag((14T )2, (14T )2) to account for every
possible movement of the MU. All the additional simulation
parameters can be found in Table II.

Figure 10 shows the RMSE of clock offset estimation
for three joint snyc&loc algorithms. The DePF algorithm is
compared with two linear Bayesian methods, i.e., EKF and
L-BRF, in multiple scenarios. In particular, we compute the
RMSEs in three scenarios, with the number of LoS APs
ranging from 1 to 3. In an additional scenario, we consider the
MU being connected to three APs, where each MU-AP link
condition is set to LoS with the probability of 0.8. As can
be seen, for all the LoS scenarios, the L-BRF and DePF
deliver an identical performance, which is expected as they
rely on the same approach to estimate the clock parameters.
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TABLE II

SIMULATION PARAMETERS

Fig. 10. Performance comparison of three joint synchronization and
localization algorithms in terms of clock offset estimation.

On the other hand, the performance of the EKF falls behind
as it does not explicitly draw on the synchronization signals
to estimate the clock offset. Moreover, the synchronization
algorithm scheme utilized to synchronize the APs, i.e., hybrid
BP-BRF network synchronization, leads to a more precise
inter-AP synchronization and, consequently, it lowers the MU
clock offset estimation error. In the last case, the L-BRF
and DePF that draw on DNN-based NLoS identification out-
perform the EKF-based method where the NLoS links are
identified by means of Rice factor of the incoming signal
strength.

Figure 11 depicts the RMSE of position estimation for three
joint sync&loc algorithms. The DePF algorithm is compared
with two linear Bayesian methods, i.e., EKF and L-BRF,
in the same scenarios as in Figure 10. As can be seen,
for almost all the scenarios, the DePF algorithm delivers
superior performance. In particular, since the DePF employs

Fig. 11. Performance comparison of three joint synchronization and
localization algorithms in terms of position estimation.

Fig. 12. Performance comparison of L-BRF and DePF when estimating the
MUs’ clock offset.

a higher number of gdfs, rather than only one, to approximate
the posterior distribution it can estimate the position more
accurately. Furthermore, DePF stands out when dealing with
NLoS links. This is straightforward to notice as the RMSE of
position estimation is lower for DePF in the 3-AP scenario
where the L-BRF employs the same NLoS identifier as DePF.
Additionally, unlike EKF and L-BRF, DePF does not need
any initialization, which is of crucial importance in practice
as initialization would require the APs to request position
estimation from the MUs, which may not be always pos-
sible. Overall, considering 2-AP LoS, 3-AP LoS, and 3-AP
scenarios, EKF and L-BRF perform close to DePF when both
a reliable initialization and MU-AP links with known LoS
conditions are available. Nevertheless, such assumptions are
questionable in practice, rendering the EKF-based and L-BRF
algorithms futile in real-world scenarios.

Hereafter, all the simulations have been carried out assum-
ing that there is always at least one LoS MU-AP link.
Figure 12 presents the CDF of the clock offset estimation error
when the MU is connected to multiple APs. It can be seen
that the estimation accuracy always remains below 2 ns and
increases as both L-BRF and DePF utilize more measurements
to estimate the clock offset and skew. In fact, since the APs
are synchronized with high precision, collecting time-stamps
from each additional AP does provide additional information
about the statistics of MU’s clock parameters and, therefore,
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Fig. 13. Performance comparison of L-BRF and DePF when estimating the
MUs’ position.

increases the accuracy of the estimation. Such precision is
necessary if the location of the MU is to be accurately
estimated. We note that each single ns inaccuracy maps to
0.3 m distance measurement error and, consequently, worsens
the location estimation. Furthermore, the performance of both
schemes is identical as they draw on the same approach, i.e.,
modeling the clock parameter with a single gdf, to estimate
the clock parameters.

Figure 13 presents the CDF of the position estimation error
when the MU is connected to multiple APs. As can be seen,
the position estimation error is less than 1 meter in 90% of
the cases for the DePF algorithm. We observe that DePF sig-
nificantly outperforms the L-BRF, especially for 2- and 3-AP
scenarios. In particular, unlike the L-BRF that approximates
the posterior with a single Gaussian distribution, in DePF, the
approximation is based on multiple gdfs. Consequently, the
approximated posterior is closer to the true one, leading to a
more precise position estimation. Another subtle observation
is that, although the position estimation error decays with the
growth in the number of APs, increasing the number of APs
from 2 to 3 only slightly improves the performance. In fact, the
third AP is normally far away from the MU, leading to a poorer
(AoA and time-stamp) measurement accuracy compared to
that of the first two APs. Hence, it does not provide substantial
further information about the posterior distribution of the
MU’s location.

Figure 14 indicates the CDF of the position estimation for
multiple numbers of gdfs. It can be noticed that the position
estimation ameliorates with the increase of the number of gdfs.
This is expected as in PGM filters the posterior distribution
is approximated by multiple gdfs. Consequently, the more
gdfs we employ, the more accuracy we achieve, albeit with
higher computation time. Nevertheless, the error reduction is
decreasing when increasing the number of gdfs, suggesting
that a proper balance needs to be struck between the number of
gdfs and the localization accuracy. In the scenarios presented
in this work, one can achieve satisfactory performance even
with 500 gdfs.

Figure 15 shows the CDF of the clock offset estimation
error carried out by a single AP for different time-stamp
uncertainties, i.e., σT = 2, 4, 6. As can be seen, the clock

Fig. 14. Performance of joint sync&loc algorithm for different number
of gdfs.

Fig. 15. Clock offset estimation performance of joint sync&loc algorithm
with different number of APs involved.

offset estimation accuracy drops as the σT grows. It remains,
however, less than 3 ns in 90% of the cases. Such degrada-
tion can cause an additional error in position estimation as,
given (9), both parameters are intertwined. Specifically, the
offset estimation error can introduce distance measurement
error, resulting in imprecision when estimating the position.
Nevertheless, the uncertainty of the time-stamping of the state-
of-the-art devices is expected to be below 5 ns. Moreover, the
destructive impact of the uncertainty can be also mitigated
by employing more synchronized APs as discussed previously
and shown in Figure 12.

Figure 16 shows the CDF of position estimation conducted
by a single AP for different time-stamp accuracies. It can
be noticed that the position estimation accuracy deteriorates
with the growth in the time-stamp uncertainty. Specifically,
the growth in uncertainty results in more erroneous distance
measurements and offset estimations, which, consequently,
worsens the position estimation accuracy. Nevertheless, it can
be readily seen that DePF is more successful in mitigating
the destructive effect of the time-stamp uncertainty. More-
over, for both DePF and L-BRF, employing more APs can
alleviate the negative impact of large time-stamp uncer-
tainty. In both Figures 15 and 16, it can be noticed that
σT plays a decisive role in the outcome of the estimation
algorithm, which also reveals the importance of hardware
components in the design of a robust and precise joint



GOODARZI et al.: DNN-ASSISTED PARTICLE-BASED BAYESIAN JOINT SYNCHRONIZATION AND LOCALIZATION 4849

Fig. 16. Position estimation performance of joint sync&loc algorithm with
different time-stamp accuracy.

sync&loc algorithm. In practice, such uncertainty in commer-
cial off-the-shelf devices is expected to be below 5 ns.

In summary, one can see that DNNs can play a decisive
role by facilitating accurate decision-making in simple, albeit
crucial, tasks such as NLoS identification. Furthermore, it can
be noticed that in the case when we have multiple LoS
links available, the performance of the EKF-based and L-BRF
approaches both in terms of clock offset and position is
close to that of DePF. Nevertheless, in the absence of LoS
condition, DePF demonstrates more competence in estimating
the clock and position parameters by employing only a few
hundred gdfs. Another point worth mentioning is that time-
stamp exchange is of high potential to be employed for
performing joint sync&loc. In particular, the current com-
munication devices are capable of performing FTM up to
5 ns accuracy, fertilizing the ground for precise offset and
distance measurements, which are the basis for precise joint
synchronization and localization.

V. CONCLUSION AND FUTURE WORKS

We presented a DNN-assisted Particle-based filtering
(DePF) algorithm for joint synchronization and localization
(sync&loc) of Mobile Users (MUs) in communication net-
works. In particular, we leveraged an asymmetric time-stamp
exchange mechanism, traditionally utilized for time synchro-
nization, to estimate the clock offset and skew while simul-
taneously obtaining information about the distance between
the access points and the MUs. Further on, we combined
the aforementioned measurements with the angle of arrival
estimation and the link condition, i.e., line-of-sight or non-
line-of-sight, returned by a pretrained DNN to localize the
MUs. Simulation results indicate that while the performance
of the proposed algorithm is promising, especially under
challenging real-world conditions, the position and clock offset
estimation errors are dependent on the accuracy of hardware
time-stamping. We mitigated the negative impact of this
dependency by deploying more access points for performing
joint sync&loc.

In this work, we drew on simulations to prove the effi-
ciency of our proposed algorithm. However, to cross-validate
the obtained results, the algorithm needs to be implemented

in practice. Therefore, in future works, we will employ the
hardware at our disposal to evaluate the performance of our
proposed joint sync&loc algorithm in practice.

ABBREVIATIONS

AoA: Angle of Arrival, AP: Access Point, BN: Bayesian
Network, BP: Belief Propagation, BS: Base Station, CDF:
Cumulative Distribution Function, CIR: Channel Impulse
Response, CFR: Channel Frequency Response, DePF: DNN-
assisted Particle-based Bayesian Filtering, DNN: Deep Neural
Network, EKF: Extended Kalman Filter, FFT: Fast Fourier
Transform, FTM: fine time measurement, gdf: Gaussian den-
sity function, L-BRF: Linearized Bayesian Recursive Filter-
ing, LoS: Line-of-Sight, ML: Machine Learning, MU: Mobile
User, NLoS: Non-Line-of-Sight, PGM: Particle Gaussian
Mixture, RMSE: Root Mean Square Error, sync&loc: Syn-
chronization and Localization, SVM: Support Vector Machine,
UPA: Uniform Linear Array.
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