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Abstract—In this work, we study the joint synchronization and
localization (sync&loc) of Mobile Nodes (MNs) in ultra dense
networks. In particular, we deploy an asymmetric time-stamp
exchange mechanism between the MNs and the Access Nodes
(ANs), that, traditionally, provides us with information about
the MNs’ clock offset and skew. However, information about
the distance between an AN and a MN is also intrinsic to the
propagation delay experienced by exchanged time-stamps. In
addition, we utilize Angle of Arrival (AoA) estimation to de-
termine the incoming direction of time-stamp exchange packets,
which gives further information about the MNs’ location. Finally,
we employ Bayesian Recursive Filtering (BRF) to combine the
aforementioned pieces of information and jointly estimate the
position and clock parameters of the MNs. The simulation
results indicate that the Root Mean Square Errors (RMSEs) of
position and clock offset estimation are kept below 1 meter and
1 nanosecond, respectively.

Index Terms—5G, Joint Synchronization and Localization,
Bayesian Recursive Filtering, Time-stamp exchange

I. INTRODUCTION

The fifth generation (5G) of mobile communication net-

works is expected to provide an enormous variety of

localization-based services [1]–[3]. User tracking [4], next

crossing cell prediction [5], and location-assisted beamforming

[6] can be considered as examples where Mobile Node (MN)

localization plays a decisive role. State-of-the-art MN local-

ization techniques rely primarily on the cooperation among

the Access Nodes (ANs), requiring them to be precisely

synchronized. In addition, for many of the existing techniques

to function, the clock parameters of the MNs need to be known

(or to be continuously tracked). Therefore, it appears that the

aforementioned problems, namely inter-AN synchronization,

MN’s clock parameter estimation, and MN localization are

closely intertwined and need to be tackled jointly.

In [7], [8], we have thoroughly addressed the end-to-end

synchronization in 5G networks. In particular, we employed

Belief Propagation (BP) and Bayesian Recursive Filtering

(BRF) not only to achieve high-precision end-to-end synchro-

nization, but also to keep the inter-AN relative clock offset

and skew low. In other words, the algorithms therein pave the
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way for the joint synchronization and localization (sync&loc)

of MNs by accurately synchronizing the neighboring ANs.
The joint MN sync&loc problem has been extensively con-

sidered in the literature. In [9], the authors rely on symmetric

time-stamp exchange between ANs and MNs to jointly and

distributedly estimate MNs’ location and clock offset with

the aid of BP. Furthermore, the authors of [10], [11] adopt

a similar approach by means of the asymmetric time-stamp

exchange mechanism proposed in [12], enabling them to track

both the clock offset and skew. While support of time-stamp

exchange in 5G networks is a valid assumption to make

(as it has been already introduced in several standards, e.g.

IEEE 802.11 under the name fine time measurement [13]), the

high number of message-passings required by BP renders the

approach limited in practice. Additionally, they provide the

estimation of the sync&loc parameters at MN, whereas for

the location-based services to be delivered, these parameters

need to be computed on the network side.
In [14], the authors leverage Extended Kalman Filtering

(EKF) to obtain the estimation of clock parameters and

position in ultra dense networks. In particular, they assume

synchronized ANs and perform MN joint sync&loc in the

presence of uncertainty about Time of Arrival (ToA) and

Angle of Arrival (AoA) parameters. The level of uncertainty

is then determined based on the derived Cramer Rao Bound

(CRB). However, in practice, the estimation accuracy of AoA

and ToA plays a significant role in the performance of joint

sync&loc. Thus, a more detailed and in-depth analysis is

required to recognize the limitations they impose on joint

sync&loc algorithms. Specifically, in this work, we focus on

the limitations caused by uncertainty in time-stamping (which

directly translates to uncertainty in ToA) while drawing on the

CRB for AoA estimation and leaving its detailed analysis for

future works.
The contribution of this paper is summarized as follows:

• We present a realistic system model for joint sync&loc

based on asymmetric time-stamp exchange.

• We propose a BRF-based joint sync&loc algorithm using

time-stamp exchange between ANs and MNs.

• We analyze the performance of the proposed approach

with the aid of detailed simulations in a challenging

real-world scenario.

The rest of this paper is structured as follows: In Section II, we

introduce our system model. Section III describes the details
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Fig. 1. An example where MN joint sync&loc can be carried out.

TABLE I
NOTATION

Denotation Description
𝑨 matrices
𝒂 vectors
𝒂 (𝑛) 𝑛-th element of vector 𝒂
𝑰𝑁 𝑁 × 𝑁 dimensional identity matrix
0𝑁 𝑁 × 𝑁 dimensional all-zero matrix
N(x |𝝁, 𝚺) Gaussian distributed random vector x with mean

vector 𝝁 and covariance matrix 𝚺
diag(𝑥1, · · · , 𝑥𝐾 ) diagonal matrix with the diagonal elements given

by (𝑥1, · · · , 𝑥𝐾 )
∼ stands for “is distributed as”
∝ linear scalar relationship between two real valued

functions

of the BRF algorithm for joint estimation of location and clock

parameters. Furthermore, simulation results are presented and

discussed in Section IV. Finally, Section V concludes this work

and points to future works.

II. SYSTEM MODEL

We consider a scenario where a MN, e.g. a moving

car/person, is served by a set of ANs, all backhauled by a Base

Station (BS), as shown in Figure 1. We assume that the ANs

continuously synchronize themselves with the backhauling BS

using the methods described in [7], [8]. The joint sync&loc

is then performed for the scenario where the MN exchanges

time-stamps through an active Line-of-Sight (LoS) connection

with only one AN. However, if there are further ANs in LoS

to the MN, they can passively cooperate with the main AN to

further enhance the performance. Moreover, an estimation of

AoA is carried out upon each round of time-stamp exchange.

In the following subsections, we firstly present the clock model

for the ANs and the MNs. Then, we explain the time-stamp

exchange mechanism as well as the concept of active/passive

connection between the ANs and the MNs. Lastly, we deal

with the CRB of AoA estimation.

A. Clock Model

We consider the following clock model for each node 𝑖.

𝑐𝑖 (𝑡) = 𝛾𝑖𝑡 + 𝜃𝑖 , (1)
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Fig. 2. Delay decomposition.
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Fig. 3. Time-stamp exchange between MN 𝑖 and AN 𝑗. Blue/red solid/dashed
lines indicate the active/passive listening of AN 𝑗/𝑙.

where 𝑡 represents the reference time. Furthermore, 𝛾𝑖 and 𝜃𝑖
denote the clock skew and offset, respectively. The parameter

𝛾𝑖 is generally random and varies over time. However, it is

common to assume that it remains constant in the course of

one synchronization period [15]–[17]. Given that, the goal of

time synchronization can be defined as the estimation of 𝛾𝑖
and 𝜃𝑖 (or transformations thereof) for each node.

B. Offset Decomposition and Time-stamp Exchange

1) Offset decomposition: To elaborate on the components

making up the offset 𝜃𝑖 , we break down this parameter as

shown in Figure 2. The parameter 𝑡 𝑗 /𝑡𝑖 is the time taken for

a packet to leave the transmitter after being time-stamped,

𝑑 𝑗𝑖/𝑑𝑖 𝑗 denotes the propagation delay, and 𝑟𝑖/𝑟 𝑗 represents the

time that a packet needs to reach the time-stamping point upon

arrival at the receiver. In general, 𝑡 𝑗 + 𝑑 𝑗𝑖 + 𝑟𝑖 ≠ 𝑡𝑖 + 𝑑𝑖 𝑗 + 𝑟 𝑗 ,
indicating that the packets sent from node 𝑗 to node 𝑖 do not

necessarily experience the same delay as those sent from node

𝑖 to node 𝑗 . Furthermore, we define 𝑇𝑖 𝑗 = 𝑡 𝑗 + 𝑟𝑖 , and 𝑅𝑖 𝑗 =
𝑡𝑖 + 𝑟 𝑗 . Generally, 𝑇𝑖 𝑗 and 𝑅𝑖 𝑗 (and correspondingly 𝑡 𝑗 , 𝑡𝑖 , 𝑟 𝑗 ,
and 𝑟𝑖 ,) are random variables due to several hardware-related

random independent processes and can, therefore, be assumed

i.i.d. Gaussian random variables, whereas 𝑑 𝑗𝑖 and 𝑑𝑖 𝑗 are

usually assumed to be deterministic and symmetric (𝑑 𝑗𝑖 = 𝑑𝑖 𝑗 )
[4], [16]. The random variables 𝑇𝑖 𝑗 and 𝑅𝑖 𝑗 are assumed to

be distributed as N(𝜇𝑇 , 𝜎
2
𝑇 ) and N(𝜇𝑅, 𝜎

2
𝑅), respectively. As

mentioned in [15], [16], [18], while it is typical to assume that

𝜇𝑇 = 𝜇𝑅, and parameters 𝜎𝑇 and 𝜎𝑅 are known, having any

information about the value of 𝜇𝑇 and 𝜇𝑅 is highly unlikely.

Therefore, we construct the joint sync&loc algorithm assuming

no knowledge on 𝜇𝑇 and 𝜇𝑅 except for 𝜇𝑇 = 𝜇𝑅 .
2) Time-stamp exchange scheduling: We deploy the asym-

metric time-stamp exchange mechanism shown in Figure 3,



proposed in [12], and employed in [10], [15]. AN 𝑗 propagates

a message announcing the beginning of a time-stamp exchange

round. Upon reception, the connected MNs go to active listen-
ing mode while the neighboring ANs go into passive listening
mode. In the former, the MNs will respond after reception of

two messages from AN 𝑗 (depicted in Figure 3), whereas, in

the latter, the ANs only listen to the packet exchange between

AN 𝑗 and the MNs. Without loss of generality and for the sake

of simplicity we write the equations for only one MN and two

ANs. The extension to multiple ANs/MNs is straightforward.

3) Time-stamp exchange mechanism: Given Section II-B2,

and considering AN 𝑗 as master node1, we can write

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
2 ) − 𝜃𝑖) = 𝑐 𝑗 (𝑡

𝑘
1 ) +

𝑑𝑖 𝑗

𝑣𝑐
+ 𝑇 𝑘,0

𝑖 𝑗 , (2)

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
4 ) − 𝜃𝑖) = 𝑐 𝑗 (𝑡

𝑘
3 ) +

𝑑𝑖 𝑗

𝑣𝑐
+ 𝑇 𝑘,1

𝑖 𝑗 , (3)

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
5 ) − 𝜃𝑖) = 𝑐 𝑗 (𝑡

𝑘
6 ) −

𝑑𝑖 𝑗

𝑣𝑐
− 𝑅𝑘

𝑖 𝑗 , (4)

where 𝑡𝑘1 /𝑡𝑘2 , 𝑡𝑘3 /𝑡𝑘4 , and 𝑡𝑘5 /𝑡𝑘6 are the time points where MN

𝑖 and AN 𝑗 send/receive the sync messages, respectively. Pa-

rameter 𝑑𝑖 𝑗 =
√
(𝑥𝑖 − 𝑥 𝑗 )2 + (𝑦𝑖 − 𝑦 𝑗 )2 denotes the Euclidean

distance between nodes 𝑖 and 𝑗 and 𝑣𝑐 is the speed of light.

Furthermore, if there is an AN 𝑙 in passive listening mode, we

can write

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
5 ) − 𝜃𝑖) = 𝑐𝑙 (𝑡

𝑘
7 ) + 𝜃 𝑗𝑙 −

𝑑𝑖𝑙
𝑣𝑐

− 𝑅𝑘
𝑖𝑙 , (5)

where 𝑡𝑘7 is the time point when AN 𝑙 receives the time-stamps

sent by MN 𝑖. Parameter 𝜃 𝑗𝑙 denotes the relative offset between

ANs 𝑗 and 𝑙 and is shown in [7] to have the distribution

N(𝜃 𝑗𝑙 |0, 𝜎2
𝑗𝑙) with 𝜎𝑗𝑙 ≈ 1 ns for an urban scenario similar to

Figure 1. Note that we neglect the impact of skew difference

between 𝑙 and 𝑗 since it has been shown that this difference

is almost zero if the ANs frequently synchronize to the

backhauling BS using the algorithm introduced in [8].

At the 𝑘-th round of time-stamp exchange (and correspond-

ingly 𝑘-th round of joint sync&loc), the network localization

center is expected to have collected the time-stamps

c𝑘𝑖 𝑗 =
[
𝑐 𝑗 (𝑡

𝑘
1 ), 𝑐𝑖 (𝑡

𝑘
2 ), 𝑐 𝑗 (𝑡

𝑘
3 ), 𝑐𝑖 (𝑡

𝑘
4 ), 𝑐𝑖 (𝑡

𝑘
5 ), 𝑐 𝑗 (𝑡

𝑘
6 ), 𝑐𝑙 (𝑡

𝑘
7 )

]
.

C. Angle of Arrival

AoA estimation has been extensively investigated in the

literature. In particular, beamforming, subspace, and maximum

likelihood methods can be employed to accurately estimate the

AoA [19]. Nevertheless, in this work, our focus is to reveal

the potential merit of time-stamp exchange in joint sync&loc.

Therefore, we assume that an uncertain estimation of AoA is

1In Figure 3, instead of a global time reference 𝑐 (𝑡) = 𝑡 , we take node 𝑗
as master node. It is straightforward to see that 1

�̃�𝑖
=

𝛾𝑗
𝛾𝑖

, 𝜃𝑖 = 𝜃𝑖 − �̃�𝑖 𝜃 𝑗 ,

𝑑𝑖 𝑗 + �̃� 𝑘
𝑖 𝑗 = 𝛾 𝑗 (𝑑𝑖 𝑗 + 𝑇 𝑘

𝑖 𝑗 ) , and 𝑑𝑖 𝑗 − �̃�𝑘
𝑖 𝑗 = 𝛾 𝑗 (𝑑𝑖 𝑗 − 𝑅𝑘

𝑖 𝑗 ) . For the sake of

simplicity, as done in [4], we assume 𝑑𝑖 𝑗 = 𝑑𝑖 𝑗 , �̃�
𝑘
𝑖 𝑗 = 𝑅𝑘

𝑖 𝑗 , and �̃� 𝑘
𝑖 𝑗 = 𝑇 𝑘

𝑖 𝑗 .

This is valid because 𝛾 𝑗 ≈ 1 and the values of 𝑑𝑖 𝑗 + 𝑇 𝑘
𝑖 𝑗 and 𝑑𝑖 𝑗 − 𝑅𝑘

𝑖 𝑗 are

low.
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Fig. 4. Representation of Bayesian estimation.

available where the uncertainty, i.e. 𝜎𝜑 , is obtained from the

CRB.

Assuming that each AN has a 𝑁-element Uniform Linear

Array (ULA) antenna, the CRB on AoA estimation can then

be given by [20]

𝐽 (𝜑)−1 =

(
𝑁 (𝑁 − 1) (𝑁 + 1)𝜋2 sin2 (𝜑)

24
× SNR

)−1

. (6)

We set the maximum value of SNR to 30 dB which occurs at

the closest MN-AN distance of 5m. It then drops according to

the Friis path-loss formula, i.e. 20 log10 (𝑑𝑖 𝑗 ). Furthermore, the

number of AN antennas, 𝑁, and the distance between them are

set to 16 and 𝜆
2 , respectively, where 𝜆 denotes the wavelength.

Thus, at the 𝑘-th round of time-stamp exchange, each AN is

expected to have estimated 𝜑𝑘 , which, in this work, is derived

from the distribution N(𝜑𝑘
𝑝 , 𝜎

2
𝜑) with 𝜎2

𝜑 = 𝐽 (𝜑)−1 and 𝜑𝑘
𝑝

being calculated knowing the exact location of the MN 𝑖 and

AN 𝑗 .

III. CLOCK PARAMETERS AND POSITION ESTIMATION

Let 𝝃𝑘𝑖 be the state of the vector variable 𝝃𝑖 �[
1
�̃�𝑖

𝜃𝑖
�̃�𝑖

𝑥𝑖 𝑦𝑖 𝑣𝑥𝑖 𝑣𝑦𝑖

]𝑇
after the 𝑘-th round of time-

stamp exchange (visualized in Figure 4). Parameters 𝑥𝑖/𝑣𝑥𝑖
and 𝑦𝑖/𝑣𝑦𝑖 denote the position/velocity of node 𝑖 on the 𝑥 and

𝑦 axis, respectively. The probability distribution function (pdf)

corresponding to the 𝑘-th state can then be written as

𝑝(𝝃𝑘𝑖 |c1:𝑘
𝑖 𝑗 , 𝜑

1:𝑘 ) =
∫

𝑝(𝝃0
𝑖 , · · · , 𝝃

𝑘
𝑖 |c1:𝑘

𝑖 𝑗 , 𝜑
1:𝑘 ) 𝑑Θ𝑘−1, (7)

where Θ𝑘−1 =
[
𝝃0
𝑖 , · · · , 𝝃

𝑘−1
𝑖

]
. Applying Bayesian rule, we

can rewrite (7) as

𝑝(𝝃𝑘𝑖 |c1:𝑘
𝑖 𝑗 , 𝜑

1:𝑘 ) ∝∫
𝑝(c1:𝑘

𝑖 𝑗 , 𝜑
1:𝑘 |𝝃0

𝑖 , · · · , 𝝃
𝑘
𝑖 )𝑝(𝝃

0
𝑖 , · · · , 𝝃

𝑘
𝑖 ) 𝑑Θ𝑘−1. (8)

Knowing that the measurements are independent and assuming

Markov property [21], the integrands in (8) can be reformu-

lated as

𝑝(c1:𝑘
𝑖 𝑗 , 𝜑

1:𝑘 |𝝃0
𝑖 , · · · , 𝝃

𝑘
𝑖 ) = 𝑝(c𝑘𝑖 𝑗 , 𝜑𝑘 |𝝃𝑘𝑖 ) · · · 𝑝(c1

𝑖 𝑗 , 𝜑
1 |𝝃1

𝑖 ),

𝑝(𝝃0
𝑖 , · · · , 𝝃

𝑘
𝑖 ) = 𝑝(𝝃𝑘𝑖 |𝝃

𝑘−1
𝑖 ) · · · 𝑝(𝝃1

𝑖 |𝝃
0
𝑖 )𝑝(𝝃

0
𝑖 ), (9)



where 𝑝(𝝃0
𝑖 ) denotes the prior knowledge on 𝝃𝑖 . Plugging (9)

into (8) and carrying out mathematical simplifications as in

[7], [8], [21] leads to

𝑝(𝝃𝑘𝑖 |c1:𝑘
𝑖 𝑗 , 𝜑

1:𝑘 ) ∝ 𝑝(𝝃𝑘𝑖 |c1:𝑘−1
𝑖 𝑗 , 𝜑1:𝑘−1)𝑝(c𝑘𝑖 𝑗 , 𝜑𝑘 |𝝃𝑘𝑖 ). (10)

The term 𝑝(𝝃𝑘𝑖 |c1:𝑘−1
𝑖 𝑗 , 𝜑1:𝑘−1) is referred to as prediction step

while the term 𝑝(c𝑘𝑖 𝑗 , 𝜑𝑘 |𝝃𝑘𝑖 ) is considered as correction step

[21]. In wireless networks, it is typical to assume that 𝝃𝑘𝑖 is

Gaussian distributed [4], [10], [15]. Given this assumption, if

the relation between all the states in Figure 4 is linear, we can

conclude that the marginal in (10) is also Gaussian distributed.

While that is the case for the prediction step, the measurement

equations (and consequently the correction steps) are non-

linear, and therefore, need to be linearized. In the sequel, we

deal with the details of prediction and correction steps.

1) Prediction: Given the dynamics of MNs’ clocks and

movements, a reasonable prediction for 𝝃𝑘𝑖 is given by [10],

𝝃𝑘𝑖 = A𝝃𝑘−1
𝑖 + n𝑘−1

𝑖 , (11)

where

A =

⎡⎢⎢⎢⎢⎢⎣
I2 02 02
02 I2 ΔI2
02 02 I2

⎤⎥⎥⎥⎥⎥⎦
.

Parameter Δ is the time difference between two consecutive

rounds of time-stamp exchange and n𝑘−1
𝑖 denotes the Gaussian

noise vector and assumed to have zero mean and covariance

matrix2 Q𝑛 = diag(𝜎2
𝛾 , 𝜎

2
𝜃 , 𝜎

2
𝑥 , 𝜎

2
𝑦 , 𝜎

2
𝑣𝑥 , 𝜎

2
𝑣𝑦 ). Given (11), the

prediction term can be written as

𝑝(𝝃𝑘𝑖 |c1:𝑘−1
𝑖 𝑗 , 𝜑1:𝑘−1

𝑖 𝑗 ) ∼ N (𝝃𝑘𝑖 |𝝁pred,𝚺pred), (12)

where 𝝁pred = A𝝁𝑘−1
𝑖 and 𝚺pred = A𝚺𝑘−1

𝑖 A𝑇 + Q𝑛.
2) Correction: We conduct the following mathematical

manipulations to obtain the correction term in (10). Subtracting

(2) from (3) leads to

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
4 ) − 𝑐𝑖 (𝑡

𝑘
2 )) = 𝑐 𝑗 (𝑡

𝑘
3 ) − 𝑐 𝑗 (𝑡

𝑘,0
1 ) + 𝑇 𝑘,1

𝑖 𝑗 − 𝑇 𝑘,0
𝑖 𝑗 , (13)

while summing up (3) and (4)

1
�̃�𝑖

(𝑐𝑖 (𝑡
𝑘
4 ) + 𝑐𝑖 (𝑡

𝑘
5 ) − 2𝜃𝑖) = 𝑐 𝑗 (𝑡

𝑘
3 ) + 𝑐 𝑗 (𝑡

𝑘
6 ) + 𝑇 𝑘,1

𝑖 𝑗 − 𝑅𝑘
𝑖 𝑗 .

(14)

Equation (4) stays as it is unless there are extra ANs coop-

erating with AN 𝑗 by passively listening to the time-stamp

exchange. For example, for one extra AN cooperating with

AN 𝑗 , subtracting (4) from (5) provides

𝑑𝑖𝑙 − 𝑑𝑖 𝑗

𝑣𝑐
= 𝑐𝑙 (𝑡

𝑘
7 ) − 𝑐 𝑗 (𝑡

𝑘
6 ) − 𝜃 𝑗𝑙 + 𝑅𝑘

𝑖 𝑗 − 𝑅𝑘
𝑖𝑙 . (15)

2In general, the design of Q𝑛 is a difficult task. In particular, if it is too
small, the filter will be overconfident in its prediction model and will diverge
from the actual solution. In contrast, if it is too large, then it will be unduly
dominated by the noise in the measurements and perform sub-optimally. In
this work, we follow the design model discussed in [22], [23].

Finally, the AoA measurement can be expressed as follows:

arctan(
𝑦𝑖 − 𝑦 𝑗

𝑥𝑖 − 𝑥 𝑗
) = 𝜑𝑘

𝑗 (16)

where 𝜑𝑘
𝑖 is calculated as explained in Section II-C. Again, if

there are more ANs involved in joint sync&loc, one can write

the same equation for their AoA measurements.

To permit (10) to have a closed-form solution, the relation

between parameters in the measurement equations (13), (14),

(4), and (16) must be linear. However, this is not the case as the

distance function is not linear. Therefore, we draw on Taylor

expansion to linearize the non-linear terms, thereby allowing

for a closed-form solution for (10). In particular, we write the
Taylor expansion around the point predicted by the prediction
step in (11). Thus

𝑑𝑖 𝑗

𝑣𝑐
≈ 𝑎𝑘𝑗,0 + 𝑎𝑘𝑗,𝑥 (𝑥𝑖 − 𝑥𝑘𝑖 ) + 𝑎𝑘𝑗,𝑦 (𝑦𝑖 − 𝑦𝑘𝑖 ), (17)

arctan(
𝑦𝑖 − 𝑦 𝑗

𝑥𝑖 − 𝑥 𝑗
) ≈ 𝑏𝑘𝑗,0 + 𝑏𝑘𝑗,𝑥 (𝑥𝑖 − 𝑥𝑘𝑖 ) + 𝑏𝑘𝑗,𝑦 (𝑦𝑖 − 𝑦𝑘𝑖 ), (18)

with 𝑎𝑘𝑗,0, 𝑎
𝑘
𝑗,𝑥 , 𝑎

𝑘
𝑗,𝑦 , 𝑏

𝑘
𝑗,0, 𝑏

𝑘
𝑗,𝑥 , and 𝑏𝑘𝑗,𝑦 , calculated as in

(19) and (20). Given (17) and (18), and computing the average

velocity using

𝑣𝑥𝑖 =
𝑥𝑖 − 𝑥𝑘−1

𝑖

Δ
, 𝑣𝑦𝑖 =

𝑦𝑖 − 𝑦𝑘−1
𝑖

Δ
, (21)

we can write (13), (14), (4), and (16) for single AN (1-AN)

localization in matrix form as

B𝑖 𝑗𝝃𝑖 = r𝑖 𝑗 + z𝑖 𝑗 , (22)

where z𝑖 𝑗 ∼ N(z|0,R𝑖 𝑗 ) with

R𝑖 𝑗 = diag(2𝜎2
𝑇𝑖 𝑗

, 𝜎2
𝑇𝑖 𝑗

+ 𝜎2
𝑅𝑖 𝑗

, 𝜎2
𝑅𝑖 𝑗

, 𝜎2
𝜑 , (

𝜎𝑘−1
𝑥𝑖

Δ
)2, (

𝜎𝑘−1
𝑦𝑖

Δ
)2),

B𝑖 𝑗 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑐𝑖 (𝑡
𝑘
4 ) − 𝑐𝑖 (𝑡

𝑘
2 ) 0

𝑐𝑖 (𝑡
𝑘
4 ) + 𝑐𝑖 (𝑡

𝑘
5 ) −2 02 02

𝑐𝑖 (𝑡
𝑘
5 ) −1

0 0
𝑎𝑘𝑗,𝑥 𝑎𝑘𝑗,𝑦
𝑏𝑘𝑗,𝑥 𝑏𝑘𝑗,𝑦

02

02 − 1
Δ I2 I2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and r𝑖 𝑗 is constructed as in (23). The extension to two AN

(2-AN) localization can be readily carried out by a) replacing

(4) with (15), b) writing an extra equation similar to (16) for

AN 𝑙, and c) adjusting B𝑖 𝑗 , r𝑖 𝑗 , and R𝑖 𝑗 accordingly. Finally,

the correction term can be written as

𝑝(c𝑘𝑖 𝑗 , 𝜑𝑘
𝑖 𝑗 |𝝃

𝑘
𝑖 ) ∼ N (𝝁corr,𝚺corr), (24)

where 𝝁corr = (B𝑇
𝑖 𝑗B𝑖 𝑗 )

−1B𝑇
𝑖 𝑗r𝑖 𝑗 , and

𝚺corr = (B𝑇
𝑖 𝑗B𝑖 𝑗 )

−1B𝑇
𝑖 𝑗R𝑖 𝑗B𝑖 𝑗 (B𝑇

𝑖 𝑗B𝑖 𝑗 )
−𝑇 .



𝑎𝑘𝑗,0 =
1
𝑣𝑐

(√
(𝑥𝑘𝑖 − 𝑥 𝑗 )2 + (𝑦𝑘𝑖 − 𝑦 𝑗 )2

)
, 𝑎𝑘𝑗,𝑥 =

𝑥𝑘𝑖 − 𝑥 𝑗

𝑣2
𝑐𝑎

𝑘
𝑗,0

, 𝑎𝑘𝑗,𝑦 =
𝑦𝑘𝑖 − 𝑦 𝑗

𝑣2
𝑐𝑎

𝑘
𝑗,0

, (19)

𝑏𝑘𝑗,0 = arctan(
𝑦𝑘𝑖 − 𝑦 𝑗

𝑥𝑘𝑖 − 𝑥 𝑗

), 𝑏𝑘𝑗,𝑥 = −
𝑦𝑘𝑖 − 𝑦 𝑗

𝑣2
𝑐 (𝑎

𝑘
𝑗,0)

2
, 𝑏𝑘𝑗,𝑦 =

𝑥𝑘𝑖 − 𝑥 𝑗

𝑣2
𝑐 (𝑎

𝑘
𝑗,0)

2
. (20)

r𝑖 𝑗 =
[
𝑐 𝑗 (𝑡

𝑘
3 ) − 𝑐 𝑗 (𝑡

𝑘
1 ), 𝑐 𝑗 (𝑡

𝑘
3 ) + 𝑐 𝑗 (𝑡

𝑘
6 ), 𝑐 𝑗 (𝑡

𝑘
6 ) − 𝑎𝑘𝑗,0 + 𝑎𝑘𝑗,𝑥𝑥

𝑘
𝑖 + 𝑎𝑘𝑗,𝑦𝑦

𝑘
𝑖 , 𝜑

𝑘
𝑗 − 𝑏𝑘𝑗,0 + 𝑏𝑘𝑗,𝑥𝑥

𝑘
𝑖 + 𝑏𝑘𝑗,𝑦𝑦

𝑘
𝑖 ,−

𝑥𝑘−1
𝑖

Δ
,−

𝑦𝑘−1
𝑖

Δ

]𝑇
. (23)

Algorithm 1 BRF-based joint sync&loc

1: Initialize p(𝝃0
𝑖 ) using information about MN position avail-

able via, e.g., GNSS.

2: while MN is in LoS of AN 𝑗 do
3: Calculate the mean vector and covariance matrix of the

prediction pdf using (12).

4: Perform the time-stamp exchange mechanism described

in Section II-B2 and Figure 3.

5: Construct B𝑖 𝑗 , R𝑖 𝑗 , and r𝑖 𝑗 using the measurements

and obtain the mean vector and covariance matrix of

correction pdf using (24).

6: Compute the mean vector and covariance matrix of the

estimation 𝝃𝑘𝑖 using (25).

7: end while

3) Estimation: Considering (12) and (24), the estimated

distribution in (10) is given by

𝑝(𝝃𝑘𝑖 |c1:𝑘
𝑖 𝑗 , 𝜑

1:𝑘
𝑖 𝑗 ) ∼ N (𝝁est,𝚺est), (25)

where

𝝁est =
[
𝚺pred + 𝚺corr

]−1
(
𝚺corr𝝁pred + 𝚺pred𝝁corr

)
, (26)

𝚺est =
[
𝚺−1

pred + 𝚺−1
corr

]−1
. (27)

The parameters in (12), (24), and (25) are calculated recur-

sively and, in each iteration 𝑘, the estimation of the clock

skew, clock offset, and position can be obtained by

�̃�𝑘
𝑖 =

1
𝝁est (1)

, 𝜃𝑘𝑖 =
𝝁est (2)
𝝁est (1)

, 𝑥𝑘𝑖 = 𝝁est (3), and 𝑦𝑘𝑖 = 𝝁est (4).
(28)

Algorithm 1 summarizes this recursive process.

It is worth mentioning that the position initialization has a

major impact on the performance of the algorithm and can,

if inappropriately chosen, lead to its divergence. In this work,

similar to [14], we assume that the initial positions of the MNs

is available via Global Navigation Satellite System (GNSS).

The initialization of clock parameters is, however, straight-

forward and can be done, according to [7], [8], [18], with

N(1,∞) and N(0,∞) for clock skew and offset, respectively.

TABLE II
SIMULATION PARAMETERS

Parameters Values
# of independent simulations 1000

Initial random delays (𝜃𝑖) [-1000, 1000] ns

Random acc. range ±[1, 2.5] m/s2

STD of acc. noise (𝜎𝑎𝑥 , 𝜎𝑎𝑦 ) 2.5 m/s2

Period of joint sync&loc (Δ) 200 ms

Process noise covariance matrix (Q𝑛) diag(10−12, 10−2, (0.5𝜎𝑎𝑥Δ)
2,

(0.5𝜎𝑎𝑦Δ)
2, 𝜎2

𝑎𝑥
, 𝜎2

𝑎𝑦
)

Max. velocity for scenarios (a), (b) 2, 14 (m/s)
AN density 50 m

IV. SIMULATION RESULTS AND DISCUSSION

We perform analysis for two scenarios shown in Figure 1,

which are regarded in [14] as challenging. In scenario (a),

a pedestrian moves with a constant velocity of 2 m/s (≈7

km/h) and takes the turns randomly until it exits the map. In

scenario (b), a car commences its journey by accelerating to

reach the velocity of 14 m/s (≈ 50 km/h). It continues moving

with constant velocity and decelerates upon approaching the

intersection until it completely stops (e.g. due to the red light).

The same repeats between two intersections. At the the second

intersection, it begins moving and takes the turn and continues

to accelerate to 14 m/s limit until it exits the map. All the turns

as well as acceleration (acc.) coefficients are chosen randomly.

Moreover, the Root Mean Square Error (RMSE) obtained by

[14] (i.e. 3m/0.5m and 10ns/4ns for position and clock offset

estimation of 1-AN/2-AN, respectively) serves as the baseline

to our approach. Nevertheless, [14] does not address the impact

of 𝜇𝑇 and variable velocity (scenario (b)). Finally, additional

simulation parameters can be found in Table II.

Figure 5 shows the RMSEs of position and clock offset

estimation with respect to 𝜇𝑇 (or alternatively 𝜇𝑅) for 𝜎𝑇 =
𝜎𝑅 = 0.2 ns. As can be seen, the RMSE of position increases

for the 1-AN case as 𝜇𝑇 grows whereas it remains almost

unchanged for the 2-AN case. The reason is disguised in (4)

and (15). In the former, the position parameters are impaired

by random variable 𝑅𝑖 𝑗 ∼ N(𝜇𝑇 , 𝜎
2
𝑇 ) while in the latter by

(𝑅𝑖 𝑗 − 𝑅𝑖𝑙) ∼ N (0, 2𝜎𝑇 ), which is obviously a zero mean

Gaussian variable and, therefore, indifferent to the growth of

𝜇𝑇 . It is clear that if 𝜇𝑅 is not equal for the two ANs (e.g.

they feature different hardware), the RMSE of the 2-AN case
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Fig. 5. Performance of joint sync&loc algorithm (𝜎𝑇 = 0.2ns). Slope of
increase in RMSE of position for 1-AN case = 0.28 m/ns.

would increase as well, albeit with a smaller slope than 1-AN

case. Furthermore, for the same reason, the RMSE of the clock

offset estimation remains almost constant with the increase of

𝜇𝑇 . Moreover, the gap between RMSE of the clock offset

estimation in two scenarios is due to the higher number of

time-stamp exchanges in (a) where the journey takes longer,

given the constant velocity of 2 m/s.

Figure 6 presents the RMSEs of position and clock offset

estimation versus 𝜎𝑇 for 𝜇𝑇 = 𝜇𝑅 = 9 ns. It can be noticed that

the RMSEs of position and clock offset grow with the increase

of uncertainty in time-stamps. In particular, the growth rate in

RMSE of position is higher for 2-AN case as the uncertainty

in (4) differs from that of (15) by a factor of two. In fact, this

growth for 1-AN case is very smooth that we can consider it as

negligible. Moreover, the RMSE of the clock offset estimation

increases for both 1-AN and 2-AN in both scenarios as (13)

and (14) are identical in all the cases. Again, the gap between

RMSEs of clock offset estimation in two scenarios is due to

the higher number of time-stamp exchanges in (a).

Considering both Figures, we can remark that while uncer-

tainty in time-stamping, i.e. 𝜎𝑇 and 𝜎𝑅, can be alleviated using

BRF (especially for 1-AN case), the delay in time-stamping,

i.e. 𝜇𝑇 and 𝜇𝑅, can only be mitigated by either employing

multiple ANs or improving the hardware responsible for time-

stamping. In particular, for sub-meter accuracy localization via

a single AN, the time-stamping mechanism should be designed

such that 𝜇𝑇 is kept below 3ns.

V. CONCLUSION AND FUTURE WORK

We presented an algorithm for joint sync&loc of mobile

users in communication networks. In particular, we leveraged

an asymmetric time-stamp exchange mechanism, traditionally

utilized for time synchronization, to estimate clock offset and

skew while simultaneously obtaining information about the

distance between the ANs and MNs. Further on, we combined

the aforementioned information with AoA estimation to local-

ize the MNs. Simulation results indicate that while the per-

formance of the proposed algorithm is promising, the position

and clock offset estimation errors are highly dependent on the

delay in hardware time-stamping as well as its accuracy. We

mitigated the negative impact of this dependency by deploying

more ANs for performing joint sync&loc.
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Fig. 6. Performance of joint sync&loc algorithm (𝜇𝑇 = 9ns). Slope of
increase in RMSE of position for 2-AN case = 0.15 m/ns.

In this work, we drew on CRB of AoA to carry out

simulations. However, in practice, AoA estimation can be

challenging and impose limitations on the performance of the

algorithm. Therefore, in the future works, we will employ a

suitable AoA estimation algorithm and the hardware at our

disposal to evaluate the performance of our proposed joint

sync&loc algorithm in practice.
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