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Summary: 
Freezing of Gait (FoG) is a common and severe symptom that impacts persons who have been diag-
nosed with Parkinson's disease. The detection of FoG is of greatest significance for precise diagnosis, 
preventing falls, and obtaining accurate measurements for severity of FoG episodes. These factors 
are critical for optimizing treatment approaches and enhancing the overall quality of life for those af-
fected by FoG. Real-time FoG detection may be achieved by using a wearable system that can be 
worn by the patient. This configuration includes a sensor that is coupled with inference software on a 
computing device and a vibrator. The patient is alerted of a FoG incident by the vibrator that is activat-
ed on demand. The key role in FoG detection is the latency between the initial moments of imminent 
FoG episode and the moment at which the patient is a notified by the vibrator. By using more ad-
vanced FoG detection algorithms, the duration between incidents may be reduced, hence aiding to
prevent patient falls and avoiding injuries. In this paper, we modified the model which was used in our 
previous work and improved the latency from 50ms to 3 ms. The dataset and input features remain 
unchanged from our earlier study to ensure comparability between performances of the two models.
The individual models for one-second windows running on a PC of nine patients achieved a mean of 
90% and 88% of sensitivity and specificities, respectively. The models that were converted and exe-
cuted on Google Coral exhibited comparable performance, with a maximum variance of 1% compared 
to the performance attained on a personal computer. 

Keywords: Machine Learning, Time series classification, AI model on Edge, Freezing of Gait , Neural 
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Introduction 
Parkinson's Disease (PD) is a persistent neuro-
degenerative disorder that affects a significant 
number of people worldwide. FoG is one of the 
main motor symptoms of PD patients. The 
presence of FoG may increase the risk of inju-
ries resulting from falls. As most of the PD pa-
tients are old people, the long recovery time 
from an injury causes long pain suffering for the 
patient and imposes significant costs to the 
medical systems. 

The time delay in FOG detection is a crucial key 
factor as faster classification leaves more time 
for other tasks. The process includes FOG de-
tection, transmitting cue commands, and acti-
vating a device like a vibrator, FOG can be 
indicated and avoided through cues such as 
haptic or auditory signals within 200 ms of on-
set. Lower latency allows the model to apply 
more inference tasks in the mentioned time 
interval.

Recently, machine learning (ML) has shown 
effectiveness in FoG detection, utilizing da-
tasets and advanced wearable technology. This 
study focuses on employing ML on wearable 
devices for rapid FoG detection. 
Nine patients were used to create our own da-
taset and the patients cover different age and 
sex groups. They executed a variety of activi-
ties during test sessions. The same training and 
test set from our previous research work was 
used to train our new model in order to ensure 
fair comparison of performance of the new 
small and the older big models [1]. Our previous 
study showed the feasibility of FOG detection 
using a deep LSTM model on a wearable de-
vice. The patient-dependent models classified
the real-time 3-channel acceleration data with 
170000 parameters on the battery-powered 
device in 50 ms. In this study, the new model 
architecture – uses 17000 parameters which is 
10 times less than in our previous research 
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work. It is a modified version of the previous 
model implemented by us [1] . The proposed 
model focuses more on latency reduction. Like 
previous research, our new model uses 1 sec-
ond windows i.e. 100 data – for classification. 
The trained models were compressed and 
quantized using a symmetric quantization 
method and finally the compressed models 
were compiled to run on the CPU and TPU of a 
Google Coral mini board. The classification 
latency was reduced to 3ms. The average 
model accuracy on all patients is 89%. The 
converted models deployed on the Google Cor-
al mini CPU produced very similar results to the 
PC models and have a maximum of 2% devia-
tion compared to the performance metrics of 
the older models. 
Related work 
An extensive investigations into FoG have been 
conducted in order to improve the accuracy of 
its detection. These  studies  have  used a 
range of technologies including IMU sensors, 
cameras, and more recently, WiFi signals 
[2][3][4][5]. However, a key observation from 
recent researches is that the models for detect-
ing FOG have been limited to high-performance 
computing devices, like personal computers 
and high-end servers. There has been a lack of 
focus on evaluating real-time capabilities of 
FOG detection systems or exploring the pro-
spects of wearable technology that can perform 
real-time AI processing and gather data on-the-
go. Furthermore, the field of FOG detection 
research has seen a variety of datasets, loca-
tion of sensor placements and methods being 
utilized. This diversity makes it challenging to 
directly compare the effectiveness of these 
models with each other, or to set a standard 
benchmark for the research conducted to date. 

Guo et al. used a proxy measurement model, 
integrating acceleration and pseudo-EEG data, 
to detect FoG [6]. Like our research he used 
LSTM followed by SVM models to classify FoG 
and nonFoG in a patient dependent manner. 
The chosen window is 2 seconds and the slid-
ing window moves 0.25 s forward. The average 
sensitivity over 8 patients in the dataset is 
88%±10. 

Kun Hu et al. designed a polynomial transform-
er for FoG detection [3].  It incorporates pose 
and appearance feature sequences to formu-
late detailed FoG patterns. The HP-Transformer 
uses a higher-order self-attention mechanism 
based on linear, bilinear, and trilinear trans-
formers. The window length is 1-second and 
the classification latency 120 ms on a high end 
GPU in PC. 

Also FPGA architectures were used for imple-
menting machine learning models for FOG de-
tection. Mikos et al. implemented a neural net-
work on an FPGA, creating a custom feature 
selection process [7]. Their model achieved 
95.6% sensitivity and 90.2% specificity with a 
4.5s window length, inferring in 20ms, and op-
erated for 9 hours on an 800mAh battery. 
Langer et al. trained and tested a Temporal 
Convolutional Neural Network using the Daph-
net dataset, later implementing it on a Xilinx 
FPGA with VitisAI [8]. Their model labeled data 
in under a millisecond, enabling a cueing device 
trigger in less than 250 ms, and achieved 78% 
sensitivity and 90% specificity. 

Dataset, Methodology, and Result 
Kliniken Schmieder Allensbach received ethical 
approval and patient consent for a study to 
analyze Freezing of Gait (FoG) in Parkinson's 
disease. Nine patients underwent parkour ses-
sions to challenge their walking, while data was 
collected via an ankle-mounted sensor. The 
study's novelty includes real-time FOG detec-
tion, patient engagement, and a custom-
designed board developed by IHP microelec-
troncis that records the acceleration data at 
100Hz, see Fig. 1.  

 

Fig. 1: Custom-design data acquisition board that 
records movement of patients by using an accelera-
tion sensor. 

Recorded data from the acceleration sensor, 
along with a video analysis by clinical experts, 
was used for post analysis. Video recordings 
helped to identify FOG instances, which were 
labelled in MATLAB for classification. 

The data, predominantly lossless thanks to 
IHP's robust firmware, was post-processed in 
MATLAB and prepared for supervised machine 
learning using TensorFlow 2.9 and its Lite ver-
sion for both building the model running on a 
PC and the compressed model for embedded 
compatible version [9]. Training and testing 
involved a sliding window analysis with 100 
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samples per second from three acceleration 
channels, ensuring each window contained 
data from one label type, only. The dataset, 
with FOG data was increased to balance the 
training set. Upon tripling the size of the FoG 
windows, the training set's FoG data increased 
from 15.3% to 45.9%, thereby significantly miti-
gating the imbalance between FOG and non-
FOG data.  10% of whole dataset were used for 
testing and 90% for training and validation, 
maintaining an even distribution of labels 
across the sets. 

Model architecture and conversion 
The primary benefit of LSTM modeling is its 
ability to capture nonlinear patterns in time se-
ries data [10]. This model architecture provides 
a significant ability to identify complex patterns 
in freezing episodes as stored by accelerometer 
signals. 
Reduced latency combined with high model 
performance are key indicators for real-time 
FoG detection. A model that maintains low la-
tency without a substantial decrease in perfor-
mance enables a greater number of inferences 
within the given time. 

In our prior research, the model utilized a multi-
stack LSTM layer followed by a single classifi-
cation layer for FoG detection [1]. In the current 
study, we have shifted our focus towards en-
hancing the classification aspect of the model 
while reducing the temporal-dependency layer 
and minimizing LSTM layer parameters. The 
revised model comprises a single LSTM layer 
with 80 hidden units, accompanied by four fully 
connected layers. The total number of parame-
ters has been significantly reduced to 17,000, 
which is a tenfold decrease from the previous 
model's 170,000 parameters. 

The trained models are then converted using 
Tensorflow Lite through Post-training quantiza-
tion. The models are converted for two types of 
processors to be compared in terms of perfor-
mance and latency. All trained model parame-
ters are converted from Float32 to float16 and 
Int8 which is the format supported by Google 
Coral CPU and the corresponding Tensor Pro-
cessing Unit (TPU) of Google Coral board, re-
spectively.  

Results and discussion 
The reduction in parameters of our new model 
has led to a notable decrease in inference time 
on Coral’s CPU, down to 3ms from 50ms of our 
previous implementation. The shortened classi-
fication delay allows for inference to occur be-
tween individual data transmissions from the 
sensor, which is optimal for a 100Hz sampling 
rate with a 10 ms interval between data arrivals. 

This enhancement in processing speed, with a 
latency of only 3 ms, enables the analysis of the 
most recent data produced by the sensor, i.e. 
assessing the patient's latest movement with 
immediacy. This low latency helps the FOG 
detection system to work in real-time manner 
and check very recently produced data. 

Due to the unbalanced number of FoG and 
Non-FoG labels in our dataset, the performance 
of the models are represented as sensitivity for 
FOG detection rate and specificity for Non-FoG 
detection rate. 

 

 

Fig. 2: Performance of the models trained on PC and 
the ones converted for Google Coral’s CPU and TPU.  

The sensitivity and specificity of the PC model 
closely align with the converted model for Cor-
al's CPU, exhibiting a marginal difference of up 
to 2%, as shown in Fig. 2. This similarity may 
be attributed to the effective retention of infor-
mation in the converted model, which uses 
float16, from the original model's float32 pa-
rameters. The reduction in bit size of parame-
ters appears to have a minimal impact on the 
model's performance in terms of both sensitivity 
and specificity. Furthermore, all models demon-
strated a sensitivity and specificity exceeding 
80% across all patient data while 5 out of 9 nine 
patients had over 90%. 

The converted models suitable for Coral's TPU, 
classification could be executed in as little as 2 
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milliseconds. However, there is a notable diver-
gence in model performance, characterized by 
a tendency to exclusively identify either FoG or 
Non-FoG conditions across patients, see Fig. 2. 
Despite the presence of an imbalanced dataset, 
which typically biases the model towards classi-
fying the more prevalent label (Non-FoG in this 
case), these models demonstrated a higher 
detection rate in terms of sensitivity than speci-
ficity.  

Current observations reveal that the incon-
sistency in detection performance between TPU 
and CPU models remains unexplained. This 
difference, noted during the conversion of mod-
els to TPU-compatible format, resulted in 
achieving lower than 80% in sensitivity or speci-
ficity measures. The transformation from float-
ing point to integer format reduce precision, but 
this alone does not conclusively explain the 
lower detection rate in TPU models. Therefore, 
at this stage, the underlying reasons for these 
differences remain unclear. 

Conclusion 
This research demonstrates the feasibility of 
real-time detection of FoG using a wearable 
device. The modification of our model intro-
duced in our previous helped to reduce the 
classification latency more than 10 times and 
attain 3ms for inference time on a Google Coral 
CPU. The one layer LSTM model along deep 
classification layers used our dataset to make 
patient dependent models. Through the imple-
mentation of suitable quantization and pruning 
methods, the models were optimized for de-
ployment on Google Coral CPU and TPUs, 
enabling them to conduct real-time inferences. 

To the best of our understanding, this study 
represents the first instance of employing a 
Google Coral CPU and TPU to run a ML model, 
along with a custom design extension board for 
gathering and assessing accelerometer data 
from patient movements.  

Our method effectively differentiated FOG from 
non-FOG data using one-second windows from 
three-axis acceleration sensor. The patient-
specific models attained a sensitivity exceeding 
80% for all patients, with patients reaching over 
90% detection rates. The models on the Google 
Coral board performed comparably to PC-
based models in sensitivity and specificity, with 
a mere +/-2% difference. With a classification 
time of 3ms on Coral CPU, the model's rapid 
inference enables timely cueing. The models 
adapted for Coral's TPU showed limited effec-
tiveness in data classification, often favoring 
one label over the other. 

Many challenges are still to be addressed in 
FOG detection, such as building large enough 

datasets allowing a more accurate detection via 
machine-learning techniques [12].  
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