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ABSTRACT Many studies showed the feasibility of detecting Freezing of Gait (FOG) of Parkinson’s patients
by using several numbers of inertial sensors worn on the body and in back-end computing power. This
work uses machine learning approaches for analyzing the data of one single body-worn inertial sensor
system to classify and detect FOG. Long-Short-Term-Memory (LSTM) is employed as the FOG detection
algorithm and the Daphnet (FOG and normal gait) dataset provides the data for model training and testing
in this paper. The model considers raw data from three channels of the acceleration sensor mounted on
the patient’s shank and ignores all other data from other sensors. The model is patient dependent and uses
sensitivity and specificity metrics to evaluate the model’s performance. In this paper, we propose a novel
padding method that is applied to the windows of FOG and non-FOG with zero overlaps on the training
set and adapts the padding to the individual regions. This method produces windows of only one type of
data and label. The proposed padding method reduces the padding amount by two orders of magnitude
compared to bigger batch sizes in the sequence splitting method offered by MATLAB 2019a. The padding
amount is independent of the batch size. Raw data is fed to the model in the testing mode without any pre-
processing or data transformation. The standard rolling window generates fixed-size windows for the test
set without overlap and the higher amount of FOG or Normal walking data which defines the label of the
individual window. The model for one-second long windows applied in this work outperformed the literature
results with a sensitivity of 92.57% and a specificity of 95.62% compared to 82% and 94% reported by
Masiala et al.

INDEX TERMS Freezing of gait, long short term memory, machine learning, recurrent neural network,
time-series classification.

I. INTRODUCTION
Parkinson’s disease (PD) is a long-term effect on selective
neurological conditions mostly diagnosed for elderly peo-
ple [1]. The disease degenerates the neurons and reduces
the dopamine substance which leads to alteration in the
motor and non-motor symptoms like Parkinson’s tremors [2].
It mainly affects motor symptoms such as gait disturbance,
gait festinating, Freezing of Gait (FOG), slowness of move-
ments, gastrointestinal disturbance, postural instability, and
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falls [3]. Furthermore, aging and Parkinson’s disease have a
substantial impact on gait nonlinear dynamics. Age, in par-
ticular, influences randomness, whereas Parkinson’s disease
changes regularity and stability [4]. We are aware of the
fact that also the progress of the Parkinson’s disease impacts
parameters indicating FOG. This means that the LSTM net-
work needs to be trained with individual Patients’ data from
time to time, but this is out of scope of this paper. The
effects of the Parkinson’s disease clearly make the execution
of Activities of Daily Living (ADL) difficult and have a high
influence on the Quality of Life (QOL) of the patient. Con-
cretely, the patient’s autonomy decreases over time. There are

138120 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-9436-7027
https://orcid.org/0000-0002-6209-9048
https://orcid.org/0000-0003-0261-4068


A. Haddadi Esfahani et al.: Impact of Data Preparation in FOG Detection Using Feature-Less RNN

also non-motor impacts of Parkinson such as depression and
hallucination, sleep disorder, and personality change [5].

Although recent drug therapies can reduce the impact of
PD, FOG events can remain and happen even if the patient
takes his/her medicine [6], [7]. The dopamine level is mainly
effective for a short time, e.g., 45 minutes, and strongly
depends on the activity. Thus holding a sufficient constant
level of dopamine over time is impossible with the drug intake
only. However, cueing methods like visual, somatosensory,
or rhythmic sounds can considerably reduce FOG episodes’
duration and frequency [8], [9].

Wearables are an option for automatic assessment, analy-
sis, and decision-making on PD signs [10]. Wearable sensors
are non-invasive monitoring means that can be worn on the
patient’s body. Wearable sensors are becoming increasingly
popular for automatic FOG detection. Such sensors and cor-
responding computation modules are widely adopted and
employed in the biomedical research field, e.g., in terms
of analyzing gait impairment of a simple ambulatory set-
ting without using lab experts [10], [11]. A large number
of researchers analyzed gait impairment quantitatively by
extracting parameters such as velocity, instantaneous ori-
entation, and position of the lower limb, step length, foot
clearance, gait cycle, the proportion of heel strike, foot flat,
heel off, and swing using Inertial Measurement Units (IMU)
sensors. However, none of these parameters were used in
analyzing FOG detection [11], [12].

Wearable devices are affordable, small and a battery can
run the device for several days. They allow to mount the sen-
sor at the positions at which they provide the most significant
data for detecting FOG. In addition, their size ensures that
they cannot be detected by fellowmen, which is important for
the Parkinson’s patients. Wearable devices can be designed
remarkably user friendly i.e. all the user need to do is to
attach them to their body and switch them on when using the
devices. Only recharging has to be done when the device is
not worn. Even though recent smart phones provide powerful
processing units and large memory and due to this, support
complex mathematical operations, they cannot replace body-
worn sensors, as the data recorded by a sensor integrated in
the smartphone worn in the pocket of a trouser will contain
by far less information about changes in the movement of the
patient than data recorded by sensor directly attached to the
limbs of the patient, e.g., to the shank. So, there will be some
sensors attached to the body of the patient. Sending the raw
data to the smartphone is quite challenging and will delay the
assessment that may prohibit in time cueing for which max
250 ms are available.

Human activity analysis can incorporate one or multi wear-
able sensor nodes analyzing the detailed body movement
through the data from each sensor node and provide immedi-
ate feedback. Wearable devices with a single sensor node are
usually employed for activity classification but a multi-sensor
setup can also provide more information from each part of the
body that sensor is worn [13]. Although more information
is available by multi-sensors setup, the complexity of sensor

networks in data transmission, time consistency among the
sensors, and assigning the main processing unit to analyze all
acquired data introduce much more complexity than single-
sensor setup. Moreover, body-worn sensor networks lead to
patients’ mobility complexities which could impose some
constraints to their daily activities. From earlier experiments,
it is known that a single sensor worn at the shank of the
patient provides sufficient data to detect FOG. Parkinson’s
patients express their wish to get an unobtrusive solution and
are suffering from limited mobility by complex body-worn
sensor networks which will not satisfy the patients’ needs.
This is the reason that motivated us to focus on single sensor
nodes to satisfy their needs.

Machine Learning (ML) algorithms can employ the time-
series data acquired from a wearable sensor. These algo-
rithms have a great capability to specifically learn and detect
FOG events with a dataset containing annotated data from a
clinical expert who recognizes and labels the data correctly.
The lack of big datasets containing various types of activity
under real-life conditions and the limited amount of labeled
data distributed among the subjects are the main challenges
researchers face in this field [14]. Nevertheless, the recent
robust ML algorithms are leveraging small datasets for FOG
detection with high-performance results.

This work aims to automatically detect FOG events using
supervised ML algorithms and train the model with data
prepared using padding, i.e., we added zero values to the
data as the pre-processing step aiming at keeping the number
of zeros added as low as possible. The unprocessed data
representing real-life scenarios are used to test the individual
model for each patient. The model shall then interpret raw
data stemming from inertial sensors’ channels and classify
them as FOG or non-FOG. The Daphnet dataset is a publicly
available dataset from which data for training and testing
benchmarks in this work are used. The windowing strategy is
applied to take a fixed number of sampled data representing
windows containing a subset of data that does not have an
overlap with neighbor windows.

The conventional windowing strategy may lead to two
labels of the data in a single window where the type of data
changes in the dataset, i.e. when normal walking changes to
FOG or vice versa. However, in the training set, windows can
only represent one type of data, Normal or FOG. The padding
methods proposed and employed inMATLAB solve the issue
for such problematic windows and generate windows - from
the Daphnet dataset - which do not contain two labels of data.
The resulting windows have only one label of data.

The first contribution of this paper is a new padding
method which is introducing a constant padding amount
at any mini-batch size and reducing the undesired padding
amount by two orders of magnitude compared to the MAT-
LABmethod. The proposed method prepares the data in such
a way that all windows contain unique labeled data and are
filled with padding without removing any parts of data.

The key aspect of this architecture is that the model uses
feature-less data, i.e. the raw data generated by IMU sensor
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which is directly fed to the model without applying any
mathematical methodology for extracting any features. The
computation cost is zero in feature-less data for our architec-
ture, while other research works extract numerous features to
prepare the data before feeding in their MLmodels [15]–[17].
As we are aiming at using our model in a wireless body-
worn sensor network, reducing the effort for processing the
data is essential. Here feature-less processing helps to avoid
the necessity of pre-processing the data for extracting the
essential features.

Long Short Term Memory (LSTM) network is an exten-
sion of Recurrent Neural Network (RNN) capable to learn
long-term dependencies over time-series data and is used
as a classification model to detect FOG events. The second
contribution of this paper is a new approach when training
the model, i.e., training the model with half of a patient’s data
as well as other patients of the dataset. The individual model
trained for a specific patient validates the model performance
by the other half of the data from the same patient that was
not used for training. Our experimental results show that our
LSTM network using raw acceleration data could achieve
an average sensitivity of 92.57%, specificity of 95.62%, and
Area Under the Curve (AUC) score of 97.62% outperform-
ing the state-of-the-art approaches using the Daphnet dataset
significantly.

This paper is organized as follows. Section II discusses
related work. Section III provides a brief description of
the Daphnet dataset and the proposed padding method on
training data as well as of the data representation in test
set. Section IV describes LSTM in FOG detection and
section V shows the details of the neural network imple-
mentation. Section VI presents the evaluation results of our
approach. Section VII concludes the paper and highlights our
future directions.

II. DATASET, BACKGROUND, AND RELATED WORK
A. DATASET
Daphnet is a publicly available dataset of movement data
records from 10 Parkinson patients, seven males and three
females, diagnosed with PD having significant variation in
their motor skills [18]. Eight patients out of 10 elicited FOG
events during the test, while the remaining two did not show
any freezing, and their gait appeared like normal walking.
The Daphnet dataset is based on a protocol composed of three
main activity sessions, and each one consists of walking tasks
designed to show the different activities of daily walking. The
data are labeled as FOG and Normal walking data. Three
sensor nodes are placed at different locations at the body, i.e.,
shank, thigh, and on the lower back of patients. Each sensor
node provides three channels of raw data from acceleration,
gyroscope, and magnetometer sensors corresponding to x, y,
and z coordinates acquiring data at 64 Hz frequency [19].
In this work, the Daphnet dataset was used to compare our
own results with the state-of-the-art work of other researchers
using the same dataset.

B. TERMINOLOGIES AND EVALUATION METRICS
In this paper, we use the following terms that we will shortly
define here to avoid misunderstandings. A region means a
continuous data recording holding the same label. A region
ends when the label of data is changed showing the beginning
of a new region. For example, a patient walks normally,
region 1, and then faces a FOG event, region 2. The FOG
event finishes after a few seconds and finally the patient
walks normally again, region 3, see Fig. 1. A region continues
until the label of data changes thus, regions can have any
length. A window is a part of a dataset containing a specific
amount of data. This window has only one label associated
to the whole data inside. So a region may consist of several
windows. But towards the end of a region there might not
be sufficient data to fill a complete new window. In such a
case padding is used to increase the length of the data so it
reaches to the border of the window length. Padding is adding
zero values to the data.

FIGURE 1. Each region is associated with continuous data recorded
having the same label. When the label of data changes, a region ends and
a new one corresponding to the changed label begins.

A training set is a part of the dataset used in the training
phase, while the rest of the dataset is considered a test set.
The training and test sets do not have any shared data.
Mini-Batch is a subset of the dataset fed in the ML model
in the forward process, and the model calculates the loss
function in the training step according to the whole data in the
mini-batch. After each mini-batch, the backward propagation
computes the gradient of the loss function with respect to
each learnable parameter and updates the parameters. One
epoch means that all mini-batches in a training set, i.e., the
complete training set, have gone through the neural network,
and each sample in the dataset was incorporated in updating
the model parameters. The training phase refers to having
several epochs and iterations over the training set several
times. The updated parameters in the model are tested in the
testing phase using only the test set.

The performance evaluation in our approach is based on the
assessment of windows. The label assigned to each window is
compared to the ground truth of the annotation. The windows
correctly labeled as FOG are counted as True Positive (TP),
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whereas the wrongly classified FOG windows are counted
as False Negative (FN). Correctly classified Normal walking
windows are True Negatives (TN), whereas the incorrectly
classified Normal walking windows are False Positive (FP).
Sensitivity represents the ratio of the correctly classified FOG
windows to the number of all FOG windows in the test
set. Likewise, the specificity represents the ratio for Normal
walking windows, see (1) and (2).

Sensitivity =
TP

TP+ FN
(1)

Specificity =
TN

TN + FP
(2)

C. RELATED WORK
Moore et al. transformed the inertial data of leg movement
to the frequency domain [20]. They found that FOG events
have some characteristics in the frequency domain which do
not appear in normal walking. The frequency components
between 3 and 8 Hz exist only in FOG episodes. They also
proposed the Freeze Index (FI) that detects FOG events indi-
vidually. The FI is calculated as the power spectra in the
‘‘freeze’’ band (3-8 Hz) that is divided by the power in the
‘‘locomotor’’ band (0,5-3 Hz). The FOG event was detected
by a FI threshold which varied patient by patient. Moore et al.
could obtain a sensitivity of 78% and specificity of 80% in
FOG event detection with a fixed FI index for all patients.
The FI index was assigned globally and was the same for
all subjects in the Daphnet dataset. In another approach,
the FI index was calibrated individually for each patient, and
the sensitivity and specificity increased to 89% and 90%,
respectively [20]. The FI feature defined and introduced by
Moore et al. is widely used in later experiments and
papers [21], [22].

Assam and Seidl used the features from wavelet trans-
formation [23]. They used different window lengths. The
algorithm proposed by Assam et al. could not get a sensitivity
better than 75%. The window length was 8 seconds bringing
a considerable delay between data acquisition and decision
making [23].

Mazilu et al. introduced the vast majority of features
from the frequency domain field [24]. Mazilu et al. used
features from the frequency domain field [24] and applied
them to individual patients getting a model for each patient.
For the R10-fold cross-validation approach, the model sen-
sitivity was as high as 99% for 4-second windows apply-
ing the AdaBoost algorithm. However, as also noted by the
authors [24], there is a significant probability that this high
sensitivity was achieved due to the fact that purly random
selection of data having a correlation between training and
test sets and the model tests the data that is already seen in
training. The authors evaluated the model performance also
by applying to Leave One Subject Out (LOSO) i.e., they kept
one patient isolated from the training stage, using that patient
only to validate model performance. This approach gained a
sensitivity of 66.25% for 4-second windows.

Ravi et al. used a Convolutional Neural Network (CNN)
with one convolutional layer followed by a fully connected
layer [25]. The raw inertial signal is transformed into the
spectrogram as a function of time and frequency. The
gyroscope and accelerometer signals are exploited in that
research. The convolutional layer uses a set of filters on
spectrograms of the input data. Then the weighted convolved
signals are added to each other and this process is applied at
each time t repeatedly. This layer extracts the features from
the spectrogram. Finally, it is followed by a classification
layer which consists of a fully connected layer and a Softmax
layer at the end. The validation is R10Fold with 4-second
windows without overlap. The architecture achieved a mean
sensitivity of 66.3% and 97.7% for specificity. The R10Fold
method showed a big variation in model performance for
patients. The specificity recognizes the Non-FOG pattern
which obtained a quite high rate.

Alsheikh et al. used a Deep Neural Network (DNN) [17].
Like Ravi et al., they applied pre-processing to the data and
transformed it into a spectrogram. A deep learning generative
layer takes the input data and computes the intrinsic features.
The proposed model applies training in two main steps. The
first step is a pre-training procedure that generates features
on each layer by unlabeled data using Deep Belief Networks
(DBN). In the second step, the pre-trained weights are fine-
tuned by supervised learning from labeled data. The results
are 91.5% for both specificity and sensitivity. The model is
validated by R10Fold cross-validation with a window length
of 4 seconds without any overlap.

San-Sequndo et al. used raw inertial data from the Daphnet
dataset transformed to feature sets proposed in other papers,
e.g., Mazilu et al. [16]. The authors used a CNN, random
forest and hidden Markov models for training and testing.
They assessed the methods with LOSO and R10Fold cross-
validation. The windows are 4 seconds long with a 75% over-
lap. The sensitivity and specificity are around 75% and 95%,
respectively, when 7 consecutive windows are employed. One
of the drawbacks in using several adjacent windows for a
CNN model is a high time delay in classification because of
large input data. Furthermore, it also needs more memory to
process the input data.

San-Sequndo et al. took advantage of several feature sets
adopted from different research fields such as Mazilu et al.’s
features set, speech quality features using harmonicity and
predictability in time and frequency domains and spectral
flex, human activity recognition, and Mel frequency cepstral
coefficients features in the FOG detection algorithms [16].
However, the decision trees algorithm and LOSO evaluation
results were not better than 55% in sensitivity. Therefore,
the model failed to recognize about half of the FOG events
which is a poor result. Similarly, the specificity is 95% for
non-FOG but it is an expected result because around 90%
of the dataset is non-FOG. San-Sequndo et al. revealed that
each PD subject has a personal gait style and there is a drastic
difference between the model performances on each patient.
San-Segundo et al. also used R10Fold cross-validation which
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was remarkably patient dependent and did not have general-
ization over unseen subjects [16]. San-Segundo et al. used the
feature set from Mazilu et al. and applied the random forest
algorithm with R10Fold cross-validation. The corresponding
achievements with zero overlap are 91% and 91.5% for sen-
sitivity and specificity, respectively.

Masiala et al. used LSTM block cell and Daphnet
dataset [15]. The authors applied time and frequency domain
features with thewindows of 4 seconds and overlap of 0.5 sec-
ond into LSTM block cells. In spite of the high overlap in
consecutive windows, the training and test set were isolated
from each other. Their subject-dependent model considered
all three sensors’ data, accelerometer, gyroscope, and mag-
netometer, available in the dataset and classified with 87%
sensitivity and 96% specificity. When only the shank sen-
sor was considered, both sensitivity and specificity dropped
to 82% and 94%, respectively. The sensitivity is higher in
the LOSO approach, 84%, but specificity is lower, 86%.
The sensitivity and specificity achieved by Masiala et al.
in the subject-dependent approach are considered as the
baseline and benchmark for this paper. The papers in the
related work did not provide any information about dataset
preparation.

To the best of our knowledge, there is no study on the
effect of padding when using machine learning models in
freezing of gait detection field. The literatures in the related
works did not mention specifically how they prepare the
regions and the windows in training and test sets. Mostly,
they only address the general windowing strategy with given
window length and overlap. Instead, the papers in freezing
of gait field focus on the sensitivity and specificity achieved
from their algorithms and extracted features from the dataset.
But we are convinced that data preparation i.e. ensuring that
windows contain only one type of data during the training
phase greatly helps to improve the training. So we analyzed
the literature for approaches to split windows of training data
without losing data. We were focusing on data sets with a
similar structure as the Daphnet data set used by us. Such data
sets can be found for functional protein prediction and written
texts. In both cases, the data represent sequences, i.e., long
vectors like the sequences of acceleration data from IMU
sensors in the Daphnet data set.

The sequence of data in freezing of gait, language and
Amino acids show variable lengths in their nature and
cause challenges in feeding machine learning algorithms.
The analogy between these fields motivates the applications
of the Natural Language Processing (NLP) techniques to
FOG detection by changing the length of the sequence with
minimum impact on the neural network. When applying
machine learning to NLP and protein functional prediction
the issue of variable sequence length is solved by adding
pad values to the sequences to ensure sequences with the
same length [26]–[31]. Zero padding is frequently used in the
NLP and protein prediction and the padding operation con-
catenates a vector of zero values to the measured sequences
[30]–[34]. Padding with zero values is also adopted

TABLE 1. List of literature using daphnet dataset for FOG detection.

in popular machine learning frameworks such as Ten-
sorflow, Pytorch, and the Matlab machine learning
toolbox [35]–[37].

This paper proposes a novel method to use padding to
prepare training data for the LSTMmodel. The trained model
was fed with raw data with a length of 1 second with zero
overlap and without any additional pre-processing or feature
extraction task and detects FOG windows successfully in the
subject-dependent approach. Table 1 shows the results of the
methods mentioned above.

III. DATASET PREPARATION
The distribution, size, and quantity of labels are different
throughout any standard dataset. In the Daphnet dataset, FOG
episodes do not have the same length and distribution for
all patients. The total amount of FOG data is only 9.7%
of the dataset, which is much lower than Normal walking
data, 90.3%. Therefore the Daphnet dataset shows a massive
bias between the two labels. The Daphnet dataset originally
contains three labels, 0, 1, and 2, corresponding to each
data recording. Label ‘‘0’’ relates the data before and after
the experiment, such as installing the sensors on patient’s
body. Data with the label ‘‘0’’ was not considered in this
work because they are not part of the experiments. Data
corresponding with label ‘‘1’’ was part of the experiment and
covered activities such as standing, walking and turning. The
data with label ‘‘1’’ was known as Normal walking and label
‘‘2’’ represents the data showing freezing and was labeled as
FOG in this work.

In time-series classification problems, in which the data
mainly exist as one long vector containing one or more chan-
nels, it is not possible to use the whole data for training in one
step and a window strategy should be applied to split the long
vector into subsets [14]. This technique segments the time-
series data, and generates equal- and fixed-size windows as
subsets [38].
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A. TRAINING SET
Each window in training should only contain a unique type
of labeled data, so each window in the training set rep-
resents only FOG or Normal walking. However, in most
cases, regions of FOG or Normal data do not fit entirely into
consecutive windows of a given length. So windows at the
end or beginning of a FOG or Normal walking region can
contain data from the respective neighbor region. Although
windows with data of both labels can be truncated, data
representing freezing of gait faces a shortage and removing
such windows decreases the amount of data which is already
scarce. In contrast, this paper focuses on keeping all data from
the original dataset instead of removing any data. Therefore,
a solution is required to prepare data in the training set to
fulfill the following two conditions: windows contain only
one type data and no data is discarded. Meeting these con-
ditions are only tricky for windows in which changes from
normalwalking to FOGor vice versa happen, i.e., for themost
interesting windows.

Thus a methodology is required to prepare the data in such
a way that each window is labeled unique. It is worthy to note
that the data preparation should have the least impact on the
neural network.

To solve the issue of regions of different lengths, padding
with zero values is applied to the Daphnet dataset where
appropriate. Thus the amount of data in each region is
increased, so that afterwards, all windows are completely
filled with data of one label only and overlapping with the
neighbor regions is avoided.

As padding data is additional data and not part of original
dataset. It is important that the padding data have the least
possible impact on the calculated loss from loss function and
that the model mainly focuses on actual acceleration data
from the dataset. After padding, the data in the training set are
fed directly to the model without any further transformation.
The loss function in the LSTM model calculates the error
between the predicted label and the actual window label
without considering the origin of the input values. In multi-
layer LSTM networks, the weighted sum of zero inputs from
padding data becomes zero in the corresponding synapses
while the output of the activation function is calculated from
the bias value and the hidden state of the previous time step
of the neuron. Afterward, the layers generate new hidden
and cell states from corresponding padding data. Thus it is
essential to keep the zero paddings at the lowest possible
amount to ensure the calculated loss values mainly stem from
the actual dataset and not from padding data.

1) SEQUENCE SPLITTING
Sequence splitting in MATLAB pads and splits regions to
data intervals of equal lengths which allows feeding the
model with a fixed window size for the whole training phase,
whereas each mini-batch has a different length. Sequence
splitting fits the windows in a mini-batch by padding the
regions in which data is missing, see Fig. 2.

FIGURE 2. Sequence splitting method with a windows length of 64 and
mini-batch size of 10. FOG and Normal walking regions, blue color, are
sorted ascending by region length in this figure. Padding data, orange
color, are added at the end of each region.

The mini-batch size defines a number of regions using
the sequence splitting method, for example, ten regions in
a mini-batch in Fig. 2. This principle has a drawback for
mini-batches having a high variation in the regions’ lengths.
To reduce the variation of regions’ length in a mini-batch,
the regions are sorted in ascending length, as shown in Fig. 2,
and therefore, regions inside a mini-batch show more similar
lengths. Some regions get much more padding to reach the
mini-batch size. For example, the regions between 100 to
103 in Fig. 2. need only a bit of padding to fill the windows.
However, the window length should be the same for all
windows in the mini-batch, so the regions 100 to 103 have
to add and fill the fourth window with padding values. This
method generates a high amount of padding to the regions.

The length of regions in the Daphnet dataset increases
exponentially and bigger mini-batch sizes showing a greater
difference between the shortest and longest regions in a
mini-batch leading to a higher padding amount. For example,
the sequence splitting method adds much less padding for
regions 335 to the 385 for a mini-batch of size 25, Fig. 3-a,
compared to a mini-batch size of 50, Fig. 3-b.

Although this method can prepare the dataset for LSTM
training, the enormous amount of padding in larger batch
sizes and the varying number of splits in each mini-batch are
problematic to the model training.

2) PROPOSED PADDING
Fig. 4 shows the rolling window over the dataset, the point
where FOG and Normal regions meet each other cause
challenges. The rolling window at these places might con-
tain data from both FOG and Normal regions. However,
this contrasts with the requirement of having only one type
of data in a window for the training set. We propose to
shift the regions and to fill the rolling windows with a
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FIGURE 3. Padding produced by the Sequence splitting method provided in MATLAB and the here proposed padding method. The mini-batch sizes are
25 and 50 for (a) and (b), respectively. The mini-batch size is a parameter in sequence splitting method and the bigger batch size generates a higher
padding amount. The padding amount in the proposed method is independent of the mini-batch (c). The proposed padding method fills the free space
in the last window of a region. When compared to sequence splitting method, the proposed padding algorithm added far less padding data (c).

FIGURE 4. Normal walking and FOG regions are split in windows of 4
seconds. The rolling window covers parts of FOG and Normal data at the
boundary of these regions. The padding adds some data to the end of
regions to have data from one label only.

padding value in order to have a single type of data, FOG
or Normal in each window, see Fig. 4. So each window
gets the same label for its inner data. To the best of our
knowledge, so far, no paper reported on the preparation of
individual regions before training. So the method here can-
not be compared to others and may be considered innova-
tive, and at least it provides missing information on data
preparation.

The proposed padding method processes each region indi-
vidually and calculates the required padding to fill the rolling
window. Unlike the sequence splitting method, regions have
no impact on the amount of the padding of other regions,
see Fig. 3-c.

The MATLAB method is not supporting flexible padding
positions and simply adds padding data at the beginning or
the end of all regions. The proposed padding method can
put the padding data at the beginning or at the end of FOG
or Normal regions. For example, the developer can pad at
the beginning of a Normal region and at the end of a FOG
region. The mini-batch size is not a coefficient of number of
regions, but it is based on the number of windows, and the
same amount of windows are processed at each epoch. The
padding amount is constant and invariant of the batch size,
see Table 2.

TABLE 2. The comparison between MATALB sequence splitting and the
proposed padding method.

B. TEST SET
In a real-life situation, it is not apparent when FOG starts or is
going to end. The testing environment should represent real-
life scenarios in which themodel assesses the data in the same
form as retrieved from the sensor node. So, padding or any
other transformation is not applied to the test set. In other
words, raw data is fed to the model directly.

A window strategy is applied to the whole test set gen-
erating fixed-size windows and provides a unique label to
a window, and unlike the training set, it does not consider
each region separately. A window gets the FOG or Normal
label if the whole data inside the window is FOG or Normal,
respectively. However, where the FOG and Normal region
meet each other and both types of data exist in the windows,
see Fig. 5 label assignment is based on the threshold for the
proportion of data in the window. For example, the threshold
of 50% for FOG data means that the window gets FOG
label if a window has over 50% of the FOG data otherwise,
the window receives a Normal label.

IV. LSTM FOR FOG DETECTION
RNN models use sequential information from time-series or
temporal data. RNN provides robust prediction performance
as well as a remarkable ability to learn long-term depen-
dencies between temporal data. Therefore the model delivers
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FIGURE 5. The labels of the windows are assigned based on the
percentage of FOG data in the test set. In this figure, 50% of FOG data is
used to assign the FOG label to the window.

information that does not only depend on currently received
data but also on those with previous time stamps. Recently,
LSTM cells as a robust variant of RNN models achieved
good results in many domains with times series data such
as machine translation and speech recognition [39]–[41].
An LSTMnetwork contains recurrent blocks that act as mem-
ory and adapt their inputs based on the gate’s function [42],
see Fig. 6.

FIGURE 6. Internal components of an LSTM block [43]. LSTM components
apply nonlinear transformation by the sigmoid and hyperbolic tangent
activation functions across the components as well as dot-product and
summation of the matrix as mathematical operations. The LSTM block
gets intuition of the hidden state and the cell state, ht−1 and ct−1,
respectively, from the previous time step and generates two outputs, ht
and ct corresponding to the states for the current input data xt .

FIGURE 7. Used architecture with multi-layer LSTM.

The input of the LSTM model is the data from the
accelerometer in the time-series format and the model mem-
orizes data from previous time steps. The LSTM capabili-
ties such as memory and time-series feeding style make it
well suited for detecting FOG. The FOG detection model in
this work is many-to-one which uses sequential data from
the accelerometer sensor as temporal values belonging to a
window with a unique class, whereby only one output is
delivered at the last element of the window. In other words,
the model predicts only one label per window. Fig. 7 illus-
trates the architecture of a multi-layer LSTM network that
processes raw accelerometer data for classification purposes.
The stacked LSTMnetwork learns richer data representations
as additional layers produce higher abstraction levels of input

data over time [15]. The class of a window is predicted by
using a fully connected layer, followed by a Softmax layer
and finally, a classification output layer.

The training procedure yields the model to overfit during
the training phase if no regularization is used. Overfitting
leads the model to achieve a low error rate within the training
set, whereas it leads to a high error at the test set that was
isolated from the training set. The regularization techniques
preserve training accuracy in the training set while the model
obtains low generalization error over unseen data [44]. Sev-
eral regularization techniques such as the L2-norm regular-
ization, early stopping, data augmentation, and dropout are
employed.

V. MODEL IMPLEMENTATION
This work is based on the stateless definition of LSTM, i.e.,
the model passes states to the next time step in the same
window and it does not transmit any states to the further
windows. In other words, stateless models get the intuition
of dependency inside the window and they do not have any
information from other windows. As dependency between the
windows does not exist, the order of windows was shuffled
at each epoch. Our model consists of three layers of LSTM
blocks stacked on each other. The input data are fed to the
LSTM model with 110 hidden units in the first layer which
is followed by two additional layers with 90 and 70 hidden
units. The whole model consists of 167600 learnable param-
eters. The type of the model is many-to-one, so the input
data is a three-channel raw data from the acceleration sensor
mounted on the shank and the output is a label defining the
class of the input data. The LSTM layers are followed by a
fully connected layer, and then the Softmax layer assigns the
likelihoods of the outputs to one of the two classes. Finally,
the window is classified as FOG or Normal class.

The input weights and recurrent weights are initialized
with the Glorot initializer and orthogonal matrix initializer,
respectively. The hyperbolic tangent function is applied to the
cell candidate component of the LSTM block. The sigmoid
activation function computes the nonlinear transformation
for the input, forget, and output gates. The Adam optimizer
updates the model weights after each mini-batch of training
data. The initial learning rate was assigned 0.005 and the
software updates the learning rate every 3 epochs. The decay
rate factor in the gradient moving average is 0.8 for the Adam
solver. The squared gradient moving averages are defined as
0.99. During the experiments, these parameters led to the best
model performance.

There are 23629 windows after padding in the training
set. Each mini-batch considers 100 windows and in total,
236 mini-batches were generated for each epoch. MATLAB
covered 23600 windows in one epoch, and the 29 remaining
windows were ignored because they do not fill a mini-batch
entirely.

The L2 regularization method was applied to the training
algorithm. The weight decay factor is specified as 0.0008.
Early stopping terminates the training process to avoid
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overfitting when the validation set is 15% worse than the
training set. This strategy stops the training process when
the condition becomes true for five consecutive epochs. The
maximum number of epochs is 60. The augmentation method
increases the FOG regions virtually to reduce the imbalance
between the FOG and Normal walking data. FOG regions
were copied four times after applying the proposed padding
method and increase the FOG data from 9,7% of the original
dataset into 33% after the augmentation method.

All the development tasks from data cleansing, data repre-
sentations, training, and testing processes were done in MAT-
LAB 2019a [45]. The proposed padding method was also
developed, tested and employed in the MATLAB software.
The Statistics and Machine Learning Toolbox of MATLAB
2019a was used for the training and testing algorithm. The
window length is 1 second containing 64 samples for each
channel, in the training and in the test set. Consecutive win-
dows have zero overlap. The proposed padding algorithmwas
applied to the training data. The test set did not face any
padding or any other pre-processing and the data in test set
was used in the raw format. The label of windows in the test
set data are based on the proportion of the input data. The test
set windows with 100% of FOG or Normal data get the label
corresponding to the internal data. The algorithm assigns a
FOG or a Normal label when the windows have at least 90%
of the corresponding data, windows with a lower proportion
than 90% are not considered.

The model is trained subject-dependent, i.e., each patient
has an individual model. The proportion of data taken from
each patient in the training and test sets are not the same as
in the related literature. Some researchers took 90% of the
patient’s data for training and the rest of data of the same
patient, i.e. 10%, for testing [21], [25], [17], [16]. Asam et al.
considered 75% to 25% in training and test sets, respec-
tively [23]. Masiala et al. trained the model with lower data
of the patient, 70%, and tested their model with the remaining
30% of the same patient’s data [15]. All these papers selected
the training and test sets from the dataset randomly. In this
work, 50% of both FOG and Normal windows are kept out
of the training phase and used for testing. The training set
uses the other 50% of the data of the same patient and it also
considers all other patients except for patients 4 and 10 who
did not experience any FOG. The subsets of data for each
patient in training and test sets are selected randomly.

Afterward, the paddingmethod - proposed paddingmethod
- is applied to the data considered for the training set.
Although the equal proportion of data in training and test sets
is more challenging with respect to learning, it gives more
confidence for sensitivity and specificity because the size of
the test set for each patient is the largest among the studies
used for comparison in this paper. Eliminating patients 4 and
10 reduces the imbalance between FOG and Normal walk-
ing labels. These two patients represent 25% of the dataset
with no FOG data and only contain Normal walking data.
Patients 4 and 10 were only used for determining the normal
walking detection rate.

TABLE 3. Padding amount in MATLAB and the method introduced in this
paper for the whole dataset using window length of 64.

TABLE 4. The trained model size is in kilobyte (KB).

VI. RESULT AND DISCUSSION
A. PADDING
The padding amount significantly depends on the batch size
in the sequence splitting method. This method adds an exten-
sive amount of padding data to the dataset, even for a rela-
tively small batch size. For example, it generates the same
amount of padding data as the actual data from the dataset
when the batch size is 50, see Table 3. However, the padding
method proposed in this paper only adds 1% of the dataset
as padding data at any batch size, i.e., the padding amount
is invariant of the batch size. For example, if the batch size
is 100, Table 3, the padding amount is two orders of mag-
nitude smaller. So, our padding method adds much lower
padding and the model calculates the loss function mainly
from accelerometer data.

B. MODEL SIZE
The learned parameters of the LSTM model, as well as the
internal calculation values from each layer and time step,
allocate a certain amount of storage. The data type of the
model parameters in MATLAB 2019a is a single-precision
variable that stores both the raw and weight data as 4-byte
(32-bit) floating-point values. Table 4 presents the learned
parameters, the number of calculated values inside the LSTM
block, and the required memory size at the application stage.

C. MODEL PERFORMANCE
The paper shows two different methodologies of padding,
the sequence splitting method and the proposed padding
method, which were applied to the training set resulting in
two different training sets. Each of the two training sets are
used in training for separate models and the trained models
are evaluated using the same test set which is not manipulated
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TABLE 5. Performance results using the sequence splitting method in
MATLAB to prepare the data for training.

TABLE 6. LSTM model performance for FOG detection. The window
length is 1 second without overlap.

by padding or any other data pre-processingmethod. The data
in the test set shows the recordings from sensor data in the
dataset and they are only split to fixed-size windows in order
to fit the specification of our multi-stack LSTM model.

The evaluation metrics such as sensitivity, specificity and
AUC compare the model performance in the two different
padding methods.

1) SEQUENCE SPLITTING METHOD
The sequence splitting method in MATLAB was used to
prepare the training set. Different models with different mini-
batch sizes, 10, 20, 50, and 100 were trained. Table 5 reveals
the average performance results of all the trained models
through all patients using the sequence splitting method. The
models could not even detect one single FOG event correctly,
whereas all the data in the test set were classified as Normal
walking achieving 100% specificity. AUC gained a low met-
ric value of 55%.

2) PROPOSED PADDING METHOD
The results in Table 6 show the achieved sensitivity, speci-
ficity andAUC for each patient in the Daphnet data set as well
as the mean sensitivity of 92.57% and specificity of 95.62%
and the mean AUC of 97.62%. Our model score gained 100%
specificity in patients 4 and 10 who have only Walking data
and did not have any false classification.

Since we used Daphnet as a benchmark dataset for FOG
detection, we can compare the performance of our model
with the results reported in the literature. As the related lit-
eratures used different machine learning models and features
pools and they did not apply padding methodologies, the
comparison of this work to others is done using the model

performance parameters i.e., sensitivity, specificity, and win-
dow length.

In most of the works, the window length is 4 seconds.
Mazilu et al. used 1-second windows and achieved 98%
and 99% for sensitivity and specificity, respectively [24].
However, Mazilu et al. mentioned that the high values might
be because of a bias in their experimental setup, which is
high from a purely random 10-fold cross-validation evalua-
tion procedure [24]. Tremendous overlapping between win-
dows, around 90%, leads to data leakage from the test set
to the training set. Without any overlap, the sensitivity and
specificity drop to about 91% and 91.5%, respectively [16].
Bachlin et al. employedwindows of 4 seconds, which are four
times longer than those used in our approach and achieved
lower sensitivity, 88.6%, and 92.4% for specificity [19].

Masiala et al. also used LSTM and the same dataset [15].
Although Masiala et al. did not mention their neural net-
work architecture and training configuration, they tested their
model in a subject-dependent way as we did. The sensitivity,
92.57% that we achieved with our approach is more than 10%
better than theirs, 82%, which is a significant improvement.
Our model’s specificity, 95.62%, represent a 1% increase
compared to their specificity of 94%. This is even more
impressive as we used 1-second windows, whereas they used
4-second windows.

FIGURE 8. ROC curves for each patient. Patients 4 and 10 are excluded as
they only have normal walking data. Windows size is 1 second without
overlap.

Receiver Operating Characteristic (ROC) curves depicted
in Fig. 8 show that our model achieves very similar results
for the data and the average AUC is 97.62. Our average
AUC is 1% higher than the one achieved by the model of
Masiala et al. The AUC achieved by San-Segundo et al.
is similar to ours but they used 4-second windows with 75%
overlap [15], whereas we used 1-secondwindowswithout any
overlap.
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VII. CONCLUSION AND OUTLOOK
In this paper, we proposed a new method to apply padding
that calculates the amount of padding for each region individ-
ually, regardless of the mini-batch size, leading to a constant
padding amount for all batch sizes. The total amount of
padding values is around 1% of the entire dataset. The so
prepared data windows were later used to train and test our
innovative ML approach for FOG detection, which was our
main goal. We used the Daphnet dataset, which was acquired
by wearable inertial sensors. Our LSTMmodel uses the three
channels of the acceleration sensor mounted on the shank of
the patients. The LSTM model received a fixed size length
of data. The windows in the training set contain only one
type of data, FOG or Normal and padding is used to ensure
equal window size. Our patient-dependent approach assigns
the training set using 50% of data from the target patient in
addition to all other patients except for patients 4 and 10. The
other 50% of the data of the target patient was used for testing.
The test set is split into windows as well, but the regions
were not padded in order to represent the actual signal in real
life. Each window in the test set was labeled based on the
proportion of the contained data. Data from patients 4 and
10 were only used when they were target patients.

Our approach using the proposed padding method outper-
formed all other approaches that were discussed in this paper
using 1-second windows with respect to sensitivity, speci-
ficity, and AUC, achieving 92.57%, 95.62%, and 97.62%,
respectively. Our LSTM model architecture used the feature-
less data with zero pre-processing computation cost. In con-
trast to these convincing results, models trained with subsets
produced by the sequence splittingmethod ofMATLABwere
not successful in FOG detection.

We need to admit that we cannot clearly state which of the
applied means, i.e., the new type of padding or individualized
training leads to the improved performance. We will do a
thorough analysis of the impact of the different approaches
in our future work.

In addition, the model assessment requires more extensive
datasets to cover more patients and more complex gait activ-
ities. In order to provide these, we are currently cooperating
with clinicians to gather data using inertial sensors from
Parkinson’s patients. In addition, we will apply alternative
deep learning architectures such as gated recurrent units and
LSTM combined with feature engineering. Once the results
are retrieved, we want to compare them with our findings,
reported here.
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