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Abstract
Artificial intelligence can be a game changer to address the global challenge of 
humanity-threatening climate change by fostering sustainable development. Since 
chemical research and development lay the foundation for innovative products and 
solutions, this study presents a novel chemical research and development process 
backed with artificial intelligence and guiding ethical principles to account for both 
process- and outcome-related sustainability. Particularly in ethically salient con-
texts, ethical principles have to accompany research and development powered by 
artificial intelligence to promote social and environmental good and sustainability 
(beneficence) while preventing any harm (non-maleficence) for all stakeholders (i.e., 
companies, individuals, society at large) affected.

Keywords Artificial intelligence · Ethics · Research and development · 
Sustainability

Introduction

Artificial intelligence (AI) is a transformative power (re-)shaping businesses by pro-
viding new solutions to complex problems, increasing consistency and reliability, 
while decreasing costs and risks (Taddeo & Floridi, 2018). The “general purpose 
technology” character of AI can lay the foundation for innovations and capabilities 
(Brynjolfsson & Mitchell, 2017). Thus, AI has the potential to establish and bol-
ster sustainable business models (e.g., Di Vaio et al., 2020; Mabkhot et al., 2021) 
and address major societal issues, among them, sustainable development as a focal 
challenge and objective of our time (Nishant et al., 2020; Vinuesa et al., 2020). AI 
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approaches such as machine learning (ML) and deep learning facilitate the process-
ing and analysis of massive amounts of structured and unstructured data (Jordan & 
Mitchell, 2015), which particularly benefits data-intensive research and applications. 
As chemical research has generated its insights from data from the very beginning 
(Gasteiger, 2020), AI is increasingly applied in various fields of chemical research 
including (synthetic) organic chemistry (e.g., de Almeida et  al., 2019; Wei et  al., 
2016), toxicity prediction (e.g., Idakwo et  al., 2019; Vo et  al., 2020), quantum 
chemistry (e.g., Dral, 2020), (nano-)material science (e.g., Muratov et  al., 2020), 
molecular design (e.g., Button et  al., 2019), and drug discovery and design (e.g., 
Jiménez-Luna et al., 2020; Schneider, 2018, 2019; Zhang et al., 2017). AI in chemi-
cal research and development (R&D) can foster environmental and social good and 
embrace sustainability on two counts, that is, by developing more sustainable and 
ecofriendly substances and products on the one hand and by incorporating resource-
efficient and sustainability-oriented methods in its R&D processes on the other hand 
(e.g., Ruiz-Mercado et al., 2012; van Wynsberghe, 2021).

Given the substantial impact of AI on the individual, economic, and societal 
level, AI development and use are accompanied by intensive discussions of guid-
ing ethical principles by public and private institutions (Cowls et al., 2021; Floridi 
et al., 2018, 2020; Hagendorff, 2020; Jobin et al., 2019; Mittelstadt, 2019; Mittel-
stadt et al., 2016; Morley et al., 2020). However, the landscape of principles remains 
fragmented (Jobin et al., 2019) and translation into practice is needed (Mittelstadt, 
2019; Morley et  al., 2020). That is, recurring and prominent principles such as 
transparency, beneficence, and non-maleficence (Jobin et  al., 2019) are norma-
tive, deontological, and high-order in nature (Hagendorff, 2020; Mittelstadt, 2019). 
However, translation into business and research practice might require trade-offs, 
context-dependent application, and consideration of different stakeholder interests. 
Stakeholders range from companies and organizations that (differently) interpret and 
apply ethical principles when developing and utilizing AI (Ryan et al., 2021), indi-
viduals that are directly or indirectly affected by AI, and eventually society at large 
(which is also impacted by environmental well-being). Accounting for the different 
stakeholders becomes particularly important when AI is operating between the pri-
orities of promoting social good (i.e., beneficence) and preventing any harm (i.e., 
non-maleficence). Solving this tension to achieve a “dual advantage” for society 
(Floridi et al., 2018, p. 694) is at the core of the AI-for-social-good perspective (e.g., 
Cowls et al., 2021; Floridi et al., 2018, 2020; Taddeo & Floridi, 2018).

This conceptual study shows how accompanying ethical principles for the deploy-
ment of AI in chemical R&D can foster social and environmental good. Therefore, 
we present a chemical R&D process spanning cutting-edge chemical research that 
can substantially contribute to innovative products, methodological advances of 
AI, and guiding ethical principles. We rely our conceptual analysis on synthetic 
chemicals (i.e., pesticides) as illustrative R&D objects, since they are beneficent and 
maleficent at the same time and can be thus considered ethically controversial prod-
ucts. Thereby, our study contributes to the AI ethics literature by showing how ethi-
cal principles related to AI can be translated into business and research practice to 
promote environmental and social good while accounting for multiple stakeholder 
interests.
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The remainder of our study is structured as follows. After briefly shedding light 
on how AI has evolved and is now applied in chemical R&D, we illustrate how 
chemical R&D powered by AI can be utilized for good through guiding ethical prin-
ciples and consideration of all stakeholders affected. We conclude with a future out-
look and a call for more collaborative, open science approaches to meet the global 
challenge of sustainable development.

AI in Chemical R&D

Since (laboratory) chemical research has always accumulated enormous amounts 
of (experimental) data on chemical and physical properties, chemical reactions 
and structures, and biological activities, methods from computer science have been 
developed and utilized in chemistry starting in the 1960s (Gasteiger, 2020). They 
have been subsumed under the term artificial intelligence already then (Gasteiger, 
2020). Quantitative structure property/activity relationship (QSPR and QSAR) mod-
eling are long- and well-established computational approaches for analyzing chemi-
cal data (Gasteiger, 2020; Muratov et al., 2020). QSAR models have been histori-
cally applied to computer-aided drug discovery and are used to predict or design 
novel chemicals with desired properties by establishing linear or non-linear rela-
tionships between values of chemical descriptors computed from molecular struc-
ture and experimentally measured properties or bioactivities of those molecules 
(Muratov et al., 2020). Chemical discovery does not only pertain to finding a spe-
cific molecule, but also to identifying reaction pathways, interactions between mol-
ecules, optimizing catalytic conditions, eliminating adverse side effects, and various 
other factors. All of them require a statistical view on chemical substance design and 
discovery and thus give rise to ML techniques (Tkatchenko, 2020). For instance, 
hybrid methods uniting ML and rule-/expert-knowledge-based approaches and more 
advanced deep learning models have been developed for the molecular design of 
synthetic chemical entities with drug-like properties and for drug discovery, respec-
tively (e.g., Button et al., 2019; Jiménez-Luna et al., 2020). With the availability of 
big data, drug discovery approaches increasingly move from ML to deep learning 
methods due to their computational power and capacity to handle massive amounts 
of data (Schneider, 2018; Zhang et al., 2017). Besides, AI approaches are gaining 
importance in predicting toxicity of drugs and chemicals (i.e., in silico toxicity pre-
diction), because in vitro/vivo methods are often constrained by ethical considera-
tions, time, budget, and other resources (e.g., Idakwo et al., 2019; Vo et al., 2020). 
Relatedly, life-cycle impacts of chemicals have been also shown to be assessable by 
means of AI (e.g., Song et al., 2017). Both toxicity of chemicals and substances and 
their life-cycle impact can be crucial factors that affect individual and environmental 
well-being. In the following, we illustrate how AI in chemical R&D can be har-
nessed to address these and other factors by accounting for ethical principles and the 
various stakeholders affected.
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Leveraging AI in Chemical R&D for Environmental and Social Good

We account for the calls for nexus approaches and interdisciplinary research on 
sustainable development and climate change (e.g., Fuso Nerini et al., 2019; Sch-
neider et al., 2019; Seele, 2016) by presenting an AI-driven chemical R&D pro-
cess (see Fig. 1) and guiding ethical and methodological principles that relate to 
the R&D process and its outcomes (Burget et al., 2017). We argue that orienta-
tion on and observance of these guiding principles can contribute to both process- 
and outcome-related sustainability.

The proposed R&D process comprises the definition of the required proper-
ties, the AI-based molecular design and in-silico characterization of the relevant 
properties, the ranking of the most promising candidates, and respective AI-based 
reaction designs as basis for laboratory experiments. Synthetic chemicals (i.e., 
pesticides) are used as illustrative R&D objects for two reasons. First, they are 
central to cost-effective production of food and efficiency gains in agricultural 
systems (e.g., Pretty, 2018). Second, they simultaneously pose substantial envi-
ronmental threats (Bernhardt et al., 2017). In other words, R&D of pesticides can 
be considered an ethically salient R&D context that requires ethically responsible 
conduct and anticipation of potential negative side-effects along the entire R&D 
process. Moreover, the deployment of AI applications in the sustainability con-
text should account for all stakeholders potentially affected, particularly, given 
potential tensions of collective versus individual benefits and costs (Vinuesa 
et al., 2020). This multiperspectivity further accounts for the AI-for-social-good 
perspective (e.g., Cowls et al., 2021; Floridi et al., 2018, 2020; Taddeo & Floridi, 
2018). Correspondingly, we focus on the AI ethics typology suggested by this 
stream of research (Floridi et al., 2018; Morley et al., 2020), that is, beneficence, 
non-maleficence, autonomy, justice, and explicability.

Fig. 1  AI-driven R&D process. QC Quantum-chemical simulations
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Beneficence and Non‑Maleficence

Scientists and experts state and warn that the imminent climate crisis is accelerat-
ing faster than expected and threatening natural ecosystems and humanity more 
severely than anticipated (IPCC, 2018, 2019; Ripple et al., 2020). Climate change 
presumably constitutes the most threatening global challenge for humanity 
(Coeckelbergh, 2021). That necessitates substantial increases of scale in endeav-
ors to avoid untold suffering (IPCC, 2018; Ripple et  al., 2020) and “bold solu-
tions…that integrate environmental and societal objectives” (Arneth et al., 2021, 
p. 30882). Sustainability and sustainable development are pivotal to addressing 
these fundamental challenges. Both sustainability and sustainable development 
are widely used but polysemous concepts (Ben-Eli, 2018; Brown et  al., 1987; 
Hopwood et  al., 2005). Since mapping the different definitions and context-
dependent meaning is out of scope of this paper, we simplistically refer to sus-
tainability as a dynamic balancing between of human activity and environmental 
capacity by particularly limiting adverse environmental impacts and utilization of 
(natural) resources.

While some scholars argue that environmental sustainability is only worth pur-
suing for ethical reasons (Zagonari, 2020), others consider sustainability as an 
epistemic-moral hybrid (Schneider et  al., 2019). Sustainability also constitutes 
an ethical principle and objective related to the development and deployment of 
AI (Jobin et al., 2019). According to the AI-for-social-good-perspective, sustain-
ability is at the core of the beneficence principle, which inheres that AI should 
promote individual, social, and environmental well-being (Floridi et  al., 2018). 
The beneficence principle is narrowly related—although not equivalent—to the 
tenet of non-maleficence. Non-maleficence incorporates the importance of safety, 
security, and privacy as well as the prevention of risks and any harm both acci-
dentally/unintentionally (overuse) and deliberately (misuse) caused. Thus, it cau-
tions against all potentially negative aspects and consequences of AI development 
and use (Floridi et al., 2018; Jobin et al., 2019).

AI in chemical R&D contributes to sustainability in two ways. First, AI simu-
lations supplemented by quantum chemical (QC) predictions dematerialize and 
digitalize conventional lab experiments. That is, research questions (e.g., focus-
ing toxicity and acidity) are addressed and answered by AI simulations (i.e., in-
silicio characterization) instead of resource-intensive laboratory experiments. 
That can eventually result in substantial resource-efficiency gains and lower costs 
(e.g., due to minimization of material usage), that is, R&D process-related sus-
tainability. The R&D process for synthetic chemicals such as pesticides become 
more resource-efficient and sustainable, because intended reductions in doses and 
environmental half-lives of active substances are usually accompanied by more 
complex molecular structures of synthetic chemicals. They in turn increase the 
resource utilization during the R&D process (Geisler et al., 2005). Of course, AI 
applications and systems have an ecological footprint themselves and can have 
rebound effects caused by energy consumption and emissions of AI develop-
ment, production, and deployment (e.g., Dhar, 2020). That is, certain short-term 
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trade-offs can occur, which is not unusual for sustainability efforts in general 
(e.g., De Neve & Sachs, 2020). Nevertheless, if AI-enabled simulations are going 
to be used at scale for a variety of research questions, we assume that the mar-
ginal (environmental) costs and impact of use will substantially decline and not 
outweigh their resource-efficiency gains in the long run.

Second, AI-based simulations relax the constraints of conventional laboratory 
research. Researchers can significantly extend the scope of research questions due to 
the computational power of AI and a vast array of scientific research and secondary, 
although often unstructured data. That is, simulations allow to simultaneously inves-
tigate a greater amount and diversity of relevant research questions and to substitute 
widespread, but inefficient one-parameter-at-a-time methods (e.g., Schneider, 2018). 
That is particularly relevant in the sustainability context when it comes to both effec-
tivity (i.e., beneficence) and potential negative side effects (i.e., non-maleficence) of 
substances and prospect product candidates. Generally, the sheer volume, diversity, 
and intensity of use of chemicals can impede risk assessments and pose substantial 
environmental challenges (Johnson et al., 2020). Moreover, identifying and tracking 
chemicals and related (bioactive) transformation products in the environment and at 
ever-lower concentrations in human bodies is hampered by the complex mixture of 
thousands of chemicals the environment and humans are exposed to from multiple 
sources through multiple pathways (Escher et al., 2020). Therefore, anticipating and 
quantifying chemicals’ (detrimental) environmental impact requires comprehensive 
research activities, with synthetic chemicals like pesticides being no exceptions.

In light of calls for sustainable and ecological intensification of agricultural 
systems, that is, increased agricultural yields without the conversion of additional 
non-agricultural land and adverse environmental impact (e.g., Cassman & Grassini, 
2020; Geertsema et al., 2016; Godfray & Garnett, 2014; Loos et al., 2014; Pretty, 
2018; Pretty & Bharucha, 2014), synthetic chemicals like pesticides are a double-
edged sword. Their beneficial role for pest management, crop yield, and food secu-
rity (Cooper & Dobson, 2017) is compromised by pesticide resistance (e.g., Gould 
et  al., 2018), reduction of biodiversity (e.g., Beketov et  al., 2013; Dudley et  al., 
2017), and other negative externalities for human health and natural systems (Bern-
hardt et al., 2017; Pretty & Bharucha, 2015; Tilman et al., 2002). Conventional lab-
oratory, experimental research does not sufficiently predict the individual and col-
lective impact of synthetic chemicals on ecosystems, since their toxicity depend on 
reactions or interactions with other chemicals in natural environments, transforma-
tions by organisms, or exposure to natural light (Bernhardt et al., 2017).

AI with its self-learning capabilities and in combination with large-scale, increas-
ingly rich, and high-dimensional research data (Vermeulen et  al., 2020; Vinuesa 
et al., 2020) has the potential to account for these complex environmental interac-
tions, interdependencies, and externalities. By feeding ML algorithms with relevant 
multifaceted scientific and secondary data (see Fig. 2), AI simulations in association 
with QC predictions will, in future, be able to define substance properties that are 
best-suited for areas of applications and surrounding circumstances and environ-
mental factors (i.e., in-silico characterization and ranking) to maximize beneficence 
while limiting maleficence. Thereby, AI in chemical R&D also account for the green 
chemistry principles that include less hazardous chemical syntheses, designing safer 
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chemicals, and inherently safer chemistry for accident prevention, among other 
things (e.g., Anastas & Warner, 1998; Anastas & Zimmerman, 2003; Erythropel 
et al., 2018; Zimmerman et al., 2020). Potential factors taken into consideration in 
ML models relate to life-cycle and environmental impact assessment categories and 
can comprise human toxicity, aquatic and terrestrial ecotoxicity, and acidification 
(Geisler et al., 2005).

However, a prerequisite for accurate and valid ML model predictions are curated 
consistent data sets (e.g., de Almeida et  al., 2019; Schneider, 2018), since biases, 
inaccuracies, errors, and mistakes inherent in data could lead to biased results and 
false conclusions (Barredo Arrieta et al., 2020; Morley et al., 2020). Research find-
ings of simulations, ML predictions, and subsequent laboratory research have to 
continuously complement research data bases, which, in turn, informs follow-up 
or related R&D. A data life cycle that enhances self-learning capabilities and fast 
feedback loops emerges. Furthermore, final and preliminary results have to be docu-
mented for subsequent life-cycle assessments, registration and approval processes, 
and to potentially provide them to other researchers or make them entirely publicly 
available by pursuing open science approaches (Rüegg et al., 2014). To optimize the 
re-use of research findings and scientific data, corresponding scientific data manage-
ment structures should follow the FAIR principles for scientific data management, 
that is, Findable, Accessible, Interoperable, Reusable (Wilkinson et  al., 2016). In 
this way, such a data life cycle (see Fig. 2) has intra-organizational epistemic and 
methodological advantages such as increased accuracy and validity of model predic-
tions through broader data bases, feedback loops, and more comprehensive model 
training, but also provides benefits for external stakeholders. Accuracy and valid-
ity of ML predictions as well as ensuring beneficence and non-maleficence across 
stakeholders narrowly relate to the justice principle.

Fig. 2  Data life cycle
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Justice

By integrating broad and diverse data resources and a multi-stakeholder perspective, 
AI-based R&D processes incorporate the justice principle, which should also guide 
sustainable intensification (Loos et  al., 2014) and environmental sustainability (Zag-
onari, 2020). The justice principles espouses fairness and the prevention of unwanted/
unfair biases and discrimination, also amending past inequities (Jobin et al., 2019; Mor-
ley et al., 2020). Justice further entails sharing benefits and prosperity and fostering sol-
idarity (Floridi et al., 2018), the latter being stipulated to be considered as a focal ethi-
cal principle on its own (Luengo-Oroz, 2019). In the AI-driven R&D context, research 
outcomes related to products but also scientific data have to be equally beneficial and 
non-discriminatory in respect to all stakeholders affected, within and across countries 
and regions. That is particularly important given the disproportionally adverse effects 
of climate change for poorer countries (IPCC, 2018) and the differences in pesticide 
use, efficiency of agricultural systems, and food security across countries (Cassman & 
Grassini, 2020; Pretty, 2018; Pretty & Bharucha, 2015). Developing countries are at the 
higher risks than developed countries, since there is no equity in the global distribu-
tion of chemical pollutants and their negative environmental externalities (Escher et al., 
2020).

Bolstering and broadening R&D capacities through ML and QC simulations can be 
an initial step and future cornerstone of the mass customization of products deployed 
in agricultural systems. Thereby, agricultural systems’ idiosyncrasies can be taken into 
account in a fair and a cost- and resource-efficient way. Evidence and views of the ben-
efits and costs of ethically controversial substances and products such as pesticides are 
far from unequivocal (Pretty & Bharucha, 2015). Hence, context-dependent evaluations 
considering all stakeholders and external (environmental) conditions are imperative 
and should inform judgments about interferences with ethical principles. In some cir-
cumstances, such assessments will require trade-offs between benefits (e.g., increase of 
crop yield enabling food security due to pesticide efficiency) and costs (e.g., adverse 
effects on biodiversity in certain environments). However, as human judgments can be 
error-prone, biased, and discriminating, so can AI predictions and inferences (Rich & 
Gureckis, 2019). As mentioned above, focal sources of biased predictions are biases 
in and skewness of underlying data (Barredo Arrieta et al., 2020; Morley et al., 2020; 
Vinuesa et al., 2020). Sources of biases include but are not limited to misleading proxy 
features (Barredo Arrieta et al., 2020) or sparse (small) data (de Almeida et al., 2019; 
Rich & Gureckis, 2019). Biases can further result from researchers themselves through 
personal preferences and biases and (chemical) education, which can also unwillingly 
narrow search spaces (de Almeida et al., 2019; Schneider, 2018).

Autonomy

In light of human- and AI-induced biases, the autonomy principle and balanc-
ing human and AI agency becomes and will remain decisive in ethically salient 
R&D contexts. In the AI ethics context, autonomy features a meta-autonomy or a 
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decide-to-delegate model, that is, “humans should always retain the power to decide 
which decisions to take” on their own or when to cede decision-making control 
(Floridi et al., 2018, p. 698). Autonomy in relation to AI applications and systems 
requires human agency (i.e., autonomous human decisions) and human oversight 
(Morley et al., 2020). As human researchers encounter difficulties to unambiguously 
grasp and determine utilities of R&D outcomes for different stakeholders, so does 
AI to an even higher degree (Butkus, 2020). Ethically controversial questions about 
environmental compatibility or toxicity of substances related to both humans and 
the environment necessitate human oversight and foresight (e.g., Floridi & Strait, 
2020). However, human agency and decision-making do not only pertain to judging 
final AI predictions, but to the entire R&D process ranging from research question 
formulation, definition and assessment of required properties (dependent on areas of 
application), and evaluations of AI-based solutions. Correspondingly, de Almeida 
et al. (2019) noted that:

the right research questions must be asked prior to deploying the AI and its 
domain of applicability, advantages and limitations need to be well understood 
in order to assess the utility and appropriateness of a given algorithm for a par-
ticular task (p. 601).

Since artificial moral agency is still in its infancy (Cervantes et al., 2020), we pro-
pose a combination of human, AI, and shared agency along the R&D process (see 
Fig. 1). AI-driven chemical R&D can then incorporate multi-objective maximum-
expected-utility concepts that are aligned to human values and ethical principles 
(e.g., Vamplew et al., 2018). Eventually, humans are in charge of equipping AI sys-
tems and their utility functions with ethical judgments capacities by decide about the 
respective AI design approach. Correspondingly, developers have to decide whether 
AI systems base their ethical decision-making on pre-defined ethical theories (top-
down), on more flexible self-learning mechanisms based on certain values (bottom-
up), or on both (hybrid) (Bonnemains et al., 2018; Cervantes et al., 2020).

To take on this challenge, collaboration and exchange with others stakeholders 
(e.g., Flipse et  al., 2013) or ethicists, that is, an embedded ethics approach (e.g., 
Bonnemains et al., 2018; Brey, 2000; McLennan et al., 2020; Moor, 2005), to trans-
late ethical principles into AI-powered business and research practice have to be 
contemplated. In the future, entirely autonomous AI decision-making in chemical 
R&D in the form of self-driving laboratories and closed-loop approaches (e.g., Häse 
et  al., 2019; Muratov et  al., 2020) are promising, but complicated in the case of 
ethically controversial R&D outcomes given the long way to go to achieve artificial 
moral agency (e.g., Cervantes et al., 2020).

Explicability

Although researchers define required properties and should be involved in the 
research process (human agency), an understanding of how the AI works and pre-
dictions are derived is essential. That is at the core of intelligibility, the epistemo-
logical dimension of explicability (Floridi et al., 2018). The concepts intelligibility, 



 E. Hermann et al.

1 3

   45  Page 10 of 16

comprehensibility, interpretability, explainability, and transparency are often used 
interchangeably and inconsistently (Barredo Arrieta et al., 2020), and are partly mis-
conceived (Rudin, 2019). In a comprehensive review, Barredo Arrieta et al. (2020) 
identified intelligibility, that is, human understanding of a model’s function with-
out any need for explaining its internal structure or underlying data processing algo-
rithm, as the most appropriate conceptualization.

In the R&D context, the intelligibility principle is multi-faceted. While research-
ers that are directly involved in the AI development process and oversee the R&D 
process should have an in-depth understanding of underlying data and AI mod-
els’ structures and functions, a basic understanding might suffice for other internal 
organizational stakeholders. Otherwise, too complex and incomprehensible expla-
nations and overly complicated decision pathways can impend (Ananny & Craw-
ford, 2018; Rudin, 2019). From an external perspective, the intelligibility principle 
is regularly limited or diluted by proprietary boundaries and intellectual property 
right restrictions in case of commercial product development (e.g., Ananny & Craw-
ford, 2018; Mittelstadt et  al., 2016). However, provision of certain information to 
and intelligibility of external stakeholders can simplify and accelerate external life-
cycle assessments, registration and approval processes (see Fig. 2), and foster col-
laborative actions to pursue sustainability objectives (e.g., open science approaches).

In general, intelligibility is central to AI-powered R&D, because it constitutes a 
proethical condition for enabling or imparing judgments of beneficence, non-malef-
icence, justice, and autonomy (Turilli & Floridi, 2009). Understanding the function-
alities of AI (i.e., intelligibility) can inform evaluations of the other principles by 
comprehending if and how AI benefits (beneficence) or harms (non-maleficence) 
individuals and society in a fair and unbiased way (justice) and by drawing conclu-
sions about whether to delegate decisions to AI systems (autonomy) (Floridi et al., 
2018).

On the other hand, accountability focusses on who is responsible for the way AI 
works, that is, the ethical dimension of explicability (Floridi et al., 2018). It is nar-
rowly related to intelligibility (e.g.,Coeckelbergh, 2020; Lepri et al., 2018; Martin, 
2019; Morley et al., 2020), since judgments about accountability necessitate a cer-
tain understanding of the underlying processes of AI systems and applications (i.e., 
intelligibility) (Lepri et  al., 2018). Accountability can create shared responsibility 
within the organization and responsibility towards external stakeholders, which is 
particularly relevant in ethically salient contexts. It can be backward-looking, that 
is, who is ascribed responsibility when something goes wrong, and forward-looking, 
that is, how can AI systems be designed and used responsibly (Coeckelbergh, 2020). 
Both views matter for the AI-based R&D of ethically controversial products like 
pesticides and prompt that human researchers have to be kept in the loop, oversee 
R&D processes, and anticipate and foresee ethical issues (e.g., adverse effects of 
substances) for the time being.

Taken together, explicability of AI-based R&D is pivotal to meet the global chal-
lenge of sustainable development and develop joint actions, and it accounts for both 
the AI-for-good-perspective (Taddeo & Floridi, 2018) and the collaborative, open-
science and transparency stance in ecological and sustainability research (Bausch 
et al., 2014; Rüegg et al., 2014; Seele, 2016).
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Conclusion

Chemical R&D can be fundamental to solutions that underpin and accelerate sus-
tainable development. Since sustainability initiatives and research always have an 
ethical dimension (e.g., Schneider et al., 2019; Zagonari, 2020), chemical R&D 
that are powered by AI and pursue sustainable products and solutions have to be 
particularly open and explicit about guiding ethical principles and the alignment 
with existing guidelines (Vinuesa et al., 2020). In light of the rapid advancement 
of AI, chemical R&D will contribute to the development of sustainable sub-
stances and products in the future (e.g., biopesticides; Pretty, 2018) by means of 
sustainable and resource-efficient R&D processes. Particularly, self-driving labo-
ratories provide promising opportunities (e.g., Häse et al., 2019; Muratov et al., 
2020), although human researchers have to remain in the loop for the time being, 
particularly, in ethically salient research contexts. Notwithstanding, researchers 
might “soon address challenges that previously were simply considered to be 
prohibitively complex or demanding, such as automatized experimentation or 
synthesis of new materials and molecules on demand” (von Lilienthal & Burke, 
2020, p. 3). AI can be a game changer to address sustainable development and 
climate change (Kaplan & Haenlein, 2020), and through chemical R&D, the fuel 
of AI can be added to the fire of sustainability efforts.

Respective scientific data and knowledge are irreplaceable in a volatile, uncer-
tain, complex, and ambiguous environment, and key conduit to knowledge dis-
covery, integration, and innovation (Rüegg et al., 2014; Wilkinson et al., 2016). 
Hence, insights generated in the course of AI development and refinement to fos-
ter sustainability and related sustainability research findings can be considered a 
social good. Therefore, a more collaborative, open science approach should be 
preferred to restrictive proprietary and institutional boundaries on the one hand. 
On the other hand, scientific data should be managed and potentially made acces-
sible to facilitate seamless re-use and collaboration opportunities to tackle the 
global challenge of sustainable development and climate change.
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