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Abstract
Sustainability constitutes a focal challenge and objective of our time and requires collaborative efforts. As artificial intel-
ligence brings forth substantial opportunities for innovations across industry and social contexts, so it provides innovation 
potential for pursuing sustainability. We argue that (chemical) research and development driven by artificial intelligence can 
substantially contribute to sustainability if it is leveraged in an ethical way. Therefore, we propose that the ethical principle 
explicability combined with (open) research data management systems should accompany artificial intelligence in research 
and development to foster sustainability in an equitable and collaborative way.
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1  Introduction

The increasing computational power and availability of big 
data have substantially empowered artificial intelligence 
(AI) in recent years [10]. Thereby, AI – in its simplest 
sense, defined as “ability of computers or other machines in 
performing activities that require human intelligence” [1] 
– has become a transformative power across a wide range 
of industrial, social, and intellectual contexts [11]. It offers 
vast opportunities for innovations [4, 5], engenders new 
solutions to complex problems [39], and enables to address 
major societal issues, including sustainable development, 
and environmental sustainability [33, 41, 42]. Particularly, 
the data-intensive research and applications benefit from 
AI due to the possibility to process and analyze massive 
amounts of structured and unstructured (big) data [10, 23]. 
Big data can be leveraged to foster innovation and corporate 
social performance as well [6, 16]. Thus, AI and big data 
in concert provide an unprecedented innovation potential. 
Chemical research and development (R&D) have derived 
their insights from data from the very beginning. In light 

of the massive amounts of (experimental) data on chemical 
and physical properties, chemical reactions and structures, 
and biological activities, the development and deployment 
of methods from computer science – termed artificial intel-
ligence already then – in chemistry dates back to the 1960s 
[15]. The long-standing history of computational methods to 
analyze chemical data and their large scale and scope make 
AI particularly suitable for and prevalent in chemical R&D. 
That is reflected by the various areas of application such as 
toxicity prediction [19, 43], drug discovery and design [20, 
36, 37], and life-cycle impact assessment [38], in which AI 
is utilized. We argue that AI in chemical R&D can sub-
stantially contribute to environmental sustainability if AI is 
harnessed in an ethical way.

Sustainability features a central ethical principle and 
objective related to the development and deployment of AI 
[14, 21, 41]. Generally, the increasing pervasiveness and 
impact AI on the individual, economic, and societal level 
have sparked the debate of ethical principles guiding AI 
development and use [8, 13, 14, 17, 21, 29, 31]. The rather 
fragmented AI ethics landscape [21] consists of recurring 
principles, such as transparency, beneficence, and nonma-
leficence that are of high order, normative, and deontological 
nature [17, 29] and thus require translation into business 
practice [29, 31]. Hereinafter, we aim at showing that the 
ethical principle explicability, that is, how AI works (intel-
ligibility) and who is responsible for the way AI works 
(accountability), in combination with an open research data 
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management system should be the focal factors accompany-
ing AI in R&D to promote sustainability.

2 � Explicability

Leveraging AI in (chemical) R&D for sustainability is at 
the core of the beneficence principle of AI ethics. Ethi-
cal frameworks for AI [14] increasingly propagate that AI 
should promote individual, social, and environmental good 
and well being (i.e., beneficence), while preventing any risks 
and harm (i.e., nonmaleficence). Unifying these objectives 
to achieve a “dual advantage” for society [14] is central 
to the AI-for-social-good perspective [8, 13, 14, 39]. The 
other three ethical principles inherent in the AI-for-good-
perspective are autonomy (i.e., self-determination, balanced 
human and AI agency, power to decide), justice (i.e., fair-
ness, avoidance of biases, discrimination, and inequality), 
and explicability (transparency, intelligibility, accountabil-
ity) [14].

We attach particular importance to the explicability prin-
ciple because it features a proethical condition for enabling 
or impairing judgments of beneficence, non-maleficence, 
justice, and autonomy [40]. Understanding the functionali-
ties of AI, that is, intelligibility, informs evaluations of the 
other principles by comprehending if and how AI benefits 
(beneficence) or harms (nonmaleficence) individuals and 
society in a fair and unbiased way (justice) and by deciding 
to delegate decisions to AI systems or not (autonomy) [14]. 
Intelligibility relates to the epistemological dimension of 
explicability [14] and can be defined as human understand-
ing of a model’s function without any need for explaining 
its internal structure or underlying data processing algorithm 
[3]. Although it is often used interchangeably with concepts 
such as comprehensibility, interpretability, explainability, 
and transparency, it is considered as the most appropriate 
conceptualization [3].

In an AI-driven R&D context, intelligibility is multidi-
mensional, since it concerns internal stakeholders within 
and external stakeholders outside the research institution 
or company. There is no one-fits-all approach [20], but the 
audience is decisive [32]. Researchers directly involved in 
the R&D process need an in-depth understanding of AI mod-
els, predictions, outcomes, and underlying data. Although 
full intelligibility of complex AI models might be hard to 
achieve, researchers should know and understand how AI 
systems reach predictions (i.e., transparency), why model 
predictions are acceptable, to what extent they provide new, 
relevant information, and how reliable they are [20]. When 
deciding between simpler and more complex, black-box 
models (i.e., modeling stage), researchers should be able 
to evaluate the respective AI models’ ability to fit data (i.e., 
predictive accuracy). To foster this evaluation, the number of 

model parameters can be reduced (i.e., sparsity), the model 
prediction-making process can be internally simulated and 
reasoned (i.e., simulatability) or partitioned (i.e., modular-
ity). At the post hoc analysis stage, fitted/trained models are 
assessed in terms of what and which relationships they have 
learned from data (i.e., descriptive accuracy), either on the 
single (local) prediction level or on the (global) dataset level. 
Therefore, researchers can look at the importance of certain 
dataset or variable features for model predictions [32].

However, intelligibility cannot be simply transferred from 
internal to external stakeholders due to proprietary bounda-
ries and intellectual property right restrictions in case of 
commercial product development [2, 30]. Narrowly related 
to intelligibility is accountability, the ethical dimension of 
explicability [14], since judgments about accountability 
require a certain understanding of the underlying processes 
of AI systems and applications (i.e., intelligibility) [7, 26, 
28, 31]. Accountability can enable a shared responsibility 
within the organization and towards external stakeholders, 
which is particularly relevant in the sustainability context. 
Accountability has two temporal perspectives. In hindsight, 
responsibility is ascribed when something goes wrong. 
Moreover and even more importantly, AI systems should 
be responsibly designed and deployed in a forward-looking 
way [7], which again requires intelligibility.

In the following, we present a research data management 
system that acts on an explicability and open science maxim 
in order to foster collaborative actions in respect to sustain-
ability objectives.

3 � Open research data management

The research data management system illustrated in Fig. 1 
consists of the AI-driven (chemical) R&D process which is 
fed with relevant multifaceted experimental and secondary 
data. The R&D process ranges from the definition of the 
required properties, the AI-based molecular design and in 
silico characterization of the relevant properties to the AI-
based ranking of the most promising substances and prod-
uct candidates. The latter provides the basis for follow-up 
laboratory research, and the corresponding research findings 
in turn feed the experimental data bases. Thus, a data life 
cycle with substantial epistemic and methodological advan-
tages can emerge. That is, a broader and permanently refined 
data bases allow more comprehensive model training, which 
eventually increases accuracy and validity of AI model pre-
dictions. As AI predictions are as accurate and unbiased as 
the underlying data, consistent, unbiased and curated data 
sets are a prerequisite for AI-driven R&D to take full effect 
[9, 36]. Biases can arise from misleading proxy features [3, 
34], sparse (small) data [9, 34], or even researchers them-
selves due to personal preferences and biases and (chemical) 
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education [3, 36]. A curated data life cycle can counter these 
biases.

Moreover, sophisticated data bases and self-learning AI 
models facilitate to simultaneously investigate a greater 
amount and variety of research questions as compared 
to resource-intensive laboratory research that often uses 
rather inefficient one-parameter-at-a-time methods [36]. 
That acquires particular importance in light of the complex 
mixture of thousands of chemicals the environment and 
humans are exposed to from multiple sources, their inter-
actions, interdependencies, and externalities, and eventu-
ally their related risks and adverse effects for humans and 
the environment [12, 22]. AI-driven R&D processes have 
the potential to define, study, and detect substances, prod-
uct candidates, and their properties that are best-suited for 
areas of applications and surrounding circumstances and 
environmental factors. Thereby, environmental and social 
good (beneficence) is fostered, while adverse environmen-
tal and societal effects are limited (nonmaleficence), that is, 
sustainability is pursued.

Investigating a multitude substances and product candi-
dates further accounts for the justice principle, which should 
also guide environmental sustainability [45]. The justice 
principle entails fairness and the prevention of unwanted/
unfair biases [21, 31], sharing benefits and prosperity and 
fostering solidarity [14]. In the AI-driven R&D context, 
justice implies that the research outcomes (e.g., substances 

or products), but also scientific data should equally benefit 
all stakeholders affected, within and across countries and 
regions. Given that developing countries are at the higher 
risks of adverse effects of climate change [18] and detri-
mental impacts by chemical pollutants [12], justice becomes 
particular important for R&D in the sustainability context. 
Therefore, countries’ environmental and social circum-
stances and idiosyncrasies should be taken into considera-
tion—an objective that is better pursuable and achievable 
by means of AI-driven R&D as compared to conventional 
laboratory research.

Again, intelligible AI methods and effective research 
data management that transparently document final and 
preliminary research findings for follow-up research as well 
as for subsequent life-cycle assessments, registration, and 
approval processes (see Fig. 1) can be cornerstones for equi-
table and collaborative sustainability efforts. Eventually, AI 
methodologies and respective research findings on behalf of 
(global) the environmental sustainability should be shared 
with other researchers and/or made entirely publicly avail-
able. That is, open data/science approaches and policies [27, 
35] should gain center stage. To facilitate global data utiliza-
tion, research data management systems should follow the 
FAIR principles, that is, Findable, Accessible, Interoperable, 
Reusable [44]. Of course, such a transparency and open sci-
ence policy is an ideal that is limited by proprietary and 
professional boundaries [2, 30], (perceived) incentives for 

Fig. 1   Research data management system
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researchers [25], and governance and technical requirements 
[27]. However, explicability of the R&D process and data 
accessibility seem imperative to collaboratively and substan-
tially increase the scale in endeavors to purse sustainability.

4 � Conclusion

AI combined with the big data offer unprecedented innova-
tion potential. Backing (chemical) R&D with both provides 
substantial opportunities to investigate and identify solutions 
that underpin and accelerate sustainability, that is, AI can be 
a game changer [24]. The global inequality of environmental 
pollution and negative side effects require world spanning 
and collaborative sustainability efforts. Therefore, innova-
tive AI-driven R&D processes and the respective research 
findings and knowledge should not be exclusively intelligi-
ble and accessible by a privileged minority or elite. Since 
pursuing sustainability is also a highly ethical objective—
generally [45] and in respect to the development and deploy-
ment of AI [14]—AI-driven R&D for sustainability should 
be guided by explicability and open data/science policies. 
Eventually, not only the environment constitutes a social 
good, but also methods and insights aiming at protecting 
and sustaining it.
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