
Packet Merging-driven Tree Construction in
Wireless Sensor Networks

Aleksandar Ilić
IHP

Frankfurt (Oder), Germany
ilic@ihp-microelectronics.com

Mario Schölzel
IHP

Frankfurt (Oder), Germany
schoelzel@ihp-microelectronics.com

Abstract—Performance of Medium Access Control (MAC)
protocols used in convergecast sensor networks such as TreeMAC
depends on topology of the data gathering tree used for routing
data packets. We show that data rate can be increased if this
topology is optimized during the tree construction phase. The
algorithm that performs tree construction and optimization in
parallel is proposed and then compared with two similar state
of the art protocols.

Index Terms—wireless sensor networks, convergecast, data
collection tree, minimum path tree, bipartite graph maximum
matching

I. INTRODUCTION

One of the most common data collection scenarios in wire-
less sensor networks (WSN) is convergecast. It is collection
of data from many sensors to one node which is called the
sink. Depending on network application, the optimization goal
for the data collection protocol in such networks is either
minimization of the energy consumption, or maximization
of the data rate. Data rate depends the most one the MAC
(Medium Access Control) protocol. In the case of a sensor
network in which traffic is generated by all nodes in the
network and the data generation frequency is high, best
results are obtained when a TDMA (Time Division Multiple
Access) protocol is used. These protocols avoid collisions by
allocating conflicted nodes in separate time slots. There are
many algorithms that can optimize this allocation in terms of
the data rate. However, before a schedule can be calculated,
the network must be discovered, and the gathering tree formed,
by allocating children groups to parent nodes. Apart from
the TDMA schedule, data rate of such a network is also
dependent from the data gathering tree structure. This paper
proposes tree formation algorithm that helps increase the data
rate by allowing the nodes to merge packets and transmit them
together in one time slot.

In many-to-many networks, the optimal TDMA schedule
is the shortest one i.e. the one that allows to all the nodes
to transmit in the lowest number of slots while preventing
conflicted nodes from transmiting at the same time. This
schedule can be calculated using graph coloring algorithms.
Such a schedule will be optimal only when all nodes have
equal load (equal channel demand). However this is not the
case in a convergecast network. In convergecast networks,
nodes which are the closest to the sink have the highest load

(since they need to pass all the data from their children) and
therefore require more time slots than the nodes at higher
levels. The problem of finding the optimal schedule in this
case is shown to be NP-complete by Choi et al. [1]. Most
efficient protocols divide the gathering three into top subtrees
and then schedule the individual subtrees. A top subtree is a
subtree rooted at one of the sink’s children. One such protocol
is TreeMAC, it achieves a schedule length equal to 3N where
N is the number of nodes in the network excluding the sink
[2]. Similar schedule length is reported in [3], while Grandham
et al. [4] reports the same schedule length in general case, with
the possible reduction when top subtrees are independent (can
transmit at the same time without conflicts). This result has a
theoretical value, but it will rarely be applicable in a real world
scenario. Since most of the protocols for TDMA scheduling
in data gathering trees are similar and produce the schedule
of similar length, the proposed optimization is going to be
demonstrated using the example of TreeMAC. It can however
be applied to other similar protocols without modifications.

Packet merging is a technique used to increase network
throughput by merging multiple smaller packets that have the
same destination address [5]. It is possible to merge packets
and still transmit them in one time slot because due to the
technical reasons the time slot size will often be longer than
the transmission time of an average packet. This technique is
especially useful in convergecast networks because most of
the packets have the same destination address, the sink. When
applied to TreeMAC, this technique can reduce the schedule
up to three times, depending on the tree topology. TreeMAC
operates on shortest path trees and uses two-hoop interference
model to schedule parallel transmissions. To allocate slots
proportionally to the workload, it divides time into frames
(one frame equals three time slots). The sink will be active all
the time, while different branches of the tree are allocated in
different time frames. If a branch contains n nodes, in general
case 3n slots are required for scheduling this branch, and the
sink receives one packet in each frame. When packet merging
is used, the sink can receive up to three packets in one frame,
providing that the topology allowed for the three packets to
be merged.

The schedule formation and the topology dependence is
going to be demonstrated using the two data gathering trees
constructed on the same network shown in Fig. 1(a). In the

17. GI/ITG KuVS Fachgespräch Sensornetze 19



figure, circles represent sensor nodes, and their IDs are written
inside the circles. A solid line represents the connection
between a parent and its child, while a dashed line connects
a parent with its possible child. It is assumed that all packets
have length that allows for three packets to be merged and
transmitted together in one time slot. The generated time
schedule for the unoptimized network is shown in Fig. 1(b). In
the first frame TreeMAC schedules nodes 1 and 7 to transmit
in parallel in slot 3 of the frame. During this frame, packets
from nodes 5, 3 and 1 are merged and transmitted to the sink.
Meanwhile, the packet from node 7 is forwarded to node 5 and
will reach the sink in the next frame. The rest of the schedule
is formed in the similar manner. Note that in the third frame,
only the packet from node 6 reaches the sink, because all nodes
on the way to the sink have already transmitted a packet. If
node 6 was assigned as a child to node 4 its packet would
have been merged with those of nodes 2 and 4 and delivered
to the sink together, reducing the schedule from 5 to 4 frames
as shown in the Fig. 1(c). Therefore we deduce that in order
to maximize packet merging, the number of leaf nodes the
with height (distance from the sink) smaller than the maximal
height of the tree needs to be minimized.

unoptimized

topology

optimized

topology

a)

s

1 2

3 4

5 6

7 8

s

1 2

3 4

5 6

7 8

frame 1

7

5 3 1

frame 2

7

5 3 1

frame 3

8

6 3 1

frame 4

8

6 3 1

frame 5

 4 2

b)

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3slot no.

time

c)

frame 1

7

5 3 1

frame 2

7

5 3 1

frame 3

8

6 4 2

frame 4

8

6 4 2

1 2 3 1 2 3 1 2 3 1 2 3slot no.

time

Fig. 1. TreeMAC schedule example

Section II presents an algorithm that performs optimization
according to those constraints. The main difference between
the proposed algorithm and the existing topology control
techniques is in the definition of the optimal topology. The
existing work focuses predominantly on load-balanced shortest
path trees. Thereby was load-balanced defined in different
ways. Hsiao et al. introduces the definitions of a fully load-
balanced tree and a top load-balanced tree [6]. To evaluate the

result, weight of a tree is introduced as the total number of
nodes in the tree. Top load-balanced tree is a tree in which
the weight of each top subtree is equal, while the second one
is the one in which all the branches have the same weight.
Another definition, given by Andreou et al. defines a load-
balanced tree as a tree in which the branching factor of each
node does not excede a certain value [7]. Load-Balanced trees
were so far used to achieve different optimizations, such as
increasing network lifetime [8], reducing number of collisions
[7], or increasing network throughput [9]. Another approach
is network optimization based on link quality [10]. However
this was so far done for protocols that do not utilize parallel
scheduling. Since networks with parallel scheduling are our
focus, and implementation of such methods in these networks
is connected with many difficulties, we have chosen to deal
with link quality issue by simply avoiding usage of bad links
when possible. To achieve this link quality is ascertained in the
tree construction phase, whenever a new node is discovered.
Another similar topic in topology control is minimum energy
routing [11]. Those algorithms are however not applicable here
because they would route the packets between nodes on the
same level, which would introduce the need for a different
parallel scheduling algorithm. In Section III we show that for
the intended application, the proposed method performs better
than the existing ones.

II. THE PROPOSED TREE CONSTRUCTION PROTOCOL

The goal of the algorithm is to construct shortest path
spanning tree while minimizing the number of leaf nodes
on the levels lower than the tree height. Since the tree must
be a shortest path tree, children parent assignment is done
between the nodes on two consecutive levels (level is the set
of nodes at the same distance from the sink). The lower level
is called the parent level, and the upper the children level.
Nodes from the first level are called parents and nodes from
the second children. A node on the parent level that does not
get a child assigned becomes leaf node. Therefore, the optimal
assignment is the one that minimizes the number of nodes on
the parent level without children. Fig. 2 illustrates that this
problem is not trivial even when the number of nodes on the
both levels is the same. In the figure, if node C2 is assigned to
node P1, node P3 will be left without children, even though
it has two possible children Fig. 2 (b).

C1 C2 C3

P1 P2 P3

C1 C2 C3

P1 P2 P3

a) b)

Fig. 2. Network example that demonstrates the assignement problem

A graph comprised of a parent level, a children level and
the possible connections between the two levels is a bipartite
graph (Fig. 2). The assignment problem can be divided into
two steps. The first step is connecting maximum number of

20 17. GI/ITG KuVS Fachgespräch Sensornetze



children parent pairs in such a way that each parent can
have maximum of one child, and each child maximum of one
parent. If there are more children than parent nodes, some of
the children will remain unconnected. Such children will have
the possibility to connect only with parents which already have
a child assigned. Thus, their assignment will have no effect on
the number of nodes without children on the parent level, and
they can be assigned to a parent in the second step using either
random or link-quality based criteria. The first step represents
problem of finding a maximum matching of a bipartite graph.
Therefore in order to calculate children allocation, we first find
the maximum matching using Ford-Fulkerson algorithm. Then
we simply connect the remaining unconnected children to a
possible parent with the best link quality or the smallest ID
in case that link quality was not ascertained.

The complete network discovery and tree construction pro-
tocol is coordinated by the sink. Since parent assignment is
calculated based on two tree levels and connectivity between
them, the discovery and assignment is performed level by
level. Algorithm executed by the sink to preform tree construc-
tion is shown in Fig. 3. In line 2 the sink discovers the first
level. This is done by sending a Query message with the MAC
address set to broadcast. Nodes that are not assigned yet will
respond to this message and be discovered. After a node was
discovered, a link quality estimation can be performed using
an adequate method. If the link quality is not satisfactory the
node will be removed from the list of discovered nodes. In
line 6 nodes on the first level are assigned to the sink. This
is done by sending a message to each of the nodes. Then the
second level is discovered using the function DiscNext() in line
7. This function takes the list of nodes on the last assigned
level as an argument, and instructs every node in this list to
perform discovery of the next level. The function collects the
responses, forms a list of nodes on the next level and their
connectivity with the previous level, and returns this list. In
line 9 the parent assignment for this newly discovered level
is calculated using the previously described algorithm. Nodes
on this level are then assigned to parents and subsequently
asked to perform discovery of the next level (lines 10-12).
This is repeated until no nodes are discovered on a certain
level (while loop starting at line 8). Because in ith step, the
nodes at the height i are discovered and then assigned to a
node on the previous level, it is obvious that the formed tree
will be a shortest path tree.

III. EVALUATION

To evaluate the proposed algorithm, we are going to com-
pare it with the state of the art top-load balancing algorithm
proposed by Incel et al. [12] and the balancing algorithm pro-
posed by Andreou et al. [7], called ETC (Energy Driven Tree
Construction). The first one utilizes search sets to determine
the optimal parent for a child. A search set identifies nodes
on up to two levels above the child that will be left with only
one possible branch to connect in the future if the child is
allocated to a certain parent. A child chooses the parent for
which the sum of its subtree weight plus the search set size

1: procedure CONSTRUCTTREE
2: parentLevel← DiscLevel1()
3: if parentLevel.count = 0 then
4: return
5: end if
6: AssignLevel1(parentLevel)
7: childrenLevel← DiscNext(parentLevel)
8: while childrenLevel.count > 0 do
9: asg ← Assing(parentLevel, childrenLevel)

10: Assign(childrenLevel, asg)
11: parentLevel← childrenLevel
12: childrenLevel← DiscNext(parentLevel)
13: end while
14: end procedure

Fig. 3. Tree construction algorithm

is minimal. ETC algorithm defines maximal branching factor
as h
√
N , where h is the tree height and N is the number of

nodes in the network. If this factor is exceeded at a certain
node, it will ask some of its children to try to find another
parent. This will not always be successful, and therefore the
tree produced is called near-balanced tree.

The comparison is performed on the example network that is
shown in Fig. 4(a). We are going to demonstrate the drawbacks
of the existing methods using this network and show how
the proposed method overcomes them. The more extensive
comparison is going to be presented at the presentation in the
form of simulation results. The data gathering tree produced
by the top load balancing algorithm is shown in Fig. 4(b). We
can see that in this case, no children will be assigned to node
2, even though node 4 was available as its possible child. This
happened because when child 4 was assigned to a parent, both
possible parents, node 1 and node 2, were in branches with
the same weight (equal to one). Second criteria used, search
set, was also the same for both parents. Both search sets in
this case contained only node 7, because this is the only node
that will have to join the same branch as node 4 (node 8 will
be able to choose between subtrees rotted at node 1 and at
node 3). Therefore the tie was broken on the smaller index,
and node 1 became the parent of node 4. We also observe that
for node 5, the algorithm worked as expected. In that case, the
search set for node 1 contains nodes 8 and 9, and for node
3 it contains only node 9. Therefore node 5 was assigned to
node 3, allowing for the nodes 8 and 9 to be shared between
two subtrees in the final step.

The network constructed by the ETC algorithm is shown
in Fig. 4(c). Since the First-Heard-From principle is used to
create the tree and node 1 was the first to perform assignment,
both node 4 and node 5 were assigned to it, leaving node 2
without children. Because branching factor for this network
is β = 3

√
10 = 2.15, node 1 will not try to re-assign any

of its children. Finally, Fig. 3(d) shows the network obtained
using the proposed algorithm. As it can be seen, the maximum
matching for the bipartite graph constructed from levels 1 and

17. GI/ITG KuVS Fachgespräch Sensornetze 21



s

1 2 3

4 5 6

7 9 108

a)

s

1 2 3

5 6

7 9 108

4

b)

s

1 2 3

4 5 6

7 9 108

c)

s

1 2 3

4 5 6

7 9 108

d)

Fig. 4. Comparison of different algortihms (a) the network, (b) top load
balancing, (c) ETC, (d) the proposed algorithm

2 contains three edges. The algorithm has found this matching
and used it to perform child assignment. The constructed
tree is optimal for packet merging and allows scheduling the
network in 4 time frames using TreeMAC. For scheduling
the other two networks, 5 time frames would be required. We
also note that the resulting tree in this case is top load-balanced
since the maximum difference between weights of the subtrees
is equal to one, even though this was not the intention of the
algorithm. This leads to a conclusion that the algorithm could
be modified to construct top load-balanced trees, which is left
as a topic for future work.

IV. CONCLUSION

In this paper, the data gathering tree construction protocol
for creating shortest path trees is proposed. The protocol is
aimed to be used with TreeMAC or similar TDMA MAC
protocols that utilize parallel node scheduling and packet

merging to increase throughput. We show that in these proto-
cols schedule reduction using packet merging is dependent
on the network topology. We then introduce new criterion
for network optimization, the number of leaf nodes. The
tree construction algorithm that constructs a shortest path
tree is then introduced. To optimize the tree topology, the
parent assignment needs to be calculated to qualify the de-
fined criterion. The parent assignment algorithm that finds
the optimal assignment in polynomial time if it exists is
therefore proposed. The proposed algorithm is compared with
two state of the art algorithms. The comparison shows that
in the considered application scenario, the proposed algorithm
performs better.

REFERENCES

[1] H. Choi, J. Wang and E. Hughes, “Scheduling for information gathering
on sensor network,” Wireless Netw., 2007.

[2] W. Song, H. Renjie, B. Shirazi, R. LaHusen, “TreeMAC: Localized
TDMA MAC protocol for real-time high-data-rate sensor networks,”
Pervasive Mob. Comput., vol. 5, nr. 6, 2009.

[3] S. Ergen, P. Varaiya, “TDMA scheduling algorithms for wireless sensor
networks,” Wireless Netw., vol. 16, pp. 985-997, 2010.

[4] S. Gandham, Y. Zhang and Q. Huang, “Distributed time-optimal
scheduling for convergecast in wireless sensor networks,” Computer
Networks, vol. 52, nr. 3, pp. 610-629, 2008.

[5] V. Akila, T. Sheela and G. A. Macriga, “Efficient Packet Scheduling
Technique for Data Merging in Wireless Sensor Networks,” Chinacom,
vol. 14, nr. 4, pp. 35-46, April 2017

[6] P. Hsiao, A. Hwang, H. T. Kung, and D. Vlah, “Load balanced routing
for wireless access networks,” Proc. IEEE Infocom, pp. 986-995, 2001

[7] P. Andreou, A. Pamboris, D. Zeinalipour-Yazti, P.K. Crysanthis and
G. Samaras “ETC: Energy-drive Tree Scheduling in Wireless sensor
networks, Tenth International Conference on Mobile Data Management:
Systems, Services and Middleware, 2009.

[8] J. He, S. Ji, Y. Pan and Y. Li,“Constructing load-balanced data aggrega-
tion trees in probabilistic wireless sensor neworks,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 7, pp. 1681-1690, July 2014.

[9] H. Zhang, F. Österlind, P. Soldati, T. Voigt and M. Johansson,“Rapid
convergecast on comodity hardware,” SECON, 2010.

[10] W.B. Pöttner, H. Seidel, J. Brown, U. Roedig and L. Wolf, “Constructing
schedules for time-critical data delivery in wireless sensor networks,”
ACM Transactions on Sensor Networks (TOSN), vol. 10, no. 44, April
2014.

[11] P. Santi, “Topology control in wireless ad hoc and sensor networks,”
Wiley, 2005.

[12] Ö. D. Incel, A. Ghosh, B. Krishnamachari, and K. Chintalapaudi, “Fast
data collection in tree-based wireless sensor networks,” IEEE Trans.
Mobile Comput., vol. 11, nr. 1 pp. 86-91, January 2012.

22 17. GI/ITG KuVS Fachgespräch Sensornetze


