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Abstract: The resistive switching properties of HfO2 based 1T-1R memristive devices are electrically
modified by adding ultra-thin layers of Al2O3 into the memristive device. Three different types of
memristive stacks are fabricated in the 130 nm CMOS technology of IHP. The switching properties
of the memristive devices are discussed with respect to forming voltages, low resistance state and
high resistance state characteristics and their variabilities. The experimental I–V characteristics of set
and reset operations are evaluated by using the quantum point contact model. The properties of the
conduction filament in the on and off states of the memristive devices are discussed with respect to
the model parameters obtained from the QPC fit.

Keywords: bi-layers; quantum point contact model; memristive device; embedded applications;
variability; conductive filament; CMOS compatibility

1. Introduction

Novel applications, such as edge computing [1], big-data processing [2,3], image
recognition [4] etc., demand efficient computing techniques and advancements in memory
storage technologies [5]. CMOS compatibility, low power consumption, low cost, good
endurance, fast switching, etc., are among the other features which are expected from the
new memory technologies [6]. Besides the fact that the oxide-based memristive devices can
exhibit all the above-mentioned features, it is also possible to monolithically integrate them
with the CMOS logic on the same process nodes [7]. This adds to an advantage of using the
memristive devices for embedded storage applications [8].

The memristive devices fabricated on silicon substrates are mainly used for memory
storage [9], embedded [8] and neuromorphic computing applications [10]. Apart from
silicon substrates, the memristive devices are also realized on polymer substrates for appli-
cations in the field of flexible electronics [11]. Oxides such as TiO2 [12], NiO [13], ZnO [14],
etc., among many others, are used as a physically flexible switching material in memristive
devices. Further, the memristive devices are fabricated on glass substrates, which have
low thermal conductivities, compared to silicon substrates [15]. The glass substrates favor
the diffusion of oxygen vacancies [16]. An improved resisting switching performance in
terms of higher memory window (MW), better endurance characteristics and lower value
of reset voltages are reported in various oxides, such as HfOx [15], SnO2 [16], TaOx [17] and
MoO3 [18]. This work mainly focuses on the memristive devices which are fabricated on
the silicon substrates.

Electronics 2022, 11, 1540. https://doi.org/10.3390/electronics11101540 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101540
https://doi.org/10.3390/electronics11101540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6534-9954
https://orcid.org/0000-0001-7545-9420
https://orcid.org/0000-0001-5133-7816
https://orcid.org/0000-0003-3698-2635
https://orcid.org/0000-0002-3861-0512
https://doi.org/10.3390/electronics11101540
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101540?type=check_update&version=2


Electronics 2022, 11, 1540 2 of 14

Among other memristive device types, the filamentary-based memristive devices have
the advantages of good retention, fast switching and CMOS compatibility [19]. Resistive
switching in the filamentary-based memristive devices is due to the redox reactions taking
place at the switching layer, under the influence of electric fields [20]. Hafnium oxide
(HfO2), acting as a memristive switching layer, is one of the most extensively studied
material in the literature [21,22]. The availability of the deposition processes and its CMOS
compatibility are the main reasons for the wide usage of the material [23]. However,
HfO2 memristive devices integrated in back-end-of-line (BEOL) CMOS technology exhibit
increased intrinsic device variabilities [24]. This challenge of reducing the variability in
HfO2-based memristive devices led to the investigations on further CMOS compatible
materials [25]. Various oxides, such as Al2O3, TiO2, Ta2O5, SiO2, etc., among many others,
have been used in combination with HfO2 layers [26]. The material combinations are used
either as ionic doping or in the form of stacked memristive layers, i.e., bi-layer, tri-layer
and multi-layer memristive devices [27–29].

Due to their diverse potential applications, Al2O3|HfO2 bi-layers have been widely
investigated in the literature [30,31]. The type of process and the precursors used for the
deposition of Al2O3 layers plays a vital role for the performance of the memristive bi-layer
devices [30–33]. Further, the aluminum oxide layer is widely used as a tunnel barrier
in various kinds of memristive devices [34,35]. Various improvements of the resistive
switching properties are reported in terms of uniform switching voltages and reduced
dispersions of the high resistance state (HRS) [31], analog switching properties [33], etc.

The conduction filament (CF) properties in single layer memristive devices are dis-
cussed frequently with respect to the quantum point contact (QPC) model by various
research groups [36–38]. Memristive switching oxides, such as HfO2 [38] and TaOx [39],
are mainly used for the study. However, in the case of memristive bi-layers, in particular,
Al2O3|HfO2 based devices, the resistive switching properties of the devices are discussed
quite often, but the properties of their CF with respect to QPC are very seldomly discussed.
Hence, in this work, the filamentary-based resistive switching properties of memristive
HfO2 devices are altered by adding the Al2O3 layers, which are deposited by using atomic
layer deposition (ALD). Three different memristive layer stacks are compared in terms of
their resistive switching behaviors. Further, the modulation in their conductive filament
properties is analyzed within the frame work of the quantum point contact (QPC) model.
The experimental I-V curves of the memristive devices from the set and reset operations
are fitted using the QPC model for the low-resistance state (LRS) and the high-resistance
state (HRS), respectively. Finally, the CF properties are discussed with respect to the model
parameters obtained by fitting the experimental I–V characteristics to the QPC model.

2. Experimental

The integrated 1T–1R memristor devices are fabricated using the standard 130 nm
CMOS technology of IHP. The CMOS transistor of gate length 130 nm and gate width
150 nm has its drain terminal connected to the bottom electrode (BE) of the memristor
device. This forms a series connection between the memristive module and the CMOS tran-
sistor. Figure 1 shows the EDX with TEM cross section of the integrated 1T-1R memristive
device. The integration of the memristor module into BEOL CMOS technology reduces the
parasitic RC.
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Figure 1. TEM cross-section of an integrated 1T–1R memristor device, fabricated in 130 nm CMOS
technology. The inset micrograph illustrates the memristor module.

The memristor module, which is essentially a metal–insulator–metal (MIM) structure,
is placed between metals 2 and 3 in the AlCu BEOL interconnects as shown in Figure 1.
The BE of the memristor module consists of sputter deposited TiN of 150 nm thickness.
The switching layers are deposited on top of the BE, using a CMOS compatible thermal
ALD process at 300 ◦C. Aluminum oxide (Al2O3) layers are deposited by alternate pulsing
of trimethylaluminum (Al2(CH3)6) as a precursor and water (H2O) as a reactant. Further,
the deposition of HfO2 takes place by the alternate pulsing of hafniumtetrachloride (HfCl4)
as a precursor and water (H2O) as a reactant. In order to avoid gas phase reactions, an
inert gas purge is performed after every pulse, which removes the unreacted precursor and
reactants, and the byproducts of the self-termination reactions from the deposition chamber.
The switching layers are deposited in three different types of stacks, namely, V1, V2 and
V3, as illustrated in Table 1. The V1 variant is the reference sample, which consists of a
single layer HfO2 of 8 nm thickness. The V2 and V3 variants consists of thin Al2O3 layers
of 1 and 2 nm thickness, respectively deposited on top of the TiN BE, in addition to the
HfO2 layer of 8 nm thickness, which is deposited successively without vacuum breakage.
Eventually, V1, V2 and V3 device types comprise total dielectric layer thicknesses of 8, 9
and 10 nm, respectively. The presence of the thin Al2O3 layers is verified by the TEM cross
section with EDX analysis as shown in Figure 2. The top electrode (TE) deposition of 7 nm
thick Ti and 150 nm thick TiN above the dielectric switching layers prepares the MIM stack
for subsequent process steps. The patterning of the MIM stack is one of the crucial steps in
the memristor module fabrication and was realized by standard MIM module fabrication
of a qualified SiGe–BiCMOS technology. The approach consists of an improved fabrication
technique with a spacer and encapsulation process steps. Further details can be found
in [40].
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Table 1. Variants of memristive devices with respective layer thicknesses.

Description V1 (nm) V2 (nm) V3 (nm)

TiN TE 150 150 150
Ti 7 7 7

HfO2 8 8 8
Al2O3 - 1 2
TiN BE 150 150 150
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The TEM and the energy dispersive X-ray (EDX) images were prepared using the Tec-
nai Osiris tool, which was operated at 200 kV. EDX analysis was performed in the scanning
TEM mode using the software Esprit from Brucker. Further, the EDX measurements were
quantified using the Cliff–Lormier method. The TEM lamella of samples were prepared by
using the NVision 40 focused ion beam (FIB) tool from Zeiss. The surface of the samples
was protected by using a carbon layer deposited through ion beam deposition technique.
The prepared lamellas were lifted out using a micromanipulator. X-ray photoelectron
spectroscopy (XPS) depth profile measurements were carried on a PHI5000 Versaprobe II
tool with an Al Kα X-ray source (1486.6 eV) at 89.7 W.

The presence of thin Al2O3 layers was verified by using TEM and EDX analyses as
shown in Figure 2. However, the stoichiometry of them was not determined using the
EDX technique due to the limitation of their depth resolution. Further, the Al2O3 films
were deposited using an industry standard TALD process with negligible nucleation delay
with respect to their growth cycles [41]. The films were grown layer by layer using a
self-terminated surface reaction process; they are reported widely in the literature to be
stoichiometric [42,43]. Additionally, the Al2O3 layers grown on silicon substrates were
analyzed using X-ray photoelectron spectroscopy (XPS) depth profile analysis for their stoi-
chiometry as shown in Figure 3. The ratio of O/Al atomic concentrations was determined
to be ~1.5, indicating the Al2O3 layers as being stoichiometric.

Electrical measurements of 1T-1R V1, V2 and V3 devices were performed under
identical DC conditions at room temperature. The resistive switching performance of
the memristive devices was tested with a Keithley 4200-SCS semiconductor parameter
analyzer connected to a FormFactor PMV200 manual probe station. The characterization of
the memristive devices begins with a crucial and onetime operation step called forming.
During forming, the drain voltage (VD) is double swept from 0 to 4 V while grounding
the source terminal (S) and biasing the gate terminal (G) to 1.5 V. The forming operation is
followed by reset and set operations. The reset operation was performed at a gate bias (VG)
of 2.9 V and, the source voltage (VS) was double swept from 0 to 2 V while grounding the
drain terminal (D). The set operation was performed similar to forming, except that the VD
was double swept from 0 to 2 V while grounding S. Finally, 10 devices of each variant were
programmed by 50 subsequent cycles of set and reset operations.
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3. Quantum Point Contact (QPC) Modelling

The conduction filament (CF) properties of V1, V2 and V3 memristive devices were
analyzed using the QPC model. The reset and set I–V characteristics were used to model
the conduction properties of the CF in HRS and LRS states of the memristive devices,
respectively. The HRS I–V characteristics are modeled as [36]

I =
2e
h

G
GO

(
eV +

1
α

Ln

[
1 + eα(φ−βeV)

1 + eα[φ+(1−β)eV]

])
(1)

where I is the measured current, V is the applied voltage, β is the potential drop at the
cathode and anode interfaces, e is the elementary charge of an electron, h is the plank’s
constant, G/Go is the conductance parameter which is also equal to number of CFs at very
low voltages, ϕ is the potential barrier height, and α is the parameter related to the potential
barrier thickness (TB). Due to the asymmetry of the potential drop at the two ends of the
CF, the β value is estimated to be 1. The presence of a potential barrier disrupting the CF is
assumed in the HRS for all the three different types of devices V1, V2 and V3. A value of
G/Go equal to 1 is assumed. According to Lian et al., in the case of low voltages and high
enough potential barriers, Equation (1) converges as below [37]:

I =
2e
h

Ne(−αφ)

[
V +

αβ

2
V2
]

(2)

where N is the number of CFs at HRS, which is assumed to be 1. The current limiting
transistor is connected in series with the memristor device in a 1T–1R test structure. Consid-
ering the real case scenario of testing the memristive devices in the form of arrays, the read
operation of the HRS takes place in the linear region of the transistor [44]. The resistance
of the transistor at this point is negligible compared to the resistance of the memristive
device [44]. Hence, the resistance of the select transistor is not taken into account for the
HRS simulation using the QPC model.

Due to the metallic-like conductivity of the CF in the LRS of the memristive devices,
the barrier confinement parameter α collapses to zero, resulting in a linear I–V relation. The
resistance of the transistor in this case is comparable to the memristive device and hence
cannot be neglected [45]. The value of R is determined from the simulations and electrical
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characterization of the transistor. Finally, the LRS currents equation within the frame work
of QPC model is illustrated as [38]

I =
NGo

1 + NGoR
V (3)

where Go = 2e2/h = (12.9 kΩ)−1 is the quantum conductance unit, N is the number of CFs
and, and R = 3 kΩ is the series resistance extracted from the transistor output characteristics.

The expression for the width of the potential barrier (TB) in the HRS state of the
memristive device is illustrated as [36]

TB =
hα

2π2

√
2Φ

m∗
(4)

where m* is the effective mass of the electron within the CF.
The radius of constriction (RB) of the CF in the HRS state of the memristive device is

expressed as [36]

RB =
hzo

2π
√

2Φm∗
(5)

where zo is the first zero of the Bessel function Jo [36]. The value of zo is equal to 2.404.

4. Results and Discussion

The mean values of the forming voltages with their dispersions versus the total dielec-
tric thickness of V1, V2 and V3 memristive devices are as shown in Figure 4. Furthermore,
the corresponding I–V characteristics of the forming operations are illustrated in Figure 5.
The forming voltages increase with the addition of the Al2O3 layers in the V2 and V3 de-
vices. According to the literature, the forming voltage of the memristive devices is directly
proportional to the thickness of the dielectric and inversely proportional to the square root
of the dielectric constant

(√
k
)

[46,47]. The effective thicknesses of the memristive layers
in V1, V2 and V3 devices are 8, 9 and 10 nm, respectively. Additionally, the measured
dielectric constants of Al2O3 and HfO2 are ~8.5 and ~22, respectively. The increase in
the effective dielectric thickness with the addition of Al2O3 layers, which also has lower
dielectric constant, plays a major role in the increase in the forming voltages observed
in Figure 4.
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Further, the breakdown voltages of pure Al2O3 layers are investigated in MIM devices
without CMOS transistors as shown in Figure 6a, and their corresponding schematic of
the layer stacks are illustrated in the inset images. Figure 6b illustrates the TEM images
with EDX analysis of single layer Al2O3 (6 nm) MIM devices with and without Ti. The
images are included to verify the thickness of the Al2O3 dielectric layer under study. Due
to the oxygen scavenging properties of Ti, the devices with 7 nm Ti layer exhibit lower
breakdown voltages compared to the devices without the Ti layer. However, the single
layer Al2O3-based MIM devices with and without the Ti layer exhibit higher breakdown
voltages compared to V1, V2 and V3 devices. This clearly demonstrates the higher strength
of Al2O3 layers for breakdown.

The variability in the LRS and HRS currents are analyzed with respect to the DC set
operations. The values of the LRS and HRS currents of V1, V2 and V3 devices are extracted
at a VD value of 0.2 V. The box plots of LRS and HRS currents illustrated in Figures 7 and 8
are determined from 10 devices of each variant type. Figure 7 provides the summary of
LRS currents distribution of all the three memristive device types. The mean values of
the LRS currents increase with the thickness of the Al2O3 layers in the memristive stack.
Furthermore, the addition of the Al2O3 layers reduces the variability of the LRS currents.
The HRS currents extracted from 10 devices of V1, V2 and V3 devices are as shown in
Figure 8. The mean values of the HRS currents increase with the thickness of the Al2O3
layers. The memory window (MW), which is essentially the on/off ratio of the memristive
devices, is determined from the ratio of the LRS current values to the HRS current values.
Both the LRS and HRS current values increase with the addition of the Al2O3 layers. As
illustrated in Table 2, the mean values of the on/off ratios are determined to be, 86, 73,
and 62 for V1, V2, and V3 devices, respectively. The increase in the LRS and HRS currents
are discussed later in the same section, with respect to the QPC modeling. Although the
values of the on/off ratios are reduced in V2 and V3 memristive devices, the variability
in the on and off state currents of the resistive switching operations are also considerably
reduced as shown in Figures 7 and 8. This reduction in variability is one of the basic
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requirements of the memristive devices to utilize them for multi-level operation [48]. The
memristive devices with a capability of multi-level operation are suitable for neuromorphic
computing applications [49]. Although V3 devices exhibited higher forming voltage and
lower memory window compared to V1 and V2 devices, the reduction in their LRS and HRS
current variabilities makes them suitable for multi-level operation. The lower formation
energy of oxygen vacancies in Al2O3 layers compared to HfO2 layers may be responsible
for the reduction in the LRS and HRS current variability [50,51].
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Table 2. The mean values of memory window (MW) of V1, V2 and V3 devices determined from the
respective mean values of LRS and HRS currents.

Description V1 V2 V3

Mean LRS (A) 1.61 × 10−5 2.35 × 10−5 2.63 × 10−5

Mean HRS (A) 1.88 × 10−7 3.2 × 10−7 4.23 × 10−7

MW (Mean LRS/Mean HRS) ~86 ~73 ~62
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Figure 9 illustrates the QPC model fit for the experimental I−V characteristics of the
mean values of the LRS currents from DC set operations of V1, V2 and V3 devices in the VD
range of 0 to 0.5 V. The LRS curves are fitted using Equation 3, and the model parameter N,
which is the number of CFs in the memristive device, is extracted. It can be clearly seen
that the LRS current values increase with the addition of Al2O3 layers. Additionally, the
value of N increases as well with the thickness of the Al2O3 layer as illustrated in Table 3.
The increase in the conduction values and the value of N with the addition of Al2O3 layers
signifies the growth of stronger conduction filaments [52].

Table 3. The fitting parameter N extracted from the QPC model fit for LRS curves.

Description N

V1 1.43
V2 2.33
V3 2.73
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The experimental I–V characteristics of the mean values of the HRS currents from DC
reset operations of V1, V2 and V3 devices in the vs. range of 0 to 0.5 V are fitted using
the QPC model as shown in Figure 10. Equation (2) is used for the fit, and the parameters
α and ϕ are extracted. The values of the extracted model parameters are as illustrated
in Table 4. The corresponding parabolic potential barriers of V1, V2 and V3 devices are
schematically represented as shown in Figure 11. The values of α and ϕ obtained for V1
devices are comparable with the results from Grossi et al. [53]. The potential barrier height
(ϕ) increases with the addition of Al2O3 layers. However, the HRS current levels increase
as well with the addition of Al2O3 layers. During reset, the oxygen vacancies start to move
toward the Ti layer due to which the CF gets partially re-oxidized and the constriction
of the filament takes place near the BE interface [54]. Additionally, the dissolution of the
CF is restricted in the Al2O3 layers due to the lower mobility of the oxygen vacancies
compared to that of HfO2 layers [33]. Hence, the constriction point becomes more localized
with the addition of Al2O3 layers. Further, the claim is supported by the decrease in the
shape parameter (α) and the TB/RB ratio as illustrated in Table 4. The ratios of TB/RB are
determined from Equations (4) and (5). Additionally, the ratios are calculated instead of
their individual values in order to omit the complex estimations and calculations related to
the effective mass of the electron in the CF of the bi-layer memristive devices.

Table 4. The fitting parameters α and ϕ extracted from the QPC model fit for HRS curves and the
determined ratios of TB/RB.

Description α ϕ TB/RB

V1 17.61 0.29 1.35
V2 8.37 0.53 1.17
V3 6.75 0.6 1.07
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Figure 11. Schematic representation of the energy band diagram of the conductive filament potential
barrier in (a) V1, (b) V2 and (c) V3 memristive devices. E is the energy of electrons, x is the direction
of current flow in the filament, EF is the Fermi level and ϕ is the potential barrier height with respect
to the Fermi level.

5. Conclusions

The resistive switching behavior of hafnium oxide (HfO2) based single-layer memris-
tive devices are compared with Al2O3|HfO2 based bi-layer memristive devices. With the
addition of Al2O3 layers, the LRS as well as HRS currents are increased, and the resistive
on/off ratio is slightly decreased from 86 to 62, but finally the variabilities of read-out
currents are strongly reduced. Furthermore, the CF properties are analyzed and discussed
with respect to QPC modeling. The experimental I–V curves fit accurately with the QPC
model. The addition of thin Al2O3 layers result in increasing the diameter of the conduc-
tion filaments in LRS and increasing the potential barrier height in HRS combined with
reduced barrier thickness, resulting in localized constriction points of filaments. These
results provide a promising platform for multi-level switching with high performance.
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