
Bits, Flips and RISCs
Nicolas Gerlin∗§, Endri Kaja∗§, Fabian Vargas†, Li Lu†, Anselm Breitenreiter†,

Junchao Chen†, Markus Ulbricht†, Maribel Gomez‡, Ares Tahiraga∗,
Sebastian Prebeck∗∥, Eyck Jentzsch‡, Miloš Krstić†¶, Wolfgang Ecker∗∥

∗Infineon Technologies AG, Germany – †IHP - Leibniz Institute for High Performance Microelectronics, Germany
‡MINRES Technologies, Germany – §Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Germany

¶University of Potsdam, Germany – ∥Technische Universität München, Germany

Abstract—Electronic systems can be submitted to hostile
environments leading to bit-flips or stuck-at faults and, ultimately,
a system malfunction or failure. In safety-critical applications,
the risks of such events should be managed to prevent injuries or
material damage. This paper provides a comprehensive overview
of the challenges associated with designing and verifying safe
and reliable systems, as well as the potential of the RISC-V
architecture in addressing these challenges.

We present several state-of-the-art safety and reliability
verification techniques in the design phase. These include a highly-
automated verification flow, an automated fault injection and
analysis tool, and an AI-based fault verification flow. Furthermore,
we discuss core hardening and fault mitigation strategies at the
design level. We focus on automated SoC hardening using model-
driven development and resilient processing based on sensing and
prediction for space and avionic applications.

By combining these techniques with the inherent flexibility of
the RISC-V architecture, designers can develop tailored solutions
that balance cost, performance, and fault tolerance to meet the
requirements of various safety-critical applications in different
safety domains, such as avionics, automotive, and space. The
insights and methodologies presented in this paper contribute to
the ongoing efforts to improve the dependability of computing
systems in safety-critical environments.

Index Terms—GNN, Hardening, Reliability, RISC-V, Safety,
Verification

I. INTRODUCTION

In recent years, the design of electronic systems has become
increasingly complex, with systems becoming more integrated
and incorporating advanced functionality. This complexity,
coupled with the continuous technology scaling, has made
it more challenging to ensure the safety and reliability of these
systems. On the other hand, in high-reliability environments
such as aerospace and automotive, where human lives can be at
stake, more and more electronic systems are incorporated, and
ensuring enough safety and reliability becomes thus critical. A
single fault in this field can have severe consequences, such as
a crash leading to injuries or death, highlighting the need for a
comprehensive approach to designing, verifying, and validating
such systems.

This paper presents possible solutions to the challenges
associated with achieving safety and reliability in electronic
systems, including approaches to verification and design for
safety purposes. Section II discusses the relevant fault sources to
consider for safety-critical systems and how they are modeled.
Understanding these concepts is crucial to the development of

fault-tolerant and resilient systems. In Section III, we introduce
the RISC-V architecture, explaining why it is rapidly expanding
and the challenges it faces regarding safety-critical applications.

In Section IV, we delve into some verification flows tailored
to ensure a high-reliability level for SoCs:

1) We take as a use-case a RISC-V soft IP core family
complying with ISO 26262: The Good Core (TGC). We
show how its architecture can be customized and how
the development flow has been mostly automated. The
details about verification and how we can ensure high
confidence in our released products are also discussed.

2) We explore efficient methods to run fault injection cam-
paigns to assess fault coverage. Our approach is based on
model-driven development and a mixed RTL/Gate-Level
granularity design to inject faults into. We are evaluating
our solution using both simulation and emulation.

3) We investigate using Machine Learning to predict fault
simulation results and examine how it speeds up the
fault susceptibility analysis process. We show how Graph
Neural Networks (GNNs) and Graph Convolutional Net-
works (GCNs) can be used instead of traditional Neural
Networks (NNs). We are also discussing using analytical
methods and approaches based on combinatorial search
problems.

In Section V, we dig into design hardening and fault
mitigation techniques:

1) Despite being widely used, IP-reuse techniques applied
to SoC hardening still require a significant amount of
manual effort to be implemented, limiting the reuse of
a design from one project to the other. We propose an
automated approach for SoC hardening based on model-
driven development to overcome this issue. We show
how our flow automates resilience against data corruption
based on safety requirements.

2) We see that static hardening techniques need more
flexibility as they can lead to unnecessary overhead.
We use TETRISC (TETra core system based on RISC-
V) SoC as a use-case to overcome this issue. It is a
highly reliable and resilient quad-core system based on
the open-source PULPissimo architecture, which uses
dynamic reliability adjustment and multiple fault source
monitoring. We discuss the implementation of our system,
the enablement of on-board reliability state monitoring,979-8-3503-3277-3/23/$31.00 ©2023 IEEE

2023 26th International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)

140

140

20
23

 2
6t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

D
es

ig
n

an
d

D
ia

gn
os

tic
s o

f E
le

ct
ro

ni
c

C
irc

ui
ts

 a
nd

 S
ys

te
m

s (
D

D
EC

S)
 |

97
9-

8-
35

03
-3

27
7-

3/
23

/$
31

.0
0

©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

D
EC

S5
78

82
.2

02
3.

10
13

93
31

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

the dynamic real-time system reconfiguration based on
user requirements and multiple on-chip monitors, and
the trade-off optimization between reliability, power
consumption, and performance.

Finally, in Section VI, we conclude the paper with a summary
of our findings and emphasize the importance of continued
research for the development of highly resilient safety-critical
systems.

II. FAULT SOURCES AND MODELS

Resiliency has become an increasingly relevant feature
in recent years, as it addresses issues of reliability, safety,
and security in a dynamic and predictive way. Resilient
systems have various levels of reliability and are used in
countless application domains, such as automotive (airbag, ABS
braking, fuel injection, and electronic stability control systems),
defense and aerospace (on-board aircraft navigation systems,
attitude, telemetry and telecommand systems in satellites),
energy (nuclear power plants), medicine (life-support devices in
medical equipment), and transport (air and train traffic control
systems).

The use of resilient systems is essential in high-availability,
mission-critical, or even life-critical applications, typically op-
erating in harsh environments such as those involving radiation,
electromagnetic interference (EMI), and high temperatures. To
achieve this, designers addressing resiliency, and in particular
fault tolerance, must ensure that these systems will continue
to operate correctly even in the event of failures due to one or
more of its components. These faults can produce permanent
system failure, such as those induced by aging and total
ionizing dose (TID) radiation [1] [2], as well as transient
faults, such as single-event upset (SEU) in flip-flops (FFs) and
RAM memories, single-event transients (SET) in logic, EMI in
power and data lines [3], and crosstalk among tracks carrying
high-speed signals.

It is worth noting that in real, harsh environments, systems
are exposed simultaneously to various sources of faults [4]. For
instance, electronics for automotive applications must operate
correctly while exposed to high electromagnetic fields and
temperatures [5]. Additionally, the electronics in a Low-Earth
Orbit (LEO) satellite passing through the Van Allen Belts
(whose passage typically takes a few minutes) are exposed to
ionizing radiation (SEU) and EMI simultaneously. Therefore,
these systems are prone to transient faults induced by EMI
(due to conducted noise on DC input power supply and
data lines), aging (due to degradation mechanisms such as
Bias Temperature Instability – BTI), and bit-flips in memory
elements (due to the presence of high-energy particles).

Technology scaling has made electronics accessible and
affordable for almost everyone on the globe, and has advanced
integrated circuit (IC) and electronics performance since the
sixties. However, this scaling has introduced new and major
reliability challenges to the semiconductor industry. Although
the deleterious effects of total ionizing dose (TID) on ICs are
gradually diminishing as technology scales down (mainly due to
the reduction of the sensitive volumes represented by thin gate

oxide and thick insulation layers), it is well recognized that scal-
ing has dramatically increased the occurrence of single-event
upsets (SEUs) and single-event transients (SETs), especially in
fin field-effect transistor (FinFET)-based technology nodes. In
FFs and SRAM cells, this is due to the reduction of sensitive
volumes used to store information in memory elements and
the reduction of circuit internal nodes’ capacitance. Moreover,
the continuous reduction of power supply renders memory
elements even more sensitive to SEUs, SETs, and especially
electromagnetic interference (EMI) [6]. Crosstalk in ICs is a
type of EMI between two signals propagating adjacently. As
EMI and crosstalk in an IC increase, the system experiences an
increase in glitches, errors, and timing problems. In short, as
technology scales down, the error rate consistently increases.

The literature is populated with a large variety of solutions,
based on hardware, time, and information redundancies, and
on-chip sensing for error prediction/detection and recovery, to
guarantee the fault tolerance (FT) systems’ reliability. These
solutions have side-effects that must be taken into account.
Extensive reliability and safety verification is required already
in the design process to define such mitigation techniques. The
cornerstone of such verification is a fault injection process that
evaluates the system’s behavior in the presence of faults. Such
a process can be implemented in different ways, as will be
elaborated in the next sections. Nevertheless, the baseline for
any efficient fault injection campaign is the definition of the
fault model to be used. The assumed fault model depends on
the reliability challenges relevant to the target application, as
commented in this section. The usual fault models relevant
to reliability issues are stuck-at models (namely, stuck-at-0,
stuck-at-1, stuck-open, stuck-on, and bridging faults) that can
be extended to evaluate other reliability challenges. As a result,
delay fault models (that can be used for investigating aging
and total dose effects) and transient fault models (to emulate
SEU, SET, EMI effects, and laser security attacks) may also
be considered.

In the following sections, we will analyze in detail the
modern safety and reliability verification methods important
for RISC-V-based systems and summarize the potential fault
mitigation methods.

III. INTRODUCTION TO RISC-V

The advantages of open-source developments are well
reflected in RISC-V, which is an open-source instruction set
architecture (ISA) developed at the University of California,
Berkeley in 2010. It is a modern, modular, and extensible ISA
designed to be easily integrated in devices ranging from small
embedded systems to large-scale servers and high-performance
systems. RISC-V International (https://riscv.org/) is the global
non-profit organisation behind the open standard RISC-V ISA,
related specifications and stakeholder community. It has no
commercial interest in products or services and makes possible
for organisations around the world to collaborate and seek for
innovation.

RISC-V is based on the Reduced Instruction Set Computer
(RISC) philosophy, which advocates for a simpler instruction

141

141

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

set that allows a more efficient processing. It is a load-store
architecture, which means that all data processing is performed
on registers rather than directly on memory. It has a small base
integer ISA, usable by itself, and optional standard extensions
and specialized variants, to support general-purpose software
development. Along with the ratified extensions for integer
and floating-point arithmetic and vectored, packed-SIMD and
atomic operations, there is a growing pool of specialised
extension for cryptography, bit manipulation and many more.
There are also activities to standardize elements like external
interrupt controllers, tracing capabilities, cache support, etc.

As an open standard, RISC-V can be used by anyone
without paying licensing fees, which has made it popular
among academics studying the architecture and developing
new tools and applications based on it. The amount of industry
professionals interested in developing custom processors or
hardware accelerators is also growing. The ability of RISC-V to
be extended by custom instructions is also adding to its growing
popularity. Currently there are several key players, SiFive,
Western Digital, Andes Technologies, NXP Semiconductors,
Esperanto Technologies and Google to name a few, involved in
the development, implementation, and promotion of the RISC-V
architecture. Being an open standard enables sharing technical
know-how and rapid creation with great design freedom. It
also leverages contributions to strategic future developments.

The rapid growth and increasing adoption of RISC-V is
echoed by the wide range of available applications and the
rapidly growing RISC-V ecosystem, with more companies and
organizations getting involved in the development and promo-
tion of the architecture. This includes not only semiconductor
companies, but also software companies, system integrators,
and others. There are ongoing advancements in both RISC-
V hardware and software. New RISC-V-based processors are
being developed and released, and new software tools and
development environments being created as well.

The current state of RISC-V is very promising, which
poses as well the challenges the architecture is facing. RISC-
V is still a relatively young architecture compared to more
established architectures like ARM and x86. As such, there
may be some concerns around the maturity and stability of the
architecture, particularly for mission-critical or safety-critical
applications. As an open standard, there are lots of different
implementations and variations of the architecture. This leads to
fragmentation and compatibility issues, particularly if different
implementations don’t adhere to the same standards.

Although the RISC-V ecosystem is rapidly growing, it is
still not as mature or robust as some of the more established
architectures. This can make it more challenging for developers
and companies to find the hardware and software tools they
need to work with RISC-V. This relates to another challenge
with RISC-V, which is the lack of mature toolchain support.
While there are many tools available for RISC-V development,
they may not be as feature-rich or well-supported as the tools
available for more established architectures. While RISC-V is
an open standard, there are still some patents associated with
the architecture. This can create some uncertainty around the

use and adoption of RISC-V, particularly for companies that
are concerned about potential patent infringement issues.

Overall, while RISC-V is a promising architecture with
many potential benefits, there are still some challenges that
need to be addressed in order to fully realize its potential. These
challenges may require ongoing investment and development
in the RISC-V ecosystem to ensure that it remains a viable
and competitive option for developers and companies.

IV. SAFETY/RELIABILITY VERIFICATION OF RISC-V IN
THE DESIGN PHASE

During design process of resilient systems it is extremely
important to verify the compliance of design to certain design
rules (for example for safety), as well as to investigate suscepti-
bility of the systems to faults (by using respective fault models).
In the following chapter we will present different reliability
and safety verification approaches of RISC-V processor based
systems.

A. Robust verification flow

Designing a RISC-V core with safety and security aspects
in mind requires not only well thought processes, from
architectural exploration to IP release, but also taking care
of aspects like the tools and technical environments involved.
Fundamental are also the safety and security awareness and
the competence of the team.

At MINRES we develop our RISC-V soft IP core family
(TGC - The Good Core) according to the standard ISO 26262
Road vehicles – Functional safety, which covers the whole life
cycle of electronic systems used in the automotive area. TGC
is developed as safety element out of context (SEooC), since
it could be integrated in a variety of embedded and internet of
things (IoT) or edge applications. For a SEooC, 4 of the 12
parts of the standard are particularly relevant:

• Part 2: Management of functional safety [7]
• Part 5: Product development at the hardware level Road

vehicles [8]
• Part 8: Supporting processes [9]
• Part 9: Automotive safety integrity level (ASIL)-oriented

and safety-oriented analyses [10].
The safety project management, according to part 2 of

the ISO 26262 standard, deals with the consecution of the
project goals in the given time frame, which also guarantees
the information flow to all involved people, the adequacy of
the processes and the quality of the results. The resulting
TGC life cycle processes are depicted in Fig. 1. It covers
the planning, architecture, development and release phases,
explicitly including the safety related aspects of each of them.

The planning phase starts with the collection of the functional
requirements, which consistently and uniquely identify the TGC
characteristics and the safety requirements, which indicate
the safety features and goals that TGC must fulfill. Both,
together with the project schedule, are gathered and managed
in OpenProject, which is a project management tool and ticket
system in a secure environment.

142

142

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. TGC development life cycle

During the architecture phase, the generator-based TGC
customization is analysed. This includes scaling and extending
TGC to the appropriate number of pipeline stages and features,
like bus interfaces, physical memory protection or support of
caches, for the target application. Experimenting with custom
instructions is also done in this phase. The firmware can be
tried at this early development stage on the TGC instruction
set simulator (ISS), which allows assessing the impact on
performance of the customization decisions. The TGC ISS is
part of the TGC virtual prototype (VP), which is delivered
with a software development kit (SDK) containing a compiler
that supports the custom instructions.

The highly automated development and verification flow
used in the development phase is shown in Fig. 2. It follows
the guidelines of part 5 and part 8 of the ISO 26262 standard.
It is based on CoreDSL [11], a domain specific language
to formally specify an instruction set architecture (ISA), as
well as custom instructions. According on the TGC specific
CoreDSL description, the ISS/VP and RTL artifacts as well
as the tailored development tools are generated. Longnail and
SCAIE-V [12], tools developed by the Technical University
of Darmstadt, integrate the custom instructions into the TGC
RTL.

Fig. 2. TGC generation flow

The cross-level functional verification scheme, shown in
Fig. 3, is a tightly-coupled co-simulation environment that
consists of a SystemC UVM testbench with TLM connectors
and a generator that produces a continuous stream of random
instructions, which are fed into the TGC RTL and the TGC ISS,
allowing result comparison between them. The random stream
of instructions is reshaped on-the-fly to ensure the coverage of

the whole parameter space and the execution of instruction in
all possible sequences.

Functional coverage is realized by the coverage monitor,
which collects the information gathered by the coverage points
of the instructions. The coverage metrics analysis reveals
whether all parameters of all instructions have been sufficiently
exercised, including corner-cases, all hardware hazards have
been correctly detected and avoided and all possible exceptions
were raised.

Fig. 3. TGC SystemC UVM testbench

The high level of confidence on the core functional correct-
ness and coverage is obtained by running a daily regression on
several TGC configurations covering all available features. The
regression includes the random co-simulation with millions of
instructions, various benchmarks:

• Dhrystone: a synthetic benchmank adequate for small
cores, allowing comparison between different ISAs or the
efficiency of different compilers on the same core. The
performance is reported in seconds

• Coremark: which measures the core performance using
basic data structures and algorithms, but avoiding pre-
computed results. The compiler must be specified in order
to obtain the final score

• Embench: a modern C benchmark with realistic workload
that reports either the code speed, based on the cycle
counter and the clock frequency, or the code area

and 3 RISC-V test suits:
• The RISC-V tests from UCB [13], which exercise the

standard extensions
• The RISC-V design verification tests [14], a series of

random tests tailored for each specific core
• The RISC-V architectural tests [15], for validating each

core against the RISC-V ISA standard
In addition to the these verification steps, security vulner-

abilities are detected by means of formal security analysis.
According to part 9 of the ISO 26262 standard, safety analysis
are carried out. They include the analysis of dependent failures,

143

143

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

the safety analyses and the confirmation measures. In particular,
the FMEDA considers the hardware failures and diagnostic
measures defined and gives an idea of the Automotive Safety
Integrity Level (ASIL) that can be achieved by the SEooC. The
achievement of the target ASIL must be nevertheless confirmed
at the system level with the SEooC integrated.

Once TGC fulfills all requirements and they are verified and
validated by means of a FPGA co-simulation board, the release
phase begins. The automated processes of this phase gather
together the TGC IP, all artifacts that belong to the software
development kit (SDK), the product technical documentation
and the safety work products into a customer release.

Operational integrity, state-of-the-art processes and compe-
tence assurance are the key elements of the TGC safety flow.
They are ensured by the usage of highly automated state-of-
the-art processes and quality management practices. End-to-
end traceability, result reproducibility and transparency of all
technical processes, including documentation, is ensured by
version control.

B. Automated fault injection framework

A system is defined by Avizienis et al. [16] as an ”entity
that interacts with other entities, i.e., other systems, including
hardware, software, humans, and the physical world with its
natural phenomena.” The ever-growing size and complexity
of the systems has made them more prone to failures due
to different occurring faults. Thus, various techniques are
utilized to achieve design robustness through fault tolerance
and fault avoidance. Nevertheless, it is required to prove that
the system is ”safe enough” through verification techniques.
ISO26262, the international standard of automotive safety,
strongly recommends fault injection to verify the dependability
of safety-critical designs. Considering the complexity of the
systems nowadays, fault injection process is cumbersome and
prone to errors, therefore fast, automated, and reliable fault
injection techniques are required.

Traditionally, fault injection is applied on the Gate-level
(GL) representation of a design because of highly accurate
fault models. However, GL fault injection is very slow and
consequently different fault injection techniques are applied
on a higher abstraction level such as Register-Transfer Level
(RTL). RTL fault injection speeds up the process but lacks the
accuracy of GL fault models. To tackle this drawback, the RTL
generation flow [17] at Infineon enables generating the designs
on a mixed RTL/GL granularity as presented by Kaja et al. [18].
Parts of the design which are subject of fault injection are kept
on a GL granularity while the rest of the design is represented
on the RTL granularity. As an example, let us assume a 5-stage
pipelined processor and the Fetch-stage is the subject of fault
injection. The Fetch-stage is described using the data from the
netlist (on a GL) and the rest of the design is described using
the original RTL. Saboteurs, i.e. small pieces of hardware that
are able to inject a fault when activated through a control signal,
are added to every signal of the design on the GL granularity
by transforming the model of the design [18]. As a result, the
designs are generated on a mixed RTL/GL representations with

fault injection capabilities. This feature enables and facilitates
a tool-agnostic fault analysis framework. Experimental results
have shown a speedup of up to 8.4 times of mixed RTL/GL
simulation compared to a full GL simulation.

Name:string[0..1]

MetaFI

rootNode

TopModule: string[0..1]

DUT : string[1]

RunTime: int[1]

TimingFaultActive: bool[1]

Fault_Controller

InjectionTime: int[1]

ReleaseTime: int[1]

ExhaustiveFI
ID: int[1]

FaultModel: Model[1]

SignalName: string[1]

DFI

InjectionTime: int[1]

ReleaseTime: int[1]

Time

FaultsPerSim: int[1]

SimTotal: int[1]

SEU: bool[1]

TimingFault: bool[1]

SFI

Name: string[1]

Fault_List

Control: string[1]

Sequential: bool[1]

Signal

FaultModel:Model[1]

Fault_Model

Name: string[1]

Fault_Analyzer

Name: string[1]

Group

StrobeSignal: string[1]

Active: bool[1]

StrobeType:

StrobeType[1]

Strobe

Sa0: Model

Sa1: Model

BF: Model

TimingFault: Model

<<enum>>

Model

Checker: StrobeType

Functional: StrobeType

<<enum>>

StrobeType

1..*

1..*

1..*

1..*

1 1 1

0..1
0..1 *

*

: composition

Underlined attributes have

external reference (e.g. Value[1])

Controller

Fault_Analyzer

Fault_List

Fig. 4. Fault injection metamodel definition [19]

The core of the developed framework is the metamodel
shown in Fig. 4. A metamodel represents the structure of a
model and the relation of its elements while the model itself
represents the system at a certain abstraction level [20]. The
fault injection metamodel is composed of three main parts:
Fault List, Fault Analyzer and Controller.

• Fault List component displays the model-based fault list.
It describes the saboteur control line (Control), whether
a signal is an input of a sequential cell (Sequential) and
all possible fault models that could be injected to the
particular signal (Fault Model).

• Fault Analyzer represents the data that should be collected
and analyzed while performing simulation/emulation.
Group describes modules and submodules of the design
which will be analyzed Strobe depicts the outputs and
registers of the aforementioned modules. Furthermore,
outputs are classified as functional strobes (output of the
functional part of the design) or checker strobes (output
of the safety mechanism(s)).

• Controller determines the total runtime, module to perform
the fault injection as well as the particular fault injection
campaign such as Statistical Fault Injection (SFI), Ex-
haustive Fault Injection (EFI) and Direct Fault Injection
(DFI). SFI is utilized to provide statistical data for fault
propagation and the user simply has to specify the total

144

144

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

amount of faults to inject and whether a particular fault
model is utilized. EFI injects all stuck-at fault models and
the user has to specify the injection and release time. In
some cases it is required to inject faults only at particular
locations and with specified fault models, and therefore,
DFI can be utilized.

The integral features described above are deployed on a fault
simulation and a fault emulation framework. A SystemVer-
ilog/C++ generated testbench enables a simulator-independent
fault simulation by setting the appropriate saboteur control
lines according to the data from the model. Furthermore,
a novel FPGA-based fault emulation framework [21] has
been developed while deriving from the same metamodel.
The applicability of the frameworks was demonstrated by
performing fault injection on different modules of various
RISC-V alternatives. The injected faults are classified as silent,
failure or latent. Experimental results have shown that the
emulation framework speeds up the fault injection up to 47.57
times compared to the simulation-based fault injection.

C. AI-based fault verification flow

Important part of the fault verification flow is the fault
susceptibility analysis. Fault susceptibility analysis deals with
the prediction of the likeliness of certain errors in digital circuits.
The error propagation can be inhibited by electrical, temporal
and logic masking effects. Electrical and temporal masking is
addressed on different levels of abstraction, and logic masking
is in focus in such analysis. Logic masking depends on the
logic state of the circuit as well as on the state of the primary
inputs.

In order to analyze the error propagation in sequential
circuits, even the sequence of internal states and input values
has to be considered for as long as the circuit is in an erroneous
state. The number of all possible sequences is huge for a
complex chip, so that an accurate analysis is impossible with
nowadays methods.

Three classes of methods could be used for fault suscep-
tibility analysis: methods based on fault-injection simulation,
analytical methods and methods based on solving combinatorial
search problems.

Simulation-based fault injection is a commonly used reli-
ability analysis technique. It enables us to recognize critical
components in a circuit in the early design stage. As a result, we
could choose to conduct fault mitigation techniques to improve
the system reliability. However, simulation-based fault injection
approach is very time-consuming, and it is even impossible
to exhaustively inject all possible faults for a complex circuit
running a complicated workload. On the other hand, it is
possible to use machine learning (ML) to address this problem.
The process could be accelerated if we can use machine
learning to predict fault simulation results rather than conduct
simulations on a target circuit.

In some studies, machine learning has been used for
reliability analysis. In [22], Da Rosa et al. use ML algorithms
to determine the relationship between fault injection outcomes
and the characteristics of applications and platforms. T. Lange

et al. use ML in [23] to predict functional de-rating (FDR),
which refers to the visible soft errors at the application level. K.
Khalil et al. [24] employ ML to anticipate hardware defects at
the transistor level, such as aging, short-circuiting, etc. However,
one could use ML instead of fault simulation to predict critical
flip-flops in a circuit.

Most researchers applying ML for reliability analysis use
models like Linear Regression, Support Vector Regression
(SVR), and Neural Networks (NNs). These models are unable
to learn the connection information between components in
circuits and can only learn from the characteristics of individual
components. Structural characteristics of circuits are crucial to
learn the patterns of fault propagation. Graph Neural Networks
(GNNs) are ML models designed to learn graphs. They use the
features of a node’s neighbors in the graph as well as itself to
calculate the feature of the node during training. And therefore,
they can learn from connection information.

We propose a method to use GNNs to identify critical flip-
flops in circuits and validate the approach on the RISCY core
in Pulpissimo platform [25]. To utilize GNNs, the circuit
should be first converted into a graph. Each flip-flop should be
taken as a node in the graph and Breadth-First Search (BFS)
used to search the shortest path between the flip-flops to create
edges. The distance between two flip-flops could be used as the
number of combinational gates on the shortest path between
them. To reduce the noise in the graph model, the edges are
removed from the graph, when the distance of two flip-flops
is larger than the specified maximum distance.

GCN (Graph Convolutional Network) [26] are selected as
GNN model. GCN is one of the most popular GNNs, and
many advanced GNNs are developed based on it. With GCN,
the prediction accuracy we achieved on the dataset based on
RISCY core is 91.1%, about 3% higher than the accuracy
achieved on NNs [27].

Analytical methods arithmetically propagate signal and fault
probabilities along the circuit netlist. Although being less
computational intense than fault-injection simulation, they
require significant computational effort, so that they are only
applicable to circuits of limited complexity.

Third class of methods are based on the solution of
combinatorial search problems. The most popular example
of this kind might be the problem of propositional satisfiability
(SAT). It answers the question of satisfiability for a given
boolean expression. Elaborate algorithms exist for the solution
of this problem. However, to transform the analysis of the
error propagation probability to a SAT problem, extensive
preprocessing is required. For this reason, Answer Set Pro-
gramming could be used, which results from the combination
of Stable Model Semantics and Logic Programming. It can
solve the same problems as a SAT solver, but it comes with
a more powerful input language. This enables us to reduce
preprocessing to a minimum and to efficiently narrow down
the analysis to more special error scenarios.

However, an accurate analysis of the error propagation in
a circuit still requires the enumeration of all possibilities
which fails due to computational limitations. As an extension,

145

145

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

Approximate Model Counting to deal with this limitation [28].
The basic idea is, to split the solutions in equal parts, count
the solutions in just one part and multiply by the number of
parts. By this approach, we are able to reduce computational
effort by orders of magnitudes.

V. CORE HARDENING AND FAULT MITIGATION BY DESIGN

A wide range of mechanisms on a wide range of design
and implementation levels can be considered to implement
cores more robust, i.e less sensitive to bit flips, for instance.
They may rank from physical design, e.g. larger Flip-Flops,
to the implementation level as the use of dual chips in
the system or software re-execution to name only some.
This section describes two approaches on the design level,
namely, automated hardening SoC hardening and resilient
processing based on sensing and prediction for Space/Avionic
applications.

A. Automated SoC hardening

Safety standards (ISO 26262, DO-178, ECSS, . . .) define
methodologies to classify each task depending on its criticality.
The nature and amount of safety mechanisms to be implemented
vary according to the standard and the criticality level. While
IP-reuse attempts to reduce the development effort, selecting
the ideal trade-off between cost and reliability still requires
a thorough design analysis, making it challenging to follow
state-of-the-art techniques.

A noticeable point about the process of adding safety
mechanisms is that while it is hardening a given design, it
is not affecting its functionality. Model-driven development
and design-centric modeling of digital hardware have already
shown a significant productivity increase [29]. Fig. 5 shows
the different steps of this generation flow. From formalized
specifications and a design template written in Python repre-
senting all possible configurations, we generate a Model of
Design (MoD). This MoD describes the micro-architecture
of the design while being independent of the RTL language
used. From there, we generate a Model of View (MoV) that is
the base for producing RTL files. We enhance this approach
by adding functional safety features within the MoD layer;
safety constraints are applied to the original MoD to obtain a
transformed one with various safety mechanisms against data
corruption.

Our model-driven transformation approach takes a base MoD
as input and transforms its flip-flops according to the desired
safety constraints to generate a hardened MoD. The safety
constraints consist of safety groups representing the modules
in which the flip-flops we want to harden are included, as shown
in Fig. 6. Each safety group has one safety method associated.
As of now, we support Dual Modular Redundancy (DMR),
Triple Modular Redundancy (TMR), Error Detection Code
(EDC) with Parity (PAR), and Error Correction Code (ECC)
with Hamming code for Single Error Correction (SEC) and
extended Hamming code for additional Double Error Detection
(SECDED). The targeted flip-flops are then defined in the
critical component group. If only specific bitfields of a flip-flop

Fig. 5. RTL generation flow [20]

need to be protected, they can be specified within the bit range
class.

Once the safety constraints have been set as desired, a Python
script will locate the so-called safety groups in the base MoD
and the selected flip-flops and bitfields inside them. For each
of the latter, we create a wrapper containing a copy of it with
the additional safety mechanism. The original flip-flop is then
deleted and replaced by the corresponding wrapper. After every
safety constraint has been treated, the output is a hardened
MoD that can be integrated into our generation flow to generate
RTL code.

Fig. 6. Safety transformation metamodel

Additionally to the above-mentioned available features, each
protected flip-flop can be provided with a Built-In Self-Test
(BIST) against stuck-at faults. A central control unit is created
to manage these tests and is automatically connected to the
wrappers. Similarly, an error detection signal is automatically
propagated from the wrappers to a central alarm unit.

Our approach reduces the manual effort to protect a design, as

146

146

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

the only requirement is to select which part we want to harden
and how. Noticeably, we do not need to modify the original
design; it can therefore be reused in different applications. The
cost of the safety mechanisms is also easy to assess, as the
original design does not include any of them.

Besides the flexibility offered by our solution, the total time
spent from writing the safety constraints to the final RTL code
is in the range of 5-10 minutes for a 5-stage RISC-V core.
The RTL generation can be parallelized so that this time can
be reduced to 1-5min to specify each safety constraint and
about 5 minutes to generate all hardened MoDs and RTL
codes. Many implementations can therefore be tested for fault
coverage and cost, increasing the chances of finding the best
trade-off. Another advantage is that the original design can
be functionally verified before transformation, hence having a
shared verification process between several applications. We
are leveraging this by using formal verification tools to perform
equivalence checking between the hardened designs and the
original one, making the whole verification process faster and
independent of the mechanisms used.

B. Resilient processing based on sensing and prediction

With the scaling of CMOS technology into the deep
nanometer range and the aggressive reduction of supply voltage,
the design of Integrated Circuits (ICs) for safety- and mission-
critical applications in fields such as aviation, space, and
automotive, is encountering an increasing number of reliability
challenges related to faults. Among the various sources of
faults, radiation-induced effects, aging, and temperature are
particularly significant during the operational use. Failure to
address these effects can result in degraded performance, data
corruption, and even catastrophic failures. However, conven-
tional methods for system protection often involve a series
of static hardening techniques that may lead to unnecessary
overhead and lack the flexibility to adapt to dynamic working
conditions. Therefore, the integration of flexible mitigation
measures and robust system status monitoring is essential
for enhancing the reliability of ICs in complex operating
environments. As we have already mentioned, RISC-V ISA
has raised significant attention on the academic and industry
side in the last years. One of the promising application field
is in the reliability critical domains, such as avionic, space etc.
The open question is how to achieve resilient but still adaptive
operation of such processing system.

A highly reliable resilient multiprocessing system, named
TETRISC (TETra Core System based on RISC-V) SoC, has
been proposed to address the dynamic reliability adjustment
of the system in harsh environments, while simultaneously
monitoring multiple fault sources. The TETRISC SoC is a
quad-core multiprocessing platform that utilizes the open-
source PULPissimo [25] single-core architecture. The block
diagram of the implemented SoC is shown in Figure 7,
where the green and orange blocks are newly implemented
or upgraded components and the remaining gray blocks are
from the original PULPissimo platform. The proposed design
has four primary objectives: (1) to implement a RISC-V

Fig. 7. Block diagram of the proposed TETRISC SoC

based resilient multiprocessing system, (2) to enable on-board
reliability state monitoring, (3) to dynamically reconfigure the
system utilizing different operating modes in real-time based
on multiple on-chip monitors and user requirements, and (4) to
achieve optimized switching between different operating modes
enabling trade-off between reliability, power consumption and
performance. The proposed design as a whole contains two
main resilient modules: an on-chip detection system composed
of multiple monitors, and a HighRel Framework Controller
(HFC) designed to adjust the operating mode. These subsystems
will be thoroughly elaborated in the following paragraphs.

The on-chip fault detection system includes three existing
monitor designs: the Single Event Upset (SEU) monitor [30],
aging monitor, and temperature monitor. The SEU monitor is
an SRAM-based on-board radiation monitor that can detect
and correct radiation-induced transient bit upsets or permanent
faults at a negligible cost. Its main objective is to enable
real-time detection of on-board radiation threats and forecast
future radiation conditions. This feature is crucial in space
applications and other contexts where radiation levels may
fluctuate significantly. The proposed monitor [30] utilizes an
Error Detection and Correction (EDAC) method, a scrubbing
module, and a dedicated detection process to identify all upsets
and distinguish the type of faults that occurs in each SRAM
word. The SEU monitor system is integrated into the memory
interface controller and arbitration tree of the Tightly Coupled
Memory Interconnect (TCMI) (as shown in Figure7), which
can take control of the access of mem banks. Each memory
word comprises 40 bits, with 32 bits used for data storage and
the remaining 8 bits for the corresponding EDAC parity bit. To
prevent access hazards during the detection of SRAM faults,
the TCMI has been designed with a specific control mechanism
that can enable or disable memory block access. In addition,
the SEU detection process can be periodically triggered by
the SoC or directly manipulated by the user through control
registers. Furthermore, as discussed in reference [31], this
monitor can also be used to forecast future radiation conditions
by utilizing collected historical error rate data and running

147

147

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

a customized program from a pre-trained machine learning
model.

The aging monitor is designed to detect variations in aging
of the target module, thereby preventing degradation and aging
imbalance. The implemented aging monitor utilizes standard
library cells to create a simple and flexible design that can be
integrated with the target module. It works by detecting the
increase in transistor input and output delays that occurs due
to aging degradation. Furthermore, this monitor can generate
an ”aging code” that reflects the degradation of the module’s
performance over time. Each core in the system has its own
aging monitor, which is integrated into the HFC platform.
Therefore, the system can easily acquire the aging information
of cores and take countermeasures, such as clock-gating, if one
or more cores are deemed too old. Furthermore, temperature
can also have a significant impact on ICs, including effects on
system performance, leakage current, and material degradation.
Therefore, it is essential to monitor the on-board temperature.
An on-chip analog temperature monitor has been integrated
into the design, with an Analog-to-Digital Converter (ADC)
implemented for real-time data processing and analysis.

The primary function of the HFC is to regulate the input
and output of the four cores, thereby enabling a diverse set of
operational modes based on core-level N-Module Redundancy
(NMR) and clock-gating techniques. Under normal conditions,
the four cores can independently execute different programs.
However, in high-reliability situations, the HFC can facilitate
parallel execution of the same program by two, three, or all
four cores, thereby enabling varying levels of fault tolerance in
the system. The main component in the HFC is a binary matrix-
based programmable NMR majority voter for multiprocessors
[32], where each processing core could be selected whether
it takes part in voting. Moreover, this voter can provide
the status of inputs and can change from 2MR to 4MR
systems with any combination of active processors, which
is an NMR on-demand system. Additionally, as the primary
control component of the SoC, it internally integrates various
control registers, which provides users with the convenience
of controlling operating modes and obtaining real-time system
status information. Moreover, the design includes a custom-
designed shadow register for the cores, allowing for rapid
switching and synchronization between different modes and
core tasks. This approach enables synchronization of tasks
between different cores during NMR modes to be achieved in
just two clock cycles.

The TETRISC SoC chip is fabricated using IHP 130 nm
technology and utilizes a standard cell library for four RISC-V
cores, with a rad-hard cell library employed for the remainder of
the design. The chip area is 43.56 mm2, with 39.17% allocated
to four 8192 x 40-bit shared L2 SRAM blocks that can also
serve as sensing elements for radiation monitoring. The chip
has been recently fabricated and it is currently under test.

VI. CONCLUSION

This paper has provided a comprehensive overview of the
challenges and state-of-the-art techniques in designing safe and

reliable computing systems for safety-critical applications. We
have explored the various fault sources and models that impact
system reliability and the potential of the RISC-V architecture
in addressing these challenges.

Several safety verification methodologies have been pre-
sented. We first looked into the TGC development life-
cycle, showing how we use an Instruction Set Simulator
(ISS) to customize its architecture and how CoreDSL, our
domain-specific language, enabled the automation of the ISA
and custom instructions modeling. Using a SystemC UVM
testbench with a random stream of instructions, we validated
our design by comparing the results from the RTL with the
ISS ones. We assess functional correctness and fault coverage
with daily regression tests, benchmarks, RISC-V test suits,
and safety analysis. The final release of an IP includes the
TGC itself with SDK artifacts, technical documentation, and
safety work products. Overall, the TGC safety flow relies on
highly automated processes, quality management practices,
and version control to ensure operational integrity, traceability,
and transparency. Later, we investigated an efficient fault
injection technique based on model-driven development and
mixed RTL/Gate-Level granularity. Our metamodel is built
with three main parts: a fault list, a fault analyzer, and a fault
controller. We tested our framework on both simulation and
emulation systems, showing significant speedup compared to
traditional approaches. The emulation framework proved to
be 47.57 times faster than the simulation one, opening new
possibilities for safety verification. Then, we explored using
GCN models to predict fault simulation results and speed
up the fault susceptibility analysis process. We showed that
GNNs learn from connection information to identify critical
FFs, and our method outperforms the traditional NNs, with a
prediction accuracy of 91.1% on the RISCY core dataset. We
also discussed using analytical methods and approaches based
on combinatorial search problems such as SAT solvers and
Answer Set Programming (ASP). We used Approximate Model
Counting to overcome computational limitations in analyzing
error propagation.

Furthermore, core hardening and fault mitigation techniques
at the design level have been discussed. We first proposed
an automated SoC hardening flow based on model-driven
development. Our method demonstrated higher flexibility than
the standard IP-reuse approach by clearly separating the design
functionality and its safety requirements. This approach fosters
the reuse of designs from one project to another. Also, it eases
verification: the original design can be functionally verified,
and the hardened designs only need to be proved equivalent
to the original one with formal verification tools without any
change required. The hardened design now only needs to be
tested for fault coverage. Lastly, we showed with the TETRISC
use-case that the integration of flexible mitigation measures
and robust system status monitoring helps to overcome
unnecessary overhead created by standard static hardening
techniques. Our system is suitable for harsh environments
and incorporates dynamic reliability adjustment and multiple
fault source monitoring. We discussed the implementation

148

148

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

of our system, the enablement of on-board reliability state
monitoring, the dynamic real-time system reconfiguration based
on user requirements and multiple on-chip monitors, and the
trade-off optimization between reliability, power consumption,
and performance. The on-chip detection system, including
multiple monitors, and the HighRel Framework Controller
(HFC), switching operating modes, work together to monitor
faults and make necessary adjustments to maintain system
reliability.

The advances in verification and design hardening method-
ologies presented in this paper demonstrate the potential for
improving the development of resilient systems used in safety-
critical domains, especially with RISC-V-based systems. By
combining these techniques with the inherent flexibility of the
RISC-V architecture, designers can develop tailored solutions
that balance cost, performance, and fault tolerance to meet
the requirements of various applications in avionics, automo-
tive, and space. As technology continues to evolve, further
advancements will be crucial in ensuring the dependability of
computing systems. In this regard, our future work includes
scaling ASP-based verification to entire processing systems
and investigating the use of formal verification methods for
fault injection techniques. Furthermore, we will develop our
TETRISC platform with a focus on performance, AI engine,
and verification in radiation environments, and we will couple
our metamodel-based transformation flow with a RISC-V CPU
to be used as a fault handler.

VII. ACKNOWLEDGEMENTS

Part of the work has been performed in the project Archi-
tectECA2030 under grant agreement No 877539. The project
is co-funded by grants from Germany, Netherlands, Czech
Republic, Austria, Norway, France and Electronic Component
Systems for European Leadership Joint Undertaking (ECSEL
JU). Part of the work described herein is also funded by the
German Federal Ministry of Education and Research (BMBF)
as part of the research project Scale4Edge (16ME0122K).

REFERENCES

[1] B. Halak, Ageing of Integrated Circuits: Causes, Effects and Mitigation
Techniques, 1st ed. Springer Publishing Company, Incorporated, 2019.

[2] J. Srour et al., “Radiation effects on microelectronics in space,” Proceed-
ings of the IEEE, vol. 76, no. 11, pp. 1443–1469, 1988.

[3] M. Ramdani et al., “The Electromagnetic Compatibility of Integrated
Circuits-Past, Present, and Future,” IEEE Transactions on Electromagnetic
Compatibility, vol. 51, no. 1, pp. 78–100, Feb. 2009. [Online]. Available:
https://hal.science/hal-02523680

[4] R. Goerl et al., “Combined ionizing radiation & electromagnetic
interference test procedure to achieve reliable integrated circuits,”
Microelectronics Reliability, vol. 100-101, p. 113341, 2019, 30th
European Symposium on Reliability of Electron Devices, Failure
Physics and Analysis. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0026271419305098

[5] J. Benfica et al., “Conducted EMI susceptibility analysis of a COTS
processor as function of aging,” Microelectronics Reliability, vol. 114, p.
113884, 2020, 31st European Symposium on Reliability of Electron
Devices, Failure Physics and Analysis, ESREF 2020. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0026271420305667

[6] ——, “Analysis of SRAM-based FPGA SEU sensitivity to combined
EMI and TID-imprinted effects,” IEEE Transactions on Nuclear Science,
vol. 63, no. 2, pp. 1294–1300, 2016.

[7] “ISO 26262-2:2018 Road vehicles — Functional safety — Part 2: Man-
agement of functional safety,” https://www.iso.org/standard/68384.html.

[8] “ISO 26262-5:2018 Road vehicles — Functional safety — Part 5: Product
development at the hardware level,” https://www.iso.org/standard/68387.
html.

[9] “ISO 26262-8:2018 Road vehicles — Functional safety — Part 8:
Supporting processes,” https://www.iso.org/standard/68390.html.

[10] “ISO 26262-9:2018 Road vehicles — Functional safety — Part 9:
Automotive safety integrity level (ASIL)-oriented and safety-oriented
analyses,” https://www.iso.org/standard/68391.html.

[11] “CoreDSL 2.0 - Xtext project to parse CoreDSL files,” https://www.
minres.com/work/coredsl/.

[12] “SCAIE-V: an open-source SCAlable interface for ISA extensions for
RISC-V processors,” https://dl.acm.org/doi/10.1145/3489517.3530432.

[13] “Unit tests for RISC-V processors,” https://github.com/riscv-software-src/
riscv-tests.

[14] “RISCV-DV SV/UVM based open-source instruction generator,” https:
//github.com/chipsalliance/riscv-dv.

[15] “RISC-V Architecture Test SIG,” https://github.com/riscv-non-isa/
riscv-arch-test.

[16] A. Avizienis et al., “Basic concepts and taxonomy of dependable
and secure computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[17] J. Schreiner et al., “Design centric modeling of digital hardware,” in 2016
IEEE International High Level Design Validation and Test Workshop
(HLDVT), 2016, pp. 46–52.

[18] E. K. et al., “Towards fault simulation at mixed register-transfer/gate-
level models,” in IEEE International Symposium on DFT in VLSI and
Nanotechnology Systems, 2021, pp. 1–6.

[19] E. Kaja et al., “MetaFS: Model-driven Fault Simulation Framework,” in
2022 IEEE International Symposium on Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2022, pp. 1–4.

[20] W. Ecker et al., “Introducing model-of-things (mot) and model-of-design
(mod) for simpler and more efficient hardware generators,” in 2016
IFIP/IEEE International Conference on VLSI-SoC, Sept 2016, pp. 1–6.

[21] E. Kaja et al., “Fast and Accurate Model-Driven FPGA-based System-
Level Fault Emulation,” in 2022 IFIP/IEEE 30th International Conference
on Very Large Scale Integration (VLSI-SoC), 2022, pp. 1–6.

[22] F. R. da Rosa et al., “Using machine learning techniques to evaluate
multicore soft error reliability,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 66, no. 6, pp. 2151–2164, 2019.

[23] T. Lange et al., “Machine learning clustering techniques for selective
mitigation of critical design features,” in 2020 IEEE 26th International
Symposium on On-Line Testing and Robust System Design (IOLTS), 2020,
pp. 1–7.

[24] K. Khalil et al., “Machine learning-based approach for hardware faults
prediction,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 67, no. 11, pp. 3880–3892, 2020.

[25] P. D. Schiavone et al., “Quentin: an Ultra-Low-Power PULPissimo SoC
in 22nm FDX,” in 2018 IEEE SOI-3D-Subthreshold Microelectronics
Technology Unified Conference (S3S), 2018, pp. 1–3.

[26] T. N. Kipf et al., “Semi-supervised classification with graph convolutional
networks,” 2016. [Online]. Available: https://arxiv.org/abs/1609.02907

[27] L. Lu et al., “A methodology for identifying critical sequential circuits
with graph convolutional networks,” in 2022 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), 2022, pp. 20–25.

[28] A. Breitenreiter et al., “Fast error propagation probability estimates by
answer set programming and approximate model counting,” IEEE Access,
vol. 10, pp. 51 814–51 825, 2022.

[29] J. Schreiner et al., “Design centric modeling of digital hardware,” in 2016
IEEE International High Level Design Validation and Test Workshop
(HLDVT), 2016, pp. 46–52.

[30] J. Chen et al., “Design of SRAM-Based Low-Cost SEU Monitor for Self-
Adaptive Multiprocessing Systems,” in 2019 22nd Euromicro Conference
on Digital System Design (DSD), 2019, pp. 514–521.

[31] ——, “Solar Particle Event and Single Event Upset Prediction from
SRAM-Based Monitor and Supervised Machine Learning,” IEEE Trans-
actions on Emerging Topics in Computing, vol. 10, no. 2, pp. 564–580,
2022.

[32] A. Simevski et al., “Scalable design of a programmable NMR voter with
inputs’ state descriptor and self-checking capability,” in 2012 NASA/ESA
Conference on Adaptive Hardware and Systems (AHS), 2012, pp. 182–
189.

149

149

Authorized licensed use limited to: IHP - Leibniz-Institut für innovative Mikroelektronik. Downloaded on June 19,2023 at 09:46:44 UTC from IEEE Xplore. Restrictions apply.

