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a b s t r a c t

Machine Learning (ML) and Artificial Intelligence (AI) depend on data sources to train, improve, and
make predictions through their algorithms. With the digital revolution and current paradigms like the
Internet of Things, this information is turning from static data to continuous data streams. However,
most of the ML/AI frameworks used nowadays are not fully prepared for this revolution. In this paper,
we propose Kafka-ML, a novel and open-source framework that enables the management of ML/AI
pipelines through data streams. Kafka-ML provides an accessible and user-friendly Web user interface
where users can easily define ML models, to then train, evaluate, and deploy them for inferences. Kafka-
ML itself and the components it deploys are fully managed through containerization technologies,
which ensure their portability, easy distribution, and other features such as fault-tolerance and high
availability. Finally, a novel approach has been introduced to manage and reuse data streams, which
may eliminate the need for data storage or file systems.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

In this digital era, information is continuously acquired and
rocessed everywhere, from many sources and for many pur-
oses and sectors. In this sense, Machine Learning (ML) and Arti-
icial Intelligence (AI) [1] are playing a decisive role in converting
aw information into useful predictions and recommendations
o improve fields such as business operations and the overall
ife of citizens. For instance, companies like Facebook [2] process
illions of photos every day to detect inappropriate contents.
his creates a continuous data stream for ML/AI algorithms and
ystems to face.
More recently, with the rise of the Internet of Things (IoT) [3],

ew sources of data have been enabled in the Internet era, with a
orecast of 500 billion connected devices by 2030 [4]. Paradigms
uch as Industry 4.0, connected cars, and smart cities have be-
ome a possibility and, more importantly, they have contributed
o the digitization of services in the physical world. As a result,
he data stream has been increasing continuously, and forecasts
redict a huge expansion for the upcoming years.
Traditionally, most of the ML/AI frameworks, which are behind

he design and development of ML/AI algorithms, have been
esigned to work not with data streams, but with persistent

∗ Corresponding author.
E-mail address: cmf@lcc.uma.es (C. Martín).
ttps://doi.org/10.1016/j.future.2021.07.037
167-739X/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a
datasets and static data. Even nowadays, popular Python frame-
works [5] such as PyTorch, Theano, and TensorFlow provide,
at the most, only partial support for data stream systems like
Apache Kafka [6], the most popular data stream system. This does
not merely include training of ML models, but also the rest of the
steps that may be part of an ML/AI pipeline, such as ML model
comparison and inference for production environments. The im-
portance of ML model management in real-world and large-scale
ML/AI pipelines has been addressed in the literature [7,8]. Current
systems focus mainly on model definition and training, while
other steps of ML/AI pipelines – such as model sharing, data
management, and life cycle management – are largely ignored [9].
And these, especially the ML code, are only a tiny fraction of
the real-world ML/AI applications [10]. Building an ML model
for enterprise and real-world applications is an iterative process.
ML developers and data scientists may evaluate hundreds of ML
models before identifying one that meets acceptance criteria.
Therefore, designing and building robust processes that facilitate
this procedure would accelerate the release of ML/AI applications.
In the era of Deep Learning [11], large ML models and complex
patterns, this process is even more necessary since features are
less human-based and more learned in an automatic manner. In
the ML/AI pipeline, the management of the data life cycle [12]
also plays an essential role to ensure the success of ML/applica-
tions, since the accuracy of an ML model is deeply tied to the data
that is trained on. Although there are open-source solutions for
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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managing ML/AI pipelines such as Kubeflow [13] and NVIDIA DIG-
ITS [14], and enterprise products such as Amazon SageMaker [15],
Algorithmia [16], and Valohai [17], in general, they are not yet
ready to work with data streams (or directly) and do not provide
adequate management of data stream flows in ML/AI applications.

Furthermore, we aim at making ML and AI open and accessible
or everyone. In this sense, AutoML initiatives such as Google
loud AutoML [18] have contributed to high-quality models and
olutions that developers with limited experience can adopt to
eet multiple business needs. However, these initiatives have not
et been properly integrated with data stream pipelines. Another
eans to pave the way of users into ML and AI is to provide
missing ecosystem where they can share trained models and
etrics (e.g., loss and accuracy) that can also be used to evaluate
ifferent models and configurations.
Finally, ML/AI solutions usually need requirements that are

ifficult to be accomplished in personal computers, and devel-
pers tend to adopt shared infrastructures to deploy their ap-
lications. Moreover, high availability, load balancing, and fault
olerance may be required in ML/AI mission-critical applications
nd should be provided in a transparent way to users. In this con-
ext, state-of-the-art containerization and container orchestration
latforms can be exploited to distribute the load of a system and
ts components, in addition to providing fault tolerance and high
vailability in production systems.
Let us suppose that a company requires the continuous de-

elopment of ML/AI models with the ingestion of heterogeneous
nd dynamic data stream sources for its business logic (e.g., from
he IoT). In this case, the company could face the following
hallenges:

1. How can current ML/AI frameworks and their pipelines be
integrated with continuous data streams?

2. How can an accessible and collaborative tool be achieved
to evaluate and compare ML/AI model metrics and results?

3. How can data streams be reused and combined in ML/AI
tasks?

4. How can a solution be applied to portable and high avail-
ability architectures for production deployments?

To cope with the aforementioned challenges, Kafka-ML,1 a
ovel and open-source framework for the management of ML/AI
ipelines through data streams, is presented here. The main in-
ovation of this work is to reduce the gap between data streams
nd current ML/AI frameworks, providing an open-source frame-
ork to harmonize their full integration. Kafka-ML currently sup-
orts TensorFlow as ML framework to integrate data streams and
L/AI. However, our goal is to extend the support for other ML/AI

rameworks in the near future. Kafka-ML offers an accessible and
ser-friendly Web user interface (following an approach similar
o AutoML initiatives [19]) to manage ML/AI pipelines for both
xperts and non-experts on ML/AI. It enables users to train, com-
are and infer their ML algorithms by simply writing some lines
f code. Moreover, this framework makes use of a novel approach
o manage data streams, which can be reused as many times as
hey are configured, leading to eliminate the need for any data
torage or file system for datasets in Kafka-ML.
Therefore, the main contributions of this paper are:

1. Presentation of Kafka-ML, a novel, open-source, accessible,
and user-friendly framework to manage ML/AI pipelines
with AutoML features through data streams.

2. Adoption of container technologies which enable portabil-
ity, fault tolerance, and high availability in Kafka-ML.

1 https://github.com/ertis-research/kafka-ml.
16
3. A novel approach to manage data streams for ML/AI
pipelines with no need for data storage or file systems.

The rest of the paper is organized as follows: Section 2
presents a background study on Kafka-ML and related work is
discussed in Section 3. In Section 4, the Kafka-ML architecture
and its components are presented. Then, in Section 5, the ML/AI
pipeline of Kafka-ML is introduced through an example. An eval-
uation of Kafka-ML is performed in Section 6. A discussion of how
Kafka-ML has addressed the research challenges is presented in
Section 7. Lastly, our conclusions and future work are presented
in Section 8.

2. Background

2.1. Apache Kafka

Apache Kafka is a distributed messaging system (publish/sub-
scribe) that can dispatch and consume large amounts of data at
low latency. Traditional message queues can support high rates
of message consumption by adding multiple consumers per topic,
but only one consumer will receive each message at a time. Like
message queues, publish/subscribe systems transmit information
from producers to consumers. Nevertheless, in contrast to mes-
sage queues, publish/subscribe systems allowmultiple consumers
to receive each message in a topic. Nowadays in the era of big
data, data stream goes to multiple systems such as batch and
stream processing, while necessitating a low latency. In order to
satisfy both requirements, Apache Kafka provides the following
features:

• Multi-customer distribution. As a publish/subscribe system,
Apache Kafka enables the connection of multiple clients and
customers to messages. Moreover, thanks to its integration
with a wide range of solutions, such as Apache Hadoop,
Apache Storm, TensorFlow, etc., this feature is highly prac-
tical.
• High rate of message dispatching. This is achieved by a

conjunction of functionalities: (1) message set abstractions:
messages are grouped together amortizing the overhead of
the network round trip rather than sending a single message
at a time; (2) binary message format: data chunks can be
transferred without modifications; and (3) zero-copy opti-
mizations to avoid many copies of the pagecache. However,
one of its most notable features is the Kafka consumer
group, which enables the distribution of messages in a clus-
ter of customers managed by Apache Kafka, like message
queues.

Topics are the stream of messages in Kafka, wherein producers
can publish messages and consumers can subscribe to receive
them. When a message is sent by a producer to Kafka, as opposed
to many distributed queue frameworks, Kafka stores it in disk
with a configurable retention policy, enabling later data retriev-
ing by components. This is popularly known as the distributed
log [20], which enables consumers to go through the log when
required. In some cases, like ML training in Kafka-ML, this feature
is suitable since all data are processed at once. Whether a failure
occurs during this process, the customer can restart without
losing any data or having to store them in a file system.

Load balancing and fault tolerance are also performed by parti-
tions of the topics, where each topic can be divided into multiple
partitions and each partition can have multiple replicas. Partitions
allow the log to be divided into smaller units and to provide load
balancing, while topic replicas enable fault tolerance. An Apache
Kafka cluster consists in a peer-to-peer network of Brokers that
share partitions and replicas. When having a consumer group,

https://github.com/ertis-research/kafka-ml
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Fig. 1. Virtualization vs containerization.

artitions can be associated to customers enabling high dispatch-
ng data rates. Apache Kafka also incorporates different policies
uch as ‘‘at most one’’, ‘‘at least once’’, and ‘‘exactly one’’, which
nable customized Quality of Service (QoS) policies for message
ispatching.
Its popularity, its large number of implementations and inte-

rations with many cloud computing systems, as well as its great
cceptance in the community, have transformed Apache Kafka
nto the standard approach to interconnecting systems, ingesting
ata, and dispatching information.
In this work, Apache Kafka is used as a distributed messaging

ystem to distribute received data streams (e.g., from the IoT) to
he Kafka-ML framework for further processing in ML/AI pipelines
e.g., training and inference tasks). Its distributed features enable
he Kafka-ML framework to scale up as required depending on
he data stream consumption and production. Moreover, its guar-
nties regarding fault tolerance allow Kafka-ML to have a proper
nd reliable control of the data streams received.

.2. Containerization and container orchestration platforms

Lightweight virtualization technologies such as containers
ave enabled a way of scaling and reallocating components, ser-
ices, and applications. According to Pahl [21], containerization is
‘a technology to virtualize applications in a lightweight way that
as resulted in a significant uptake in cloud applications man-
gement’’. Due to their lightweight nature, it is possible to install
ontainers in a huge range of systems, including IoT devices, as
emonstrated by our portable Fog infrastructure with Raspberry
is [22]. Compared to traditional virtualization approaches, con-
ainers are similar to virtual machines, except they do not require
hypervisor to work with, as they only need a container runtime.
nother important distinction is that containers are decoupled
rom the underlying infrastructure, so they are easily portable
cross clouds and Operating System (OS) distributions. Fig. 1
larifies differences between virtualization and containerization.
When talking about containerization, it is always mandatory

o mention Docker. Docker [23] is an open-source project that
utomatizes the application deployment inside containers. Its
untime, the Docker Engine, is the standard container runtime in
he industry and enables its execution on multiple architectures
ARM, AMD64, x86). Moreover, Docker Engine allows container-
zed applications to specify what they need and how they will
un, reducing dependency and installing problems for developers
nd deployment teams.
A cluster of machines running containers is usually managed

hrough orchestration systems (like Docker Swarm or Kuber-
etes). These systems allow fault tolerance and high availabil-
ty by scaling vertically (in federation mode) and horizontally.
17
Kubernetes [24] is an open-source platform for managing con-
tainerized workloads and services in a cluster of nodes or servers,
easing both automation and declarative configuration. Kuber-
netes enables continuous monitoring of containers (e.g., Docker)
and their replicas to ensure that they continuously match the
status defined for them, in addition to allowing other features
for production environments such as high availability and load
balancing.

In this work, all the components comprising the Kafka-ML
framework and its dependencies, such as Apache Kafka, are con-
tainerized through Docker containers, offering a lightweight and
portable solution to be distributed in container platforms. Kuber-
netes has been adopted to harmonize the deployment of Docker
containers and enable the Kafka framework to be deployed with
high availability and fault tolerance features in production envi-
ronments.

3. Related work

To the best of our knowledge, Kafka-ML is the first open-
source framework to provide an ML/AI pipeline solution to in-
tegrate ML/AI and data streams. Nevertheless, other approaches
have similar goals or have provided some of the functionalities
offered by Kafka-ML as described below.

Kubeflow [13] is a powerful ML toolkit for Kubernetes. In
Kubeflow, users can configure multiple steps of an ML/AI pipeline
such as hyper-parameters, pre-processing, training and inference.
However, when running a Kubeflow pipeline, such as the official
example for the Google Cloud Platform,2 there may be some
steps that are not required in the Kafka-ML pipeline, especially
the ones that require building containers for training, and infer-
ence. In Kafka-ML, users merely need to interact with the Web
UI (User Interface) for training and inference. In addition, data
stream support has to be manually developed by Kubeflow ML
developers and users. In Kafka-ML, the data stream management
through Apache Kafka is supported in all of the pipeline. Kubeflow
provides great support for Kubernetes and ML multi-frameworks,
which are supported by a large ecosystem and community that
are far beyond the scope and functionalities offered by Kafka-ML.
Therefore, it may be worth studying the way of integrating both
systems in the near future.

NVIDIA Deep Learning GPU Training System (DIGITS) [14]
provides an interactive Web UI for training and inference of deep
neural networks (DNNs) on multi-GPU systems. Unlike Kafka-ML,
DIGITS is not a framework in itself, but a wrapper for NVCaffe,
Torch, and TensorFlow, which provides a Web UI to these frame-
works rather than dealing with them directly on the command-
line. The main advantages of DIGITS are its native support for
GPUs and three ML frameworks, the release of pre-trained mod-
els, and the functionality to see the accuracy and loss in real-time.
Nevertheless, DIGITS does not support training and inference
through data streams (datasets have to be imported instead) or
the deployment of these tasks through containers for scaling, it
has a dependency on GPUs and may require writing a source code
on top of these frameworks.

Regarding enterprise solutions, Amazon SageMaker [15,25] is
an ecosystem provided as part of Amazon Web Services (AWS)
which offers a continuous integration and continuous delivery
(CI/CD) service for ML/AI. Among its countless services, the fol-
lowing stand out: hyperparameter optimization, incremental
training, and elastic (pausing and resuming) learning. SageMaker
provides supports for ML frameworks such as Tensorflow, MXNet
and Pytorch, and Amazon Kinesis helps with real-time data inges-
tion at scale. Although data streams can be seamlessly integrated

2 https://www.kubeflow.org/docs/gke/gcp-e2e/.

https://www.kubeflow.org/docs/gke/gcp-e2e/
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for inference, for training they rely on data lakes such as Ama-
zon S3, unlike Kafka-ML, an open-source project where both
phases can be performed with data streams, without the need
for data lakes. Despite the fact that Algoritmia [16] does not
provide much information, it is apparently more focused on the
delivery of models for inference and the automation of some
pipeline processes and their monitoring. Valohai [17] enables
the management of ML/AI pipelines in Kubernetes like Kubeflow.
Valohai helps building complex ML/AI pipelines that can be auto-
mated including steps such as hyperparameter optimization. No
information is provided regarding data streams. However, one of
the most notable features of this platform is its automated and
extensive version control for ML model traceability.

MOA [26] is a framework for online learning and data stream
ining. MOA provides a graphical interface where users can
xecute and visualize ML tasks, including a collection of ML al-
orithms implementations for classification, regression, and clus-
ering among others. Although Kafka-ML supports data streams,
afka-ML and TensorFlow are not (yet) good at supporting on-
ine learning. On the other hand, Kafka-ML provides support for
ensorFlow/Keras models and their large community, instead of
reating a new framework with its own source code that could
imit its adoption. Scikit-multiflow [27] is another framework for
nline learning, in this case for the popular framework scikit-
earn, however it does not provide a Web interface or a full
ontrol of an ML/AI pipeline.
Ullah et al. [28] propose an ML-based system for real-time pro-

essing of data streams and action recognition. The data stream
rocessing is performed in different ML steps for action recog-
ition, including a pre-trained convolutional neural network for
eature extraction, a deep autoencoder to learn temporal changes
f actions, and a non-linear learning approach for classification.
his solution also includes an online learning phase to contin-
ously improve the model. This solution has been defined for
ction recognition and does not provide a generic framework for
he deployment and management of ML/AI applications and data
treams like Kafka-ML. Moreover, this solution lacks a distributed
tream integration like Kafka-ML for better management and
calability of data streams.
Kafka-ML follows a different approach as compared to other

istributed data stream frameworks [29,30] that are growing in
he era of big data and data streams, such as Apache SAMOA [31],
pache Flink [32], Apache Spark and Spark Streaming [33], and
he Lambda architecture [34,35]. Apache SAMOA is currently
ndergoing incubation at Apache and aims at enabling the devel-
pment of ML algorithms through data streams without directly
ealing with the complexity of underlying processing engines
e.g., Apache Storm [36] and Apache Samza [37]). Although with-
ut native support for data streams, SystemML [38] also follows a
imilar approach than SAMOA and provides a declarative ML lan-
uage to abstract the development of ML/AI applications, which
an be finally deployed on distributed systems such as Spark.
pache Flink provides a framework to perform computation over
ata streams at an in-memory speed and at any scale. Apache
park is an engine for large-scale data processing, and Spark
treaming is an extension of it for scalable and high-performance
tream processing. In addition, the Lambda architecture allows
he processing of large amounts of data in real time by hav-
ng real-time and batch layers of processing. In general, these
rameworks provide distributed engines for distributing any kind
f computation with data streams, although they have limited
upport for, or do not have a special focus on, facilitating ML/AI
ipelines and popular ML/AI frameworks such as TensorFlow and
heir large range of ML/AI solutions and community, as Kafka-ML
oes. Moreover, Kafka-ML can also enable the deployment of high

vailability and fault-tolerant ML/AI pipelines. MLlib [39], another

18
extension of Apache Spark, supports ML/AI algorithms for com-
mon learning settings including regression, collaborative filtering
and clustering in Spark deployments. Nevertheless, this support
is limited for a number of common algorithms and does not
support, for example, deep learning ML models such as Kafka-ML
with TensorFlow.

Kafka Streams [40] is a Java library which allows building
real-time processing applications with data streams allocated in
Apache Kafka, i.e., the input and output of Kafka Streams ap-
plications are Kafka topics. Kafka Streams provides abstractions
and operators (stateless and stateful) to work both with data
streams and tables (data stream aggregations) for the develop-
ment of streaming and microservice applications. Faust [41] is
another open-source stream processing library which ports the
ideas from Kafka Streams to Python. Like Kafka Stream, Faust
provides support for data stream processing, sliding windows,
and aggregate counts. Its interface is less verbose than Kafka
Streams, and applications can be developed with very few lines
of source code. While not directly supporting ML/AI applications,
these streaming libraries rely on Apache Kafka as a distribution
core as Kafka-ML does.

Despite its name, TensorFlow Serving [42] is an agnostic sys-
tem to serve ML models in general and TensorFlow in particular.
TensorFlow Serving provides a canonical Remote Procedure Call
(RPC) server that serves ML models from a hosted service, where
models can be uploaded and updated when required. Users have
full control over the ML models submitted, and this allows to have
multiple ML model versions simultaneously or rollback a ver-
sion. This inference module was designed by Google TensorFlow
for production environments. Regarding Kafka-ML, this module
works with RPC requests instead of data streams, which can be
fully controlled and reliably stored in the distributed log provided
by Apache Kafka.

According to Assuncao et al. [43], we are facing the fourth
generation of distributed data stream processing frameworks,
where certain elements are located on the edge of the network
to reduce latency. Calo et al. [44] propose a system for serving
ML models on edge servers and optimizing IoT communications.
Spanedge [45] is presented as a system to distribute stream
processing across a central and some near-the-edge data centers.
Going further, Pisani et al. [46] propose cross-platform code exe-
cution directly in IoT devices. The distribution of computation in
all these layers, namely edge, fog, and cloud, what is known as
the Cloud-to-Things continuum [47], will definitely optimize the
execution of ML/AI applications, and Kafka-ML will deploy ML/AI
applications in this continuum in future work.

MODELDB [7] was one of the first approaches in providing an
open-source ML model management system, i.e., a system for ML
model, metadata, and experiment versioning and management.
All the information related to ML models (hyperparameters, type,
author, and so on) can be uploaded to MODELDB to have full
control of the experiments and optimizations carried out. Model-
Hub [9] provides a service for publishing, reusing and discovering
Deep Learning models, such as a GitHub repository for software
components. This is of special interest to have a better control
of the developed ML models and to let users explore the ML
model space through the network architecture and hyperparame-
ter values. These projects are basically a metadata storage (or a git
system) to track information about ML models and experiments,
thus they do not manage or deploy any step of ML/AI pipelines
like Kafka-ML. Although Kafka also allows obtaining information
about the performance of ML models (automatically), it will take
ideas from these projects to improve the information provenance
and to have a better control of ML model versions.

Finally, Kafka-ML is related to some extent to AutoML projects

such as OpenML [48], Bazaar [49], and Google Cloud AutoML [18].
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Table 1
Overview of existing technical approaches.
Ref. ML/AI pipeline

management
Data
streams

AutoML Model metrics
comparison

Popular ML framework
integration

Open-source
project

Kubeflow [13] ✓  ✓ ✓ ✓ ✓

DIGITS [14] ✓   ✓ ✓ ✓

Amazon SageMaker [25] ✓ ✝ ✓ ✓ ✓  

Algoritmia [16] ✝ *  * ✓  

Valohai [17] ✓ * ✓ ✓ ✓  

MOA [26]  ✓    ✓

Scikit-multiflow [27]  ✓  ✓ ✓ ✓

[28]  ✓     

Apache SAMOA [31]  ✓    ✓

Apache flink [32]  ✓   ✓ ✓

Apache spark streaming
[33]

 ✓   ✓ ✓

Lambda architecture [35]  ✓    ✓

Apache Samza [37]  ✓   ✓ ✓

SystemML [38]       

MLlib [39]  ✓ ✓   ✓

Kafka Streams [40]  ✓    ✓

Faust [41]  ✓   ✓ ✓

TensorFlow serving [42] ✝    ✓ ✓

[44] ✓      

Spanedge [45]  ✓     

MODELDB [7]    ✓  ✓

ModelHub [9]    ✓   

OpenML [48]    ✓  ✓

Bazaar [49]   ✓ ✓  ✓

Google cloud AutoML [18] ✓  ✓  ✓  

Kafka-ML ✓ ✓ ✓ ✓ ✓ ✓

✓Approach has this feature  Approach has not this feature ✝Approach has partially this feature * Information not available.
penML is a web platform where users can openly share, up-
oad, and explore results, scientific tasks, data analysis flows, and
atasets. Results and metrics of ML models can also be shared and
ompared in Kafka-ML. Moreover, data streams can also be man-
ged and shared, as we will see in Section 4.7. Bazaar provides an
utoML system that – through ML primitives and a specification
or data processing – automates and facilitates tasks such as the
election of the learning algorithm and hyper parameter tuning.
his is an interesting approach to reduce the complexity of such
equired steps in ML/AI applications. However, it is tailored to
specific solution. In Kafka-ML we have adopted a state-of-

he-art and well-known ML framework like TensorFlow for ML
efinition. We will consider how to optimize these steps in ML/AI
ipelines and frameworks supported by Kafka-ML in the near fu-
ure. Google Cloud AutoML provides high-quality ML models with
ittle effort and no advanced knowledge of the subject. Reaching
he quality of these models is beyond the scope of Kafka-ML.
owever, Kafka-ML provides an accessible platform, where only
few lines of ML model source code are required to start an
L/AI pipeline with data streams. Furthermore, Kafka-ML is an
pen-source project available for both experts and non-experts
n ML/AI.
To conclude this section, Table 1 summarizes and compares

revious approaches with Kafka-ML.

. Kafka-ML architecture

Kafka-ML is an open-source framework that enables the man-
gement of the pipeline of ML/AI applications through data
treams. Kafka-ML is a novel framework for integrating ML frame-
orks and data streams, which are continuously growing thanks
o disruptive and massive data production paradigms such as
he IoT. It presents a paradigm shift from traditional and static
atasets used in ML/AI frameworks into continuous and dynamic
ata streams, offering a user-friendly, ready-to-use3 and open

3 https://github.com/ertis-research/kafka-ml.
19
platform to the community that allows managing ML/AI pipeline
steps such as the inference deployment in productions environ-
ments. Kafka-ML works with configurations. A configuration is
a logical set of ML models that can be grouped for training and
evaluation. This can be useful when it is required to evaluate
and compare metrics (e.g., loss and accuracy) of a set of ML
models or just to define a group of them that can be trained
with the same and unique data stream in parallel. Therefore, in
case of having n ML models, all of which require a data stream
for training, only one data stream has to be sent to Apache
Kafka if a configuration has been defined with them. This can
also apply to data scientists, which may train hundreds of ML
models for an application and keep only one to be used in
production [50]. And it is particularly true when they perform
hyperparameter optimization [7]. Fig. 2 depicts the pipeline to
manage these ML models and configurations through Kafka-ML:
(1) designing and defining ML models with a few lines of ML
model source code; (2) creating a training configuration for ML
models, i.e., selecting a set of ML models to be trained and evalu-
ated; (3) deploying the configuration for training and evaluation
by selecting corresponding hyperparameters; (4) ingesting the
deployed configuration with training and optionally evaluation
data stream; (5) deploying trained ML models in production for
inference; and, finally, (6) feeding deployed trained models for
inference to make predictions with data streams. All the steps
related to feeding the ML model (training and inference) can be
carried out with data streams. Moreover, most of the previous
steps use a RESTful API, so the pipeline can be automatized.
Datastores might not be needed anymore with the management
of data streams in Kafka-ML (Section 4.7).

Fig. 3 shows an overview of the Kafka-ML architecture. One
of its main components is the back-end, which is responsible,
among other things, for creating training jobs (Model training)
and inference jobs for the trained models (Model inference) upon
user request. As in many convectional web architectures, users
do not interact directly with the back-end, but with the front-
end, which communicates users with the back-end and provides
a user-friendly UI for it. Data streams in Kafka-ML are received

https://github.com/ertis-research/kafka-ml
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Fig. 2. ML/AI pipeline in Kafka-ML.
Fig. 3. Overview of Kafka-ML architecture.

by training and inference jobs, which mainly use them for model
training and model prediction respectively. Therefore, no static
datasets are required to work with Kafka-ML but data streams.
Finally, the control logger is a logger for control messages, which
will be explained in details in the following sections.

The Kafka-ML framework comprises a set of components based
on the single-responsibility principle, comprising a microser-
vice architecture [51]. All of the architecture components have
been containerized so that they can run as Docker containers.
This not only enables easy portability of the architecture, iso-
lation between instances, and fast setup support for different
platforms, but also their management and monitoring through
Kubernetes. Kubernetes manages the life cycle of Kafka-ML and
its components. Apache Kafka enables the data stream dispatch-
ing and management in the framework. Kafka-ML is an open-
source project and its implementation, configurations, Kuber-
netes deployment files, and some examples can be found on
GitHub.4

4.1. Front-end

The front-end provides a management Web UI where users
an perform operations available in Kafka-ML, such as the cre-
tion of ML models, configurations, and their deployment for
raining and inference in a user-friendly and accessible way.
his component enables the user interaction with Kafka-ML. The
ront-end makes use of the RESTful API offered by the back-end,
nd it is implemented using the popular TypeScript framework
or Web development Angular. Since the front-end and back-end
ave been clearly differentiated, this architecture opens the door

4 https://github.com/ertis-research/kafka-ml.
20
to the integration of third-party applications and the creation of
new front-ends (e.g., a smartphone application).

4.2. Back-end

The back-end component serves a RESTful API to manage
all the information contained in Kafka-ML, such as ML models,
configurations, and deployments. This component is connected
with the corresponding Kubernetes API to deploy and manage
training as well as inference of configurations and ML models
when ordered by users through the front-end. Moreover, the
back-end also receives trained ML models and metrics after train-
ing a configuration. These trained models can be downloaded
or deployed for later inference. This component has been im-
plemented through the Python Web framework Django and the
official Python client library for Kubernetes5 for the deployment
and management of Kubernetes components.

4.3. Model training

Once the back-end deploys a configuration, a job, a deploy-
able unit containerizing a Docker container, will be executed per
Kafka-ML model for training. Since the Kafka stream connector
expects to have the data stream at the initiation, training cannot
start until the data stream is available in the Kafka topic. We
have used at least two Kafka topics to overcome this: (1) one
or more data topics which only contain training and evaluation
data streams required for training and evaluation; and, (2) a
control topic, which informs deployed ML models through control
messages when and where data streams are available for training
and evaluation. Section 4.7 will discuss this in detail. A control
message should contain at least the following information:

• deployment_id: ID of the deployed configuration that is
going to ingest data stream.
• topic: Kafka topic where the training and evaluation data

streams are.
• input_format: Format of the data stream (e.g, RAW, Avro).
• input_config: Parameters required by the data format used

(e.g., the scheme to deserialize messages in Avro, and data
type and reshape for label and data in RAW format).
• validation_rate: Percentage of data stream that will be used

for evaluation. If validation_rate is equal to zero, only train-
ing will be performed.
• total_msg: Number of messages dispatched in the data

stream. The number of messages sent are calculated by the
Kafka-ML libraries.

5 https://github.com/kubernetes-client/python.

https://github.com/ertis-research/kafka-ml
https://github.com/kubernetes-client/python
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Once configurations and subsequently ML models receive con-
rol messages, they know exactly where data streams are in
pache Kafka, how to deserialize them and the amount of data
treams destined for training and evaluation. Kafka-ML currently
upports RAW format (suitable for single-input data streams that
ay request a reshape, like images) and Apache Avro [52] (suit-
ble for complex and multi-input datasets where a scheme spec-
fies how the data stream is decoded) to serialize/deserialize
ata streams. However, it is open to support new data formats.
n each case, the information for deserialization is included in
he control message (input_config), as, for example, the training
nd label data schemes for the Avro format. We have developed
ibraries for these two data formats, which make the data stream
ispatching easier to implement for users since they deal with
afka-ML aspects like sending the control message when the data
tream has been sent. Without these libraries, users would have
o send data streams manually to Apache Kafka, implement se-
ialization/deserialization techniques and send control messages
s detailed before.
Algorithm 1 describes the procedure of the training job once

eployed by the Kafka-ML back-end and Fig. 4 depicts the se-
uence diagram of the training process. It is noteworthy that
ome steps such as management of exceptions, Kafka connections
nd data stream decoding have not been included for the sake of
implicity. Firstly, once deployed (1) by the back-end, the training
ob downloads the ML model from the back-end (2–3) and loads
t as a TensorFlow model ready for training (4). Next, it creates
Kafka consumer that waits until receiving the control stream

or this process (6), i.e., it matches the deployment_id received by
he back-end in the job (1). The control message indicates how
ata stream sent by clients (5) can be deserialized (data format:
sg.input_format; configuration parameters for the data format:
sg.input_config), batch size used for training (msg.batch) and
here data stream is available (Kafka topic: msg.topic). Then,
he job obtains the data stream for training from the Kafka topic
ndicated (8). In case of any error during this process (e.g., the
eceived data does not match the information indicated in the
ontrol message), the job will wait until a new control message
s received (7). If the error is due to another reason and not
o the data streams, the component will be restarted and will
e-process control messages previously received. Once the data
tream is obtained, the dataset is split for training and evalua-
ion according to validation_rate received in the control message
9), i.e., this parameter indicates the amount of stream data for
valuation. If msg.validation_rate is set to 0, only training and
ot evaluation is performed, i.e., the entire data_stream goes to
he training_stream variable. Therefore, if only training is go-
ng be performed, msg.validation_rate will be set to 0 when
he control message is sent (6). Next, the model is trained and
ptionally evaluated (10). Note that Kafka-ML does not allow
ontinual learning [53], i.e., training is carried out at once and
ot continuously accumulating knowledge from previous data
treams. Therefore, in case of receiving a small data stream, ML
odels will be trained only with this data. The availability of data
tream for training tasks is controlled by control messages, thus
afka-ML users can have a proper control when the data stream
ccumulated is ready for training. The data stream for training
ust be at least larger than the batch size indicated in the control
essage sent. Finally, the job submits the trained model as well as

he training and evaluation metrics to the back-end. This process
s carried out in each job for every ML model in the configuration
eployed.

The data stream flow starts when a client (e.g., an IoT device
r gateway, a dataset, or any information source) sends a data
21
Input: model_url, training_kwargs, evaluation_kwargs,
deployment_id
Result: Trained ML model and training and evaluation metrics
model_data← downloadModelFromBackend(model_url);
model← loadTensorFlowModel(model_data);
trained← False;
while not trained do

msg← readControlStreams();
if deployment_id == msg.deployment_id then

decoder = getDecoder(msg.input_format,
msg.input_config);
data_stream← readStream(msg.topic, decoder,
msg.batch);
if msg.validatition_rate > 0 then

training_stream← take(data_stream, (1 -
msg.validation_rate));
evaluation_stream← split(data_stream,
msg.validation_rate);

else
training_stream← data_stream;

end
training_res← trainModel(model, training_kwargs,
training_stream);
if msg.validatition_rate > 0 then

evaluation_res← evaluateModel(model,
evaluation_kwargs, evaluation_stream);

end
uploadTrainedModelAndMetrics(model, training_res,
evaluation_res);
trained← True;

end
nd

Algorithm 1: Training algorithm in Kafka-ML

stream (5) to an Apache Kafka topic (e.g., ‘‘iot’’ topic) and a cluster
for training a configuration. A Kafka topic is the elementary
way of connecting producers and customers (training job in this
case) in Apache Kafka, and each topic is independent of the
rest. Topics are managed by a cluster of Kafka Brokers, which
comprise Kafka’s architecture and are responsible for receiving
a data stream from producers and distributing it to subscribing
consumers. The data stream for training has to be serialized to
be sent according to the data formats available in Kafka-ML (RAW
and Avro). Once dispatched, a control message to the control topic
configured in Kafka-ML (default ‘‘control’’ topic) has to be sent (6)
indicating the location of the data stream sent (Kafka topic and
position), the deserialization information, and the deployment to
which the data stream is going, among other parameters. The
available clients in Kafka-ML6 can be used to send and serialize
data streams as well as to send control messages. Once the cor-
responding jobs in the deployed configuration receive the control
message (i.e., the deployment_id in the control message matches
the one received by the back-end) (7), they all receive the data
stream sent (8), e.g., deployment_id 1 in this example, in the
‘‘iot’’ topic in this case, and carry out the process described in
Algorithm 1.

4.4. Model inference

After training an ML model and deploying it for inference
through the front-end and back-end, a Replication Controller
(a component that ensures that a specified number of replicas

6 https://github.com/ertis-research/kafka-ml/tree/master/datasources.

https://github.com/ertis-research/kafka-ml/tree/master/datasources
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Fig. 4. Sequence diagram of the training process in Kafka-ML.
e

re running at all times) with established replicas will be ex-
cuted in Kafka-ML. The condition to deploy an ML model is
hat it is trained in the Kafka-ML framework, assuming that an
nfrastructure for its deployment is available. In fact, the option
o deploy and download the trained model in the front-end is
nabled only once the ML model is trained. Replication of this
omponent enables fault tolerance, high availability, and load
alancing of the requests among inference deployments. Algo-
ithm 2 describes the procedure of the inference in Kafka-ML and
ig. 5 the sequence diagram. Once the Replication Controller is
eployed (1), the trained model from the back-end is downloaded
2–3) and it is loaded as a TensorFlow model ready for inference
4). Then, this component will start receiving data stream (6) and,
ubsequently, will make a prediction with them (7), which will be
ent through the configured Kafka output topic (8). Each message
s also deserialized with the information received by the back-end
1) and sent in JSON format to the output topic (8). Algorithm 2 is
xecuted by each of the replicas of the inference deployed, and all
f them are part of the same Kafka consumer group to distribute
he data stream load thanks to the group_id parameter received
nd automatically generated by the back-end (1), which indicates
he consumer group to join. The inference module and its replicas
re independent of the Kafka brokers and topic partitions used.
nference replicas receive the Kafka cluster and topic to connect
ith (both for the input and output topics), which can contain
ither 1 broker or 1 partition or as many as defined in the Kafka-
L Web UI. This has different implications for the performance of
afka-ML as we will study in Section 6, and the inference module
dapts itself to all of them. If an unexpected data stream is
eceived, such as an invalid format message, it will be ignored and
he inference module will continue waiting for new messages.
n case of any other failure, this component and its replicas will
e restarted. When having multiple Kafka Brokers and partitions,
he Replication Controller exploits the consumer group feature of
22
Apache Kafka by matching replicas and partitions to provide load
balancing and higher data ingestion.

Input: model_url, input_topic, output_topic,
input_configuration, group_id

Result: Predictions to Apache Kafka
model_data←
downloadTrainedModelFromBackend(model_url);
model← loadTensorFlowModel(model_data);
deserializer← getDeserializer(input_configuration);
while True do

stream← readStreams(input_topic);
data← decode(deserializer, stream);
predictions← predict(model, data);
sendToKafka(predictions, output_topic);

nd
Algorithm 2: Inference algorithm in Kafka-ML

In this case, the sequence (Fig. 5) requires less steps than the
training since no control messages are required. Once clients send
data streams to the Kafka input topic configured (5), the latter
are directly received by the inference jobs and replicas (6) so
they can obtain a prediction with the downloaded model (7) and
dispatch it to the output topic (8). Finally, applications interested
in receiving the predictions can subscribe to the output topic (9).

4.5. Control logger

The control logger component is just responsible for con-
suming control messages received in Kafka-ML and for sending
them to the back-end. These control messages are used for two
purposes in the back-end: (1) to allow sending messages again
to other deployed configurations without the need to send the
entire training and evaluation data stream, which is possible since
Apache Kafka keeps data streams in the distributed log; and (2)
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Fig. 5. Sequence diagram of the inference process in Kafka-ML.

to auto-configure the inference input format and configuration in
the front-end with respect to the received information in control
messages. The input format and configuration are not directly
configured in the Kafka-ML Web UI, but they are defined in the
control messages. Therefore, filling out these fields in the front-
end automatically with this information facilitates the work for
users in defining the data parameters when deploying an ML
model for inference. During training, jobs receive the control data
stream as well as this information.

4.6. Apache Kafka and ZooKeeper

To facilitate the deployment and management of Apache Kafka
in our microservice infrastructure framework, we have deployed
Apache Kafka7 and Apache ZooKeeper8 (required by Apache
afka for synchronization) as jobs using Docker containers. We
ave enabled their exposure through a Kubernetes service both
nternally to the rest of the components and externally to enable
ther systems to send data streams.

.7. Data stream management through Apache Kafka distributed log

As discussed in Section 2, the distributed log provided in
pache Kafka enables consumers to move along the log and read
ata streams as they wish. This is useful when a component/sys-
em that has to process all data at once (e.g., a training job)
ails and needs to recover the whole data stream. In traditional
essage queue systems where each message may be deleted after
onsumption, a datastore may be needed to ensure there is no
ata loss in these situations.
On the other hand, since data streams can be configured to be

ept in the log, these streams can be reused for training other
eployed configurations and ML models without the need for
ending the whole data stream again. The only requirement is
o send the corresponding control message (tens of bytes) to
he desired deployed configuration as long as the data stream is
vailable in Apache Kafka with the established retention policy.
n example of this functionality is shown in Fig. 6. Firstly, the first
ata stream (green data) was sent along with its control message
C1) to the deployed configuration D1. A control message C1 was
ent again to allow configuration D2 to consume the same data
tream. In the current distributed log state, this data stream is
xpiring and cannot be longer reused for another deployed con-
iguration. The data stream associated with the control message
2 has been sent to the deployed configurations D3 and D5, which
an still be reused for new configurations that want to use this
ata stream again. Finally, the data stream on the left in the
raining and evaluation stream is now entering the distributed

7 https://github.com/wurstmeister/kafka-docker.
8 https://hub.docker.com/_/zookeeper.
23
log and the control message has not yet been sent since the data
stream is not yet complete.

To allow training and evaluation tasks to move freely along the
data stream, control messages specify not only where the data
streams are, but also what their position in the distribution log
is. This follows the following format provided by the KafkaDataset
connector from TensorFlow/IO: [topic:partition:offset:length]. For
instance, the example [kafka-ml:0:0:70000] specifies that in the
topic ‘‘kafka-ml’’ and its partition 0, the data stream is available
from the offset position 0 to 70000. Through control messages,
Kafka-ML informs deployed configurations where exactly data
streams are. In the Kafka-ML Web UI, a form is available where
users can see the list of the data stream that has been sent to
Kafka-ML, which can be reused for other configurations.

As discussed, this behavior depends on the retention policy
established in Apache Kafka. Current retention strategies within
the Apache Kafka delete retention policy are:

1. Retention bytes: Control the maximum size a partition can
grow up to before Kafka starts discarding old log segments
to free up space. Default not applicable.

2. Retention ms: Control the maximum time a log will be
retained before old log segments will be discarded to free
up space. Default to 7 days.

It is noteworthy that Apache Kafka provides another retention
policy known as the compact policy, which ensures that Kafka will
retain at least the last known value for each message key for a
single topic partition. Nevertheless, due to the necessity of neither
loss nor compacting data, the delete retention policy would be
preferred for Kafka-ML instead.

5. Pipeline of an ML model in Kafka-ML

In this section, we introduce the pipeline of an ML model in
Kafka-ML using the example of the Exasens dataset. The open ac-
cess Exasens dataset, available at the UCI machine learning repos-
itory,9 is used for the classification of saliva samples of Chronic
Obstructive Pulmonary Disease (COPD) patients and Healthy Con-
trols (HC). This novel dataset contains information on saliva sam-
ples collected from groups of respiratory patients including COPD
and HC [54]. The attributes of the dataset, used for the classifi-
cation of subjects, include demographic information of patients
(age, gender, and smoking status) and the dielectric properties of
the characterized saliva samples for every class [55]. The source
code of this example is included in the examples of Kafka-ML.10
The metrics, models, and sections of the data used for analytics
in this example are available at GitHub.11 In the following sub-
sections, each of such steps in the Kafka-ML pipeline (Fig. 2) is
elaborated.

5.1. Designing and defining ML models

The novel initiative of this work was to develop a user-friendly
framework which enables ML specialists to focus on developing
ML models instead of learning a new library or using complex
pipelines. A tool which enables easy testing and validation of ML
models would considerably reduce the work load of ML develop-
ers and would allow them to focus on their expertise. As a result,
the only source code needed for this approach is simply the ML
model definition itself in a common ML framework, as shown in
Listing 1.

9 https://archive.ics.uci.edu/ml/datasets/Exasens.
10 https://github.com/ertis-research/kafka-ml/tree/master/examples/HCOPD_
vro_format.
11 https://github.com/Pouya-SZ/HCOPD.

https://github.com/wurstmeister/kafka-docker
https://hub.docker.com/_/zookeeper
https://archive.ics.uci.edu/ml/datasets/Exasens
https://github.com/ertis-research/kafka-ml/tree/master/examples/HCOPD_Avro_format
https://github.com/ertis-research/kafka-ml/tree/master/examples/HCOPD_Avro_format
https://github.com/Pouya-SZ/HCOPD
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Fig. 6. Data stream management in Kafka-ML.
Listing 1: HCOPD TensorFlow/Keras ML code
model = t f . keras . Sequential ( [
t f . keras . layers . Dropout (0 . 2 ,

input_shape = (4 , ) ) ,
t f . keras . layers . Dense (4 ,

ac t iva t ion = ’ sigmoid ’ ) ,
t f . keras . layers . Dense (2 ,

ac t iva t ion = ’ softmax ’ )
] )
model . compile ( t f . keras . optimizers .Adam
( l r = .0001) ,
loss = ’ sparse_categorical_crossentropy ’ ,
metrics = [ ’ accuracy ’ ] )

Listing 1 shows the source code of the model for the Exasens
ataset. This code may seem familiar. In fact, it is a Python
ensorFlow/Keras model with a dropout, a hidden layer, a single
utput and the compilation for training. This model is used for the
lassification of COPD and HC samples. An overview of this model,
ts inputs and outputs is shown in Fig. 7. Kafka-ML currently
orks with Python TensorFlow [56] and its support for Apache
afka through TensorFlow/IO.12 Therefore, Kafka-ML currently
upports any ML/AI model with corresponding valid inputs and
utputs that can be defined with Tensorflow/Keras, such as a deep
earning model. Currently, Apache Kafka integrations are under
evelopment and its Kafka-ML domain is getting expanded by
eceiving further ML frameworks.

Once an ML model is defined using an ML editor (e.g, Jupyter
57]), the TensorFlow/Keras source code of the model can be
nserted into the Kafka-ML Web UI for model creation, as shown
n Fig. 8. It is noteworthy that the model can also be defined
irectly on Kafka-ML, though it is recommended to validate it
eforehand using other and more powerful ML Integrated Devel-
pment Environment (IDE) or editors. Other required functions
or the model (if necessary) can be inserted in the imports field.
nce the model is submitted, the source code will be checked as a
alid TensorFlow model and will be incorporated into Kafka-ML,
.e., the semantics of the code will be checked to prevent mali-
ious source codes, and an instance of the model in Tensorflow
ill be created and executed during the validation to corroborate
hat a valid TensorFlow model has been defined. If the model
efinition was successful, the pipeline will be continued to the
ext step.

12 https://www.tensorflow.org/io.
24
Fig. 7. Architecture of a neural network model used for the classification of
COPD and HC samples available at the Exasens dataset, using IHP’s permittivity
biosensor.

Fig. 8. Definition of the HCOPD ML model in Kafka-ML.

https://www.tensorflow.org/io
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Fig. 9. Training management and visualization in Kafka-ML.
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.2. Creating a configuration

Once ML models have been registered in the Kafka-ML Web
I, it is time to define configurations. For instance, in the Exasens
ataset a target configuration could consist of having different
odels with different hidden layers to evaluate their perfor-
ance. Since models in a configuration share the same hyper-
arameters for training and evaluation during deployment (next
hase), they must share some similarities to be grouped in a con-
iguration, e.g., they should have the same input layer and may
ave the same learner, especially if they use specific parameters.
t is noteworthy that a configuration can also be defined with only
model.

.3. Deploying the configuration for training

After setting some training parameters such as the batch size,
pochs, number of iterations, and optionally some parameters
or evaluation in the Kafka-ML Web UI, the configuration will
e ready to be deployed for training. In this example, a batch
ize of 10 is used, the following training parameters ‘‘epochs=5,
teps_per_epoch=1000, shuffle=True’’; and ‘‘steps=5’’ for evalu-
tion. Validation rate was configured with 0.33, thereby 77% of
ata are used for training and 33% for evaluation. When users
ubmit the configuration for training in the Web UI, a Kubernetes
ob will be deployed per Kafka-ML model (Fig. 4-(1)). One of
he first steps that each deployed job carries out is fetching its
orresponding ML model (e.g., Listing 1 ) from the Kafka-ML
ramework (Fig. 4-(2–3)) and loading it to start training (Fig. 4-
4)). Finally, jobs can resume until a data stream with training
nd optionally evaluation data is received through Apache Kafka
Fig. 4-(8)), right after the corresponding control message (Fig. 4-
6–7)). This allows both having ready-to-train ML models when a
ata stream is sent and direct training if the data stream is already
n Kafka.

.4. Ingesting the deployment with data stream

Once models have been deployed for training, data streams
ave to be sent for training and continuation of the pipeline
Fig. 4-(5)). Since the Exasens dataset requires a complex input
ype (gender, age, and smoking status), the Avro encoding was
sed both for data and labels. The Avro scheme for data is shown
n Listing 2. Data streams are then serialized with the Python Avro
ibrary13 and sent to the Apache Kafka topic ‘‘hcopd’’ using the
vro client available in Kafka-ML. This client automatically sends
he control message right after dispatching the data stream for
raining. The control message requires some parameters like the
alidation rate and the deployment ID for which these data are
ntended (it can be obtained in the Web UI). All the models in the
onfiguration will receive this control message (Fig. 4-(7)) and
ill start the training process with the data stream sent to the
copd topic.

13 https://avro.apache.org/docs/current/gettingstartedpython.html.
 a

25
Fig. 10. Deploying a trained ML model for inference in Kafka-ML.

Listing 2: Avro scheme for the Exaxens dataset
{"namespace " : " data . e r t i s .uma. es " ,
" type " : " record " ,
"name" : "HCOPD" ,
" f i e l d s " : [

{"name" : "gender " , " type " : " f l o a t " } ,
{ "name" : "age " , " type " : " f l o a t " } ,
{ "name" : "smoking " , " type " : " f l o a t "}

]
}

.5. Deploying trained model for inference

Right after training and evaluation, both the trained model
tself and its defined metrics (e.g., loss and accuracy) will be
ubmitted by each training job to the Kafka-ML back-end (Fig. 4-
11)). Results can be visualized in the Kafka-ML Web UI as shown
n Fig. 9 for a configuration with two ML models for the Exasens
ataset. Through this, users can evaluate and compare ML models
nd metrics defined in a collaborative way (challenge 2). For each
raining result, users can edit or download the trained model, or
eploy it for inference (play button).
In the inference deployment (Fig. 10), users can select the

umber of inference replicas to be deployed. This exploits the
onsumer group feature of Apache Kafka, thereby enabling load
alancing and fault-tolerance for inference. Since all interactions
re done through Apache Kafka, users have to configure the input

https://avro.apache.org/docs/current/gettingstartedpython.html
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topic (for values to predict on) and output topic (for predic-
tions). The information for deserialization (the Avro scheme in
this example) is obtained from the control message dispatched
and submitted by the Control logger component to the back-end,
thereby the ‘‘Configuration for input data’’ field in this form is au-
tomatically filled out from this information. This field contains the
information for data and label serialization during inference, the
Avro schemes in this example. The input and output topics used
in this example are ‘‘hcopd-in’’ and ‘‘hcopd-out’’, respectively.

5.6. Ingesting deployed trained models with data stream for infer-
ence

Finally, the ML/AI pipeline concludes once the trained models
re deployed to make predictions and recommendations through
ata streams (Fig. 5-(1)). In this case, no control messages have
o be sent since the input and output topics, as well as the
nformation for deserialization, have been previously defined in
he Web-UI (Fig. 10) and received by inference replicas. Users
nd systems just need to send encoded data streams with the
vro scheme presented in this example to the ‘‘hcopd-in’’ topic
Fig. 5-(5)), and inference results about the diseased and HC will
mmediately be sent after processing to the ‘‘hcopd-out’’ topic
Fig. 5-(8)), which can be subscribed by applications interested
Fig. 5-(9)).

. Evaluation

We have conducted several experiments to evaluate the per-
ormance regarding features of Kafka-ML such as fault tolerance,
oad balancing, and high availability. In particular, we have fo-
used the performance evaluation on the inference since this is
he step where we can exploit most of these features through
eplication. Training is also another important step. However, as
istributed training (planned for future work) is not yet sup-
orted in Kafka-ML, it is performed individually for each ML
odel, and there is no capacity for further distribution and repli-
ation of data streams. This does not mean that the training is
ot fault-tolerant, since if for whatever reason it fails or does
ot receive the corresponding data streams, it will restart until
he model is trained satisfactorily. The system is fault-tolerant
o hardware or node failures during training. Moreover, the data
tream is reliably stored in Apache Kafka. Regarding training, we
ave analyzed how the number of the data stream sent affects
he ML model metrics and the training time.

We have picked Faust and TensorFlow Serving for comparison
ecause they both can run and serve TensorFlow models like
afka-ML. Faust is a stream processing framework written in
ython so we could easily port the inference implementation to
t (Kafka-ML is mainly written in Python). In addition, as Faust
lso uses Apache Kafka, we can evaluate inference with data
treams in two different streaming systems. TensorFlow Serving
s perfectly integrated with Docker and allows easy loading of
L models through its hosted service. Therefore, we only had

o download the trained model from Kafka-ML and create a
onfiguration file to run it in Kubernetes. TensorFlow Serving is
n inference production module developed by Google. Although it
oes not support data streams (it supports RPC instead), it is still
good candidate for comparison in production environments.
As discussed in Section 5, Kafka-ML can deploy simple Ten-

orFlow ML models for ML/AI applications. However, Kafka-ML
an deploy any other compatible ML model in Tensorflow, as
ell as larger and more feature-intensive ones, such as Deep
earning models. We have used the well-known VGG16 Deep
earning model [58] for the performance evaluation in Kafka-
L with an ML model that requires greater needs. As seen in
26
Fig. 11. VGG16 model used for performance evaluation.

Fig. 11, this ML model contains a large number of deep layers,
both dense and convolutional. VGG16 gets a 92.7% top-5 test
accuracy on ImageNet [59], and thus, we can successfully train
the VGG16 model to classify images on CIFAR10,14 which is the
dataset used for training and evaluation processes. The CIFAR-10
dataset consists of 60,000 32 × 32 color images in 10 classes
(such as animals, cars, and airplanes), with 6000 images per class.
Specifically, we got an accuracy of 87,33% for the VGG16 model
and CIFAR10 dataset during training with 100 epochs. Because
this dataset contains images, we used RAW serialization. To make
a comparison with the model for the Exasens dataset seen above,
the VGG16 model occupies 61MB versus the few kilobytes of the
Exasens ML model, and the training time lasted several hours
versus tens of seconds for the Exasens model. For the sake of
reproducibility, this example is also included in the examples of
Kafka-ML.15

All the Kafka-ML components were replicated and deployed
in a Kubernetes cluster. Each experiment was performed ten
times, starting by a client sending a CIFAR10 image to an input
topic until a response from an output topic is received. Exper-
iments with different numbers of clients sending information
concurrently reported the average running time and throughput.
The experimental setup to evaluate Kafka-ML in the distributed
Kubernetes cluster is described in Section 6.1. The performance
evaluation was carried out in the following scenarios:

14 https://www.cs.toronto.edu/~kriz/cifar.html.
15 https://github.com/ertis-research/kafka-ml/tree/master/examples/VGG16_
CIFAR10_RAW_format.

https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/ertis-research/kafka-ml/tree/master/examples/VGG16_CIFAR10_RAW_format
https://github.com/ertis-research/kafka-ml/tree/master/examples/VGG16_CIFAR10_RAW_format
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• Replication performance of Kafka-ML with 1 Kafka Broker
(Section 6.2).
• Deployment in a higher availability scenario with 3 Kafka

Brokers. (Section 6.3).
• Evaluation of the fault tolerance and high availability fea-

tures of Kafka-ML (Section 6.4).
• Comparison with other proposals (Section 6.5).

Finally, Section 6.6) analyzes the performance of Kafka-ML
ith respect to training.

.1. Experimental setup

Hardware configuration. All the experiments were performed
on a five-node Kubernetes cluster at our private cloud infrastruc-
ture in VMware vCloud. Each node has 4 virtual CPUs in 2 sockets,
and 16 GB of RAM. The client that sent the information and where
the results were measured from was a PC with 8 GB of RAM, 1
CPU and 4 cores.

Software configuration. Each one of the five nodes runs Ku-
bernetes v1.19.3 and Docker 19.03.13 on top of Ubuntu 16.04.7
LTS. A Kubernetes master was deployed in one node, while the
remaining four are Kubernetes workers. The PC with the client
runs Windows 10 Professional.

6.2. Scenario 1: 1 Kafka Broker

In this setup the inference module was configured to use 1
Kafka Broker and Kafka topics were configured with 1 partition
and 1 replica each. Kafka topics and partitions can be created
in multiple ways, for example, using an open-source tool such
as Kafka manager.16 Then, the topics defined are configured
during the deployment of the inference (Fig. 10) in Kafka-ML.
This scenario covers the minimum needs for Kafka-ML: the use
of a single broker and one partition per topic. Fig. 12 shows the
average latency response with different number of clients and
different inference replicas. It can be observed that by increasing
the replication of the inference deployment, response time is
reduced up to 80%, comparing results with 1 replica to 32 replicas.
The results of 16 and 32 replicas are very similar so they are
negligible in the graph.

The average throughput of this scenario is shown in Fig. 13. In
this case, the higher throughput is obtained with 8–16 replicas
and 8 clients. This may be due to the overload of clients that
Kafka-ML can handle with a single Kafka Broker, so this is the
optimum step between a higher data rate and a higher number
of clients. For this reason, after 8 replicas, there is no considerable
improvement.

With this scenario we have shown how Kafka-ML can success-
fully handle different client loads through the replication of the
inference module. This is of special interest when working with
data streams since paradigms such as the IoT produce many of
these and sometimes in variable conditions, for which Kafka-ML
could be perfectly adapted.

6.3. Scenario 2: 3 Kafka Brokers

In this scenario the inference module was configured with 3
Kafka Brokers. Thanks to this, the topics could be configured to
support a larger number of partitions (one per Broker) and a
replication of 2. The inference deployment can now exploit the
Kafka consumer group with the 3 partitions configured to better
distribute the load, and the replication level of 2 allows 1 Kafka
Broker to fail without losing information.

16 https://github.com/yahoo/CMAK.
27
Fig. 12. Average inference latency response with different number of clients (1
Kafka Broker).

Fig. 13. Average inference throughput with different number of clients (1 Kafka
Broker).

Fig. 14. Average latency response of inference with different number of clients
(3 Kafka Brokers).

Comparing the latency response of this scenario with the 32-

replica result obtained in the previous one (Fig. 14), it can be

https://github.com/yahoo/CMAK


C. Martín, P. Langendoerfer, P.S. Zarrin et al. Future Generation Computer Systems 126 (2022) 15–33
Fig. 15. Average throughput of inference with different number of clients (3
Kafka Brokers).

seen that the inference module can exploit the larger number
of Brokers and partitions to better distribute the load among its
replicas. Obtaining a latency reduction percentage of more than
70% by comparing the lowest latency response (32 replicas) in the
two scenarios.

Throughput (Fig. 15) also improves the results of the previous
scenario with a higher number of Brokers and partitions. As in
the previous scenario, the best compromise is with 8 clients, for
which an improvement of more than 69% is obtained, in this case
with 32 replicas that better exploit the distribution.

In this scenario we have seen how Kafka-ML can exploit
Kafka’s consumer groups and provide load balancing between
inference replicas with different data stream ingestion, improving
the performance of Scenario 1. With this setup, Kafka-ML can be
adapted to conditions that require a higher load of clients and
data streams with a lower latency response than Scenario 1.

6.4. Scenario 3: Fault tolerance and high availability

To evaluate the fault tolerance and high availability features
of Kafka-ML, we deployed the inference module as in Scenario 2
and manually stopped some of its replicas to investigate how this
would possibly affect the response time. Fig. 16 shows the median
response (black line) with 32 clients and different number of
replicas down in each case. The main boxes indicate the 25th
and 75th percentile of the plotted data. The average percentage
increases with respect to a normal situation with 25%, 50%, 75%,
and 100% of replicas down is 19.06%, 28.49%, 40.52%, and 53.7%,
respectively. This shows that Kafka-ML can tolerate up to 100%
replication downtime, thanks to the continuous monitoring and
restoration of inference replicas.

We also evaluated how the crash of Kafka Brokers (1 and 2)
affects Kafka-ML (Fig. 17). For this case, we configured the infer-
ence module with Kafka topics with 3 partitions and 3 replicas.
As the Brokers were configured with 3 replicas, there was no data
loss in the crash of either 1 or 2 Brokers. The average response
time increases threefold with one Broker down, and barely with
2 Brokers down. However, since there was one partition for each
Broker, some communications failed, namely 36% for the one-
Broker crash and 50% for the two-Broker crash. Therefore, even
though the two-Broker crash offered lower response times, there
were further lost communications with the Kafka library used.
We will look at how to improve this in the future. It is important
to note that these results are only at the moment when the
28
Fig. 16. Inference latency response with 32 clients and different replicas down.

Fig. 17. Inference latency response with 32 clients and different Apache Kafka
Brokers down.

Brokers are down, since our framework deploys them in very few
seconds after crashing.

To sum up, in this scenario it has been shown how Kafka-
ML can tolerate component failures and provide high availability.
Specifically, Kafka-ML can tolerate both failures of its inference
replicas deployed and of the message distribution brokers used
without loss of information and providing high availability to end
users.

6.5. Scenario 4: Comparison with other proposals

Finally, in this last scenario we evaluated Kafka-ML with re-
spect to Faust and TensorFlow Serving. One Kafka Broker was
used for this scenario since TensorFlow Serving is not using
Apache Kafka, and we also had problems setting up Faust with
more Brokers. The deployment of 1 and 32 replicas was per-
formed for each of the platforms. Fig. 18 shows the average
response time. Regarding the streaming systems, Kafka-ML offers
slightly better results than Faust with both 1 and 32 replicas. In
the case of TensorFlow Serving, the response time is much lower
than Kafka-ML and Faust. It is true that TensorFlow Serving is not
a streaming system like Kafka-ML but an RPC server, so this com-
parison might not be entirely fair. Moreover, TensorFlow Serving
is a synchronous server, while Kafka-ML is asynchronous and
abstracts both the information producers and the possible con-
sumers and interested applications. With this we could have data
sources sending information (e.g., IoT devices) and applications
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Fig. 18. Average throughput of inference with different number of clients (3
Kafka Brokers).

Fig. 19. Average throughput of inference with different number of clients (3
Kafka Brokers).

interested in prediction results working independently, unlike the
client–server model of TensorFlow Serving. The management of
data streams is also better done with Apache Kafka (and Kafka-
ML) than working without any control (and any fault tolerance
guarantee) with an RPC server. In this case, if TensorFlow Serving
fails for whatever reason, there is no way to backup the data
sent for later processing like Kafka-ML with the distributed log.
Moreover, Kafka-ML provides other suitable features for real-
world ML/AI applications such as the management of the training
and inference steps. However, with this we show that TensorFlow
Serving is optimized for production systems (but without data
streams), and we will study in the future how we can integrate
data streams and Kafka-ML with it. The same scenario happens
with throughput (Fig. 19) as described for latency.

6.6. Kafka-ML training performance

In this last section, we will analyze how the number of the
data stream sent affects the metrics of the ML models and the
training time. For the evaluation, we used the ML model VGG16
and the CIFAR10 dataset also used for the inference performance
29
Table 2
Validation metrics of the VGG16 model with a different number of data streams
sent.
Size Loss Accuracy Time (s)

6000 1.515 0.34 39
4000 1.704 0.360 26
2000 1.037 0.6 13
1000 1.163 0.5800 6

tests. In this case, we have used only 25 epochs to compare the
results since the training time is high as we will see later. We
are aware of this, and that is why we want to extend Kafka-ML
to allow distributed training and GPU support. The VGG16 model
used is also a deep learning model with many layers that requires
a lot of processing for training. Ninety percent of the data streams
were intended for training and 10% for evaluation, a batch size of
10, and a learning rate scheduler with epoch decay have also been
used in this case. Each test has been performed only once due to
the training time.

Fig. 20 shows the training loss of the VGG16 model regarding
the training epochs with the 4 different data stream sizes used
(60,000, 40,000, 20,000 and 10,000 respectively). As can be seen,
as the number of data streams used for training decreases, the
loss, in general, starts with a higher value and takes more epochs
to converge. This may be due to the fact that having a smaller
dataset makes it more difficult for the training to find patterns
for the large number of layers used. Regarding accuracy (Fig. 21),
the behavior is also similar. As the dataset is smaller, the accuracy
takes more epochs to raise, and in this case, the learning rate up-
date is noticeable in terms of accuracy after 10 epochs. The overall
accuracy of this deep learning model is low because not many
epochs have been used due to the time required. As described
in Algorithm 1, validation is performed right after training. In
this case, we do not obtain the results by epochs as during the
training, and that is why no learning curves of the validation have
been shown. Only the resulting metrics are obtained through
the algorithm, which are shown in Table 2. The size used for
validation shown in the table is 10% of the data stream sizes
indicated previously. In general, as the size of the data stream
used for validation increases, the accuracy decreases, which may
indicate that the model needs further training. The time is also
proportional to the number of data streams sent and significantly
less than during training.

Finally, regarding the training time, it can be seen in Fig. 22
that the training time is proportional to the number of data
streams sent. With the size of 60,000 data streams, the training
process took 19.34 h (around 2780 s per epoch) while with 10,000
data streams it took 3.26 h (around 470 s per epoch).

7. Discussion

In this section, the main innovations of Kafka-ML and how this
open-source framework addresses the main challenges presented
in the introduction are discussed.

• How can current ML/AI frameworks and their pipelines be
integrated with continuous data streams?

Kafka-ML provides an innovative and open-source framework
to integrate data streams and ML/AI frameworks. To the best of
our knowledge, Kafka-ML is the first open-source framework to
do so. This framework enables the management of the pipeline of
ML/AI applications, since an ML model is defined until it is trained
and deployed to perform inference (Fig. 2). Kafka-ML manages
the steps involved in the management of the pipeline of ML/AI
applications such as container creation and data stream ingestion
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Fig. 20. Training loss of the VGG16 model with a different number of data
streams sent.

Fig. 21. Training accuracy of the VGG16 model with a different number of data
streams sent.

transparently to end users. As future work, learning curves such
as those seen in Section 6.6 will be made available in the Kafka-
ML interface so that users can better assess when models are
ready for inference through data streams.

• How can an accessible and collaborative tool be achieved to
evaluate and compare ML/AI model metrics and results?

As shown in Fig. 9, once configurations are trained, users can
isualize the metrics or even download the trained ML models in
he Kafka-MLWeb UI. Metrics are automatically inferred based on
he ML model definition and are available in Kafka-ML right after
raining and evaluation. Moreover, users can easily group a set of
L models through configurations to evaluate their performance
sing a single data stream. The data stream adoption also opens
he door to new synergies and data source integrations such as
he IoT. The pipeline to manage the life cycle of ML models is
ntuitive and can be deployed in a shared and collaborative infras-
ructure. Therefore, this open-source and accessible framework
30
Fig. 22. Training time of the VGG16 model with a different number of data
streams sent.

can be definitely used as a collaborative tool to evaluate the
performance of ML models using data streams. It is noteworthy
that this is just the initial phase of the work and Kafka-ML intends
to improve its ML model and hyperparameter versioning system
in the near future.

• How can data streams be reused and combined in ML/AI tasks?

The management of data streams in Kafka-ML, described in
Section 4.7, enables effectively controlling of the received data
streams, thus allowing their reusability. This exploits the dis-
tributed log of Apache Kafka, where consumers can freely move
through to consult both current and historical data. A Kafka con-
trol topic is used to indicate Kafka-ML tasks like training in which
topic and where exactly in the log data streams are available.
Therefore, once data streams are sent for training, they can be
reused by sending only a control message (a few bytes). Regard-
ing inference, by specifying only the input topic, data streams
can be reused among different deployed models. Furthermore,
the data stream load among inference tasks can be distributed
thanks to the group functionality of Apache Kafka and the repli-
cation possibility provided in the inference module as seen in the
evaluation.

• How can a solution be applied to portable and high availability
architectures for production deployments?

The Kafka-ML architecture and its components have been
designed as microservices, which can be easily made portable
and installed through Dockers containers. This reduces depen-
dency problems installing software since each container specifies
how and which software is required for building and running
applications. Their lightweight also facilitates the portability of
applications. However, Kafka-ML is not only intended to run with
Docker containers but also in high availability and production en-
vironments. For this purpose, Kafka-ML is managed by a container
orchestration solution, which is responsible for managing Kafka-
ML components and their tasks, such as training and inference,
ensuring the scalability of system when required and offering
fault tolerance and high availability. It is noteworthy that the
data stream management in Kafka-ML also provides support for
fault tolerance regarding data streams through topic replicas and
high availability through topic partitions and consumer groups,

ensuring that there is no loss of information.
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8. Conclusions and future work

In this paper, Kafka-ML, a novel and open-source framework
or managing the pipeline of ML/AI applications through data
treams, has been presented. Kafka-ML is characterized by its
ccessibility and ease of use since users need only a few lines
f source code to create an ML model in its Web UI to control
he ML/AI pipeline, creating configurations to evaluate different
L models, training, validating, and deploying trained models

or inference. Therefore, Kafka-ML offers an innovative and open-
ource solution to manage the daily tasks performed by many
L/AI researchers and developers worldwide. All of this with
new approach based on data streams, which can be properly
anaged and losslessly stored in Kafka-ML. Moreover, a novel
pproach based on the distributed log of Apache Kafka has been
dopted to have full control over received data streams in Kafka-
L, enabling its ML/AI applications to reuse these data streams
nd eliminating their dependency on data storage or file systems.
afka-ML architecture and deployed jobs (training and inference)
re fully containerized, enabling fault-tolerance and high avail-
bility for production environments. It is important to note that
he approach applied with Apache Kafka in Kafka-ML can also be
xtrapolated to other systems and solutions. Kafka-ML is openly
vailable in GitHub to be used and improved by both experts and
on-experts on ML/AI adopting data streams.
As future work, we have pointed out the following challenges

nd improvements to Kafka-ML:

• Distributed inference. Deep neural network layers can be
partitioned into multiple and independent ML models as
well as through intermediary exits [60]. Their execution
can be optimized in the fog, edge, and cloud computing
paradigms. The objective is to enable the training and parti-
tioning of ML models in Kafka-ML, so as to deploy them in
the IoT-Cloud continuum [61]. New architectures to support
the whole data flow between layers are also required.
• Distributed training. Currently, training is performed in a

single container that may not be enough for large neural
networks. Other approaches for distributed training in Ku-
bernetes, such as Kubeflow and GPU support [62], should be
explored in this regard.
• Support for other ML frameworks. This will depend on the

developments of other ML frameworks to enable Apache
Kafka, as TensorFlow did with TensorFlow/IO. In any case,
new data stream connectors to other ML frameworks can
be explored.
• IoT and ML/AI. IoT is taking place into the ML/AI pipeline

as demonstrated by initiatives such as uTensor17 and Ten-
sorFlow Lite18 for on-device inference. The generation of
ML models for IoT devices and even theirs installation from
Kafka-ML could expand the ML/AI pipeline to the IoT.
• Integrate other processing tasks. Finally, many applications

such as structural health monitoring may use ML/AI but
also other statistical and processing tasks that may require
the same data stream. Therefore, Kafka-ML could also man-
age these non-ML/AI tasks to integrate them with the data
stream utilized.
• Improve the provenance of information. Linking ML mod-

els with datasets utilized, choice of hyperparameters, and
any related information that could be useful for users to
keep track of the applied transformations and model gov-
ernance [63].

17 https://github.com/uTensor/uTensor.
18 https://www.tensorflow.org/lite.
31
• Obtaining more results on the end-user’s experience of us-
ing Kafka-ML. Four members of our research team have
tested the Kafka-ML platform and have confirmed its usabil-
ity and ease of use. As a future work, our idea is to collect
the feedback of users outside of our group.

CRediT authorship contribution statement

Cristian Martín: Software development, Conceptualization,
First manuscript draft. Peter Langendoerfer: Supervised the re-
search, Conceptualization, Manuscript review, Funding. Pouya
Soltani Zarrin: Helped in integrating with the Exasens dataset,
Use case redaction, Manuscript review. Manuel Díaz: Super-
vised the research, Conceptualization, Manuscript review, Fund-
ing. Bartolomé Rubio: Supervised the research, Conceptualiza-
tion, Manuscript review, Funding.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work is funded by the Spanish projects RT2018-099777-
B-100 (‘‘rFOG: Improving Latency and Reliability of Offloaded
Computation to the FOG for Critical Services’’), PY20_00788 (‘‘In-
tegraDos: Providing Real-Time Services for the Internet of Things
through Cloud Sensor Integration’’) and UMA18FEDERJA-215
(‘‘Advanced Monitoring System Based on Deep Learning Services
in Fog’’). Cristian Martín was with a postdoc grant from the Span-
ish project TIC-1572 (‘‘MIsTIca: Critical Infrastructures Monitoring
based on Wireless Technologies’’) and his research stay at IHP
has been funded through a mobility grant from the University
of Malaga and IHP funding. Funding for open access charge:
Universidad de Malaga/CBUA. We are grateful for the work of
all the reviewers who have greatly contributed to improving the
quality of this article. We would like to express our gratitude
to Kai Wähner for his inspiration and ideas through numerous
articles and GitHub repositories on Kafka and its combination
with TensorFlow.

References

[1] Y. Lu, Artificial intelligence: a survey on evolution, models, applications
and future trends, J. Manage. Anal. 6 (1) (2019) 1–29.

[2] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, S. Muthukrishnan, One
trillion edges: Graph processing at facebook-scale, Proc. VLDB Endow. 8
(12) (2015) 1804–1815.

[3] M. Díaz, C. Martín, B. Rubio, State-of-the-art, challenges, and open issues in
the integration of Internet of things and cloud computing, J. Netw. Comput.
Appl. 67 (2016) 99–117.

[4] Internet of Things at a Glance, 2021, Available online: https:
//emarsonindia.com/wp-content/uploads/2020/02/Internet-of-Things.pdf,
(accessed on 15 May 2021).

[5] G. Nguyen, S. Dlugolinsky, M. Bobák, V. Tran, Á.L. García, I. Heredia, P.
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