
Citation: Lehniger, K.; Langendörfer,

P. Through the Window: Exploitation

and Countermeasures of the ESP32

Register Window Overflow. Future

Internet 2023, 15, 217. https://

doi.org/10.3390/fi15060217

Academic Editor: Claude Chaudet

Received: 27 April 2023

Revised: 14 June 2023

Accepted: 15 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

future internet

Article

Through the Window: Exploitation and Countermeasures of the
ESP32 Register Window Overflow †

Kai Lehniger 1,* and Peter Langendörfer 1,2

1 IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
2 BTU Cottbus-Senftenberg, 03046 Cottbus, Germany; peter.langendoerfer@b-tu.de or

langendoerfer@ihp-microelectronics.com
* Correspondence: lehniger@ihp-microelectronics.com; Tel.: +49-335-5625-277
† This article is a revised and expanded version of the paper entitled “Through the Window: On the

exploitability of Xtensa’s Register Window Overflow”, which was presented at “International
Telecommunication Networks and Applications Conference 2022 (ITNAC 2022)”.

Abstract: With the increasing popularity of IoT (Internet-of-Things) devices, their security becomes
an increasingly important issue. Buffer overflow vulnerabilities have been known for decades,
but are still relevant, especially for embedded devices where certain security measures cannot be
implemented due to hardware restrictions or simply due to their impact on performance. Therefore,
many buffer overflow detection mechanisms check for overflows only before critical data are used.
All data that an attacker could use for his own purposes can be considered critical. It is, therefore,
essential that all critical data are checked between writing a buffer and its usage. This paper presents
a vulnerability of the ESP32 microcontroller, used in millions of IoT devices, that is based on a
pointer that is not protected by classic buffer overflow detection mechanisms such as Stack Canaries
or Shadow Stacks. This paper discusses the implications of vulnerability and presents mitigation
techniques, including a patch, that fixes the vulnerability. The overhead of the patch is evaluated
using simulation as well as an ESP32-WROVER-E development board. We showed that, in the
simulation with 32 general-purpose registers, the overhead for the CoreMark benchmark ranges
between 0.1% and 0.4%. On the ESP32, which uses an Xtensa LX6 core with 64 general-purpose
registers, the overhead went down to below 0.01%. A worst-case scenario, modeled by a synthetic
benchmark, showed overheads up to 9.68%.

Keywords: Xtensa; memory corruption; buffer overflow; register windows; windowed ABI; return-
oriented programming

1. Introduction

Xtensa is a processor architecture for application-specific designs. It offers a large set
of configuration options, starting from various-size options of caches and registers up to
the inclusion of instruction-set extensions and the possibility to include its own instructions
in the design to accelerate computation. It is used for fast audio and video processing, but
also in microcontrollers, such as the ESP32.

One of the configuration parameters is the Application Binary Interface (ABI). Xtensa
offers two different ABIs, call0 and windowed [1]. The call0 ABI has standard calling
conventions using a function’s prologue and epilogue to save and restore registers, whereas
the windowed ABI offers a larger number of physical registers and a sliding-window
mechanism similar to the SPARC architecture to increase speed and code density [1].

A register window is a mapping of a virtual register set to a larger physical set. When
a function is called, instead of saving registers to the stack, the mapping of the register
window can be changed to make new registers available. When the function returns, the
mapping is moved back.

Future Internet 2023, 15, 217. https://doi.org/10.3390/fi15060217 https://www.mdpi.com/journal/futureinternet

https://doi.org/10.3390/fi15060217
https://doi.org/10.3390/fi15060217
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com
https://orcid.org/0000-0002-3274-2469
https://orcid.org/0000-0002-6209-9048
https://doi.org/10.3390/fi15060217
https://www.mdpi.com/journal/futureinternet
https://www.mdpi.com/article/10.3390/fi15060217?type=check_update&version=3


Future Internet 2023, 15, 217 2 of 19

As the number of physical registers is limited, it happens that the processor runs out
of unused registers when a new function is called. In this case, registers must be saved onto
the stack. For Xtensa, a window-overflow exception is thrown. Later, when the control flow
returns to a function call that had its registers saved onto the stack, a window underflow
exception is thrown by the return instruction to load the registers’ content back [2].

Past works have demonstrated that the window underflow exception handler can be
exploited to change the control flow of a program, allowing Return-Oriented Programming
(ROP) attacks [3,4]. ROP attacks change the control flow of a program by overwriting a
vulnerable return address on the stack [5]. This work now focuses on the mechanisms of
the window-overflow exception handler and tries to give a detailed analysis regarding the
potential exploit.

Although not as potent as the window underflow exception handler, due to the limita-
tions we discovered, this paper demonstrates how a stack buffer overflow vulnerability in
combination with a window overflow can be used to modify values outside of the stack
segment. In addition, we describe how this attack can be used to bypass Stack Canaries and,
under rare conditions, be extended to a ROP attack. Stack Canaries offer protection against
stack buffer overflows that insert a guard word after local variables in a stack frame [6].
This guard word is checked for modification before the function returns. A register win-
dow overflow can be triggered after a stack buffer overflow that accesses data that was
manipulated by the aforementioned buffer overflow. As this can be done before the Stack
Canary check is executed, the manipulation can be hidden, and the overflow attack goes
undetected. The restrictions of this method are discussed, and a possible countermeasure
is presented.

This paper focuses only on the Xtensa LX architecture used in the ESP32 microcon-
troller. There is already a successor, the Xtensa NX architecture, which uses a simplified
register window mechanism, which does not contain the vulnerability anymore. Never-
theless, there are still millions of devices using the Xtensa LX architecture. Therefore, we
believe our analysis and the presented patch are still of great use to the community.

This work is an extension to a paper first presented at the International Telecommu-
nication Networks and Applications Conference 2022 (ITNAC 2022) [7]. The contribu-
tions of the original paper were the introduction of a new vulnerability that utilizes the
window-overflow exception handlers of the Xtensa LX architecture. Countermeasures
were introduced to mitigate the vulnerability. One particular countermeasure that involves
a small patch of the exception handlers was evaluated. With this extension, we hope
to provide a better introduction to the field as well as a more detailed discussion of the
vulnerability. We also extended our evaluation by moving to a real board instead of relying
on simulations, leading to unexpected results as well as an adaptation to our benchmark
methodology using a synthetic benchmark as an addition to the CoreMark benchmark. We
also extended our discussion of the feasibility of the vulnerability with regard to memory
safety measures of the ESP32 microcontroller.

The rest of this paper is structured as follows. Section 2 describes the current state of
the art, and Section 3 describes the window mechanism of the Xtensa architecture. Section 4
describes the exploit in detail and Section 5 discusses countermeasures. In Section 6, our
proposed countermeasure is evaluated. Section 7 concludes this paper.

2. State of the Art

Buffer overflows are a common vulnerability that has been known for decades. The
usage of unsafe languages such as C, especially for embedded programming, short time-to-
market, and the lack of security update support for a lot of cheap IoT devices are just some
reasons why buffer overflows are relevant up to this date.

First, stack buffer overflows were used to inject binary code into the stack segment
and overwrite the return address to change the control flow to the injected code [8]. These
so-called shellcode injection attacks can be prevented by marking the stack segment as
non-executable, a technique implemented by most modern processors.



Future Internet 2023, 15, 217 3 of 19

Return-into-libc attacks were developed to manipulate function arguments and jump
to a system function call to create malicious behavior. This was later generalized into
ROP [5], an attack that uses existing code snippets called gadgets. All these gadgets consist
of a small number of instructions and a return. By overwriting a return address on a stack
with the address of such a gadget, it is possible to change the control flow and execute
the instructions of the gadget. The return of the gadget can then pick-up the next gadget
address from the stack, which creates a gadget chain. This allows an attacker to create
arbitrary behavior with a sufficiently large set of gadgets.

To prevent the manipulation of the return address, various mechanisms have been
implemented. The most popular ones are Stack Canaries and Address Space Layout
Randomization (ASLR) [9]. ASLR randomizes the location of segments when a process
is loaded, which requires an OS to implement it. Therefore, it is often missing in deeply
embedded systems where the application is linked together with OS components into a
single binary. Although not directly protecting return addresses, it makes the manipulation
of something more complicated as an attacker first needs to find out the addresses before
he can redirect the control flow.

Recently, it has become common to protect the control flow directly with Control
Flow Integrity (CFI) [10]. CFI does that by including runtime checks into the program
that either checks against a common ruleset in coarse-grained CFI [11–13], or against a
pre-calculated Control Flow Graph (CFG) in fine-grained CFI, as described in the original
implementation [10]. The problem with the CFG approach is that backward edges (function
returns) can lead to many positions in the code, making CFI weak. Shadow Stacks are a
great alternative to protect these backward edges instead of using a CFG [14]. A Shadow
Stack is a separate stack that contains a copy of all return addresses. Before a return address
is used, it is compared against its copy.

A more recent protection mechanism of return addresses is chaining them together [15,16].
Unused bits of a 64-bit address are used to store additional information for authentication.
Without this knowledge, an attacker cannot insert a manipulated return address without
breaking this chain. The most recent authentication information is hidden in registers, so it
is not possible to manipulate the beginning of the chain. All return addresses are checked
before usage. Although, in [15] custom hardware, extensions for a RISC-V core are used,
the authors in [16] use the Pointer Authentication (PAC) instruction-set extension for ARM,
which has recently been shown to be vulnerable against micro-architectural side-channel
attacks on Apple’s M1 processor [17].

Stack Canaries [18] are implemented by the compiler by inserting a canary word in
between a buffer and the return address and checking it for manipulation before executing
the return. There are a variety of different implementations for canaries, each with their
own pros and cons. This starts with the canary word itself. It can either consist of random
bytes, pre-defined terminator characters, or a combination of both [19]. The idea behind
using terminator characters is to make it impossible to write past the canary word with
functions that operate on strings that are commonly exploited for stack buffer overflow
attacks, i.e., strcpy.

Stack Canary protection has been broken in the past with different methods. On 32-bit
systems, it is possible to overcome canary protection with simple brute force, especially
when a combination of random and terminator bytes is used and only 1 or 2 bytes are
random. Another possibility is to leak the value of the canary word. In an attack called
stack reading [20] or a byte-by-byte [21] attack, applications that are forking child processes
are attacked by only overwriting one byte of the canary word. When the process crashes,
the guess for the byte was wrong; when it continues, the bytes were guessed correctly and
the attack continues with the next byte until the whole canary word is leaked. This works
when, during a fork operation, the canary word is not re-randomized, which was later
done by [22].

Other protection mechanisms already instrumentalize exception handlers for architec-
tures with register windows. In [23], the return address is XORed with a secret value to



Future Internet 2023, 15, 217 4 of 19

obfuscate it in a SPARC processor. The detection is made by the fact that SPARC’s instruc-
tions must be four-byte aligned, with pointers to different locations raising an exception.
Since the chance for an attacker to guess a return instruction that still results in the last
two bits being zero after being XORed with the secret value is relatively high, they also
discussed different applications of exception handler instrumentation. They present the
concept of an early Shadow Stack implementation using this mechanism. For the Xtensa
architecture, exception handler instrumentation was used to implement a variation of Stack
Canaries, called Window Canaries, where the instrumentation is moved from function
prologues and epilogues into the exception handlers [24].

3. The Xtensa Register Window Mechanism

The Xtensa architecture has a configuration to use a register window mechanism. With
this configuration, the regular number of 16 general-purpose registers a0–a15 stays the
same, but is virtualized and backed up by a larger physical register set. The physical register
set contains either 32 or 64 registers ar0–ar31/ar63, depending on the configuration.

An example of such a mapping is illustrated in Figure 1. In the example, the mapping
starts at register ar24 and ends at register ar39. The current mapping is changed when
a new function is called, or a function returns. The direction is shown in the figure. The
number of registers around which the register window is rotating depends on the call
instruction that is used for a function call. In total, there are eight different call instructions
for the Xtensa LX architecture, four for direct, and four for indirect calls. Each group
contains call instructions to move the register window by either 0, 4, 8, or 12 registers.
The instructions call0 and callx0, which do not move the register window, are only
used within the call0 ABI. As the registers shift by at most 12 registers, there is always an
overlapping between the old and new register windows. This is used to pass arguments
and return values between the caller and the callee.

... ar23 ar24 ar25 ... ar38 ar39 ar40 ...

a0 a1 ... a14 a15
Return Call

Physical Register Set

Register Window

Figure 1. Example of a register window mapping of logical registers a0–a15 to physical registers
ar24–ar39.

In general, this mechanism increases code density and efficiency as it eliminates the
necessity of saving and restoring register values in the prologue and epilogue of a function.
With a new function, the register window can simply shift to a new set of registers. It is
only limited by the number of physical registers. When a program reaches a certain call
depth, there are no registers left that are not already in use. In such a case, the processor
detects memory access to such a register and generates a window-overflow exception.
Please note that the overflow is not generated when a function is called but only when a
register that already belongs to a different window is accessed. The overflow exception is
responsible for saving register values of the non-overlapping part of the register window
to the stack before returning to the regular program flow. For example, in Figure 2, if
Function A with a corresponding register window WA is calling Function B using a call8
instruction and at a later points its register values are saved by a window overflow, a
_WindowOverflow8 handler is invoked, saving only registers a0–a7 of Function A. The other
registers are overlapping with the window of Function B and are therefore associated with
its window WB.

The processor keeps track of which windows are currently in the physical register set
and which have been written to the stack. When a program returns from a function using
a windowed return instruction retw, it is checked whether or not register values must



Future Internet 2023, 15, 217 5 of 19

be loaded back into the physical register set or not. In such a case, a window underflow
exception is invoked that restores all register contents.

a0 ... a7 a8 ... a15

ar0 ... ar7 ar8 ... ar15 ar16 ... ar23

a0 ... a7 a8 ... a15

Register Window WA

Register Window WB

Figure 2. Example of two overlapping register windows WA and WB.

4. Exploiting the Window-Overflow Exception Handler

This register window mechanism is not a security problem itself. The vulnerability
comes from the specific implementation of the window exception handlers and the way
that register values are saved. For each function call, there are pre-allocated memory areas
in the stack. There are two types of areas allocated for each stack frame, namely the Base
Save Area (BSA) and the Extra Save Area (ESA). The BSA has a fixed size of 16 bytes,
containing values for registers a0–a3. These registers represent the minimal number of
registers that move out of the current window. Any potential additional registers are stored
in the ESA. The size of an ESA can therefore vary, from 0 bytes up to 32 bytes.

The position of these memory areas is critical too. Figure 3 shows the stack for a
scenario where the registers of a function call i are about to be saved onto the stack by an
overflow exception. It shows a total of three stack frames—Frame i − 1, Frame i, and Frame
i + 1—as well as save areas that are relevant for exception handling. Other parts of the
stack frames, including ESAs other than ESA i are only represented by “...” for simplicity.

... AoI ... BSA i ... BSA i − 1 ... ESA i BSA i − 2 ...

Low High

Stack
Pointer i + 1

Stack
Pointer i

Stack Pointer i − 1manipulated Stack Pointer i − 1

Frame i + 1 Frame i Frame i − 1

Figure 3. Stack layout and relevant pointers used during a window-overflow exception to save
registers into BSA i and ESA i, including Stack Pointer i − 1, which is loaded from the stack and can
be manipulated by an attacker to point to an Area of Interest (AoI).

The placement of ESA i is straight forward. It is placed at the highest address of Frame
i. Its size depends on the call instructions used inside the function body. This way, the
compiler can determine how much space to allocate for the ESA. The BSA i, on the other
hand, is in Frame i + 1. This is used to be able to backtrack the stack, as the BSA contains
register a1, which acts as the stack pointer.

When an overflow occurs, the window is rotated to a position where the stack pointers
for Frame i and i + 1 are in the register window. For example, during an overflow of eight,
Stack Pointer i + 1 is in register a9, and Stack Pointer i is in register a1. The BSA is located
at the lowest address part of a stack frame, right below the stack pointer. This allows it
to have a fixed offset to the register values in the BSA. Finding the position of ESA i is a
little more complicated. Since stack frame sizes can differ, the offset of ESA i in relation to
Stack Pointer i is unknown for the exception handler. To reach it, it uses Stack Pointer i − 1,
which is stored in BSA i − 1. Since the size of a BSA is constant, it is possible to address the
values in ESA i using Stack Pointer i − 1 with constant offsets.

Since BSA i − 1 was already written to the stack by a previous window-overflow
exception, this is the part where an attacker can use a stack buffer overflow to alter the



Future Internet 2023, 15, 217 6 of 19

value of Stack Pointer i − 1, illustrated in Figure 3 by the red arrow. This moves the position
of the ESA to any position the attacker chooses, here named the Area of Interest (AoI). This
area could contain sensible data that the attacker wants to overwrite, or maybe is used for
memory-mapped registers, which would allow the attacker to change the configuration
of the IoT device. Another possibility is to target an output buffer to leak the saved
register values.

For the attack to work, there are few more requirements than just a simple stack buffer
overflow vulnerability. This is illustrated in a simple example in Listing 1. The shown
function vulnerablefirst copies the input into a local buffer. For an attack that targets the
return address, this would already be enough. However, widely used defense mechanisms
such as Stack Canaries would detect the buffer overflow before the return is executed.
Having another function compute or access to a high register can potentially trigger a
window-overflow exception. Therefore, the use of a manipulated pointer before the canary
word is checked.

Listing 1. Typical stack buffer overflow vulnerability.

1 void vulnerable(char *input){
2 char buffer[BUF_SIZE ];
3 strcpy(buffer , input); // potential buffer overflow
4 compute(buffer); // can trigger a window overflow
5 return; // stack canary check before return
6 }

4.1. Attack Model

We assume the attacker can perform a single consecutive write operation starting from
any local variable in the stack segment. This is a relatively weak assumption compared to
other papers that focus on defense mechanisms against more advanced memory corruption
attacks, which mostly assume the attacker is capable of arbitrary read and write opera-
tions [25]. The reason for this is that the whole purpose of the mechanism discussed in
this paper is to leverage a simple stack buffer overflow into the ability to write to arbitrary
memory addresses.

We can extend this model by allowing arbitrary read and write operations in the stack
segment. This would give the attacker the ability to circumvent canary-based protection
mechanisms more easily. The more important part is that chaining the exploit or combining
it with other attacks would become easier. The reason for this, as well as how realistic we
think this scenario is, is discussed in Section 4.4.

4.2. Example Attack: Overcome the Stack Canary Protection

As an example, in this subsection, we describe an attack that targets the Stack Canary
protection to overcome it and enable further attacks. Stack Canaries are a widely used,
compiler-based detection mechanism for stack buffer overflows. A data word is placed onto
the stack during the prologue of a function and checked for modification in the epilogue.
The idea behind this mechanism is that a stack buffer overflow must overwrite this canary
value to be able to modify sensible data such as the return address.

This implementation uses a reference canary value. It is placed in a different memory
location to the stack itself and it is assumed to be unreachable by an attacker that is only
exploiting a stack buffer overflow vulnerability. Furthermore, modification of the reference
canary value can be mitigated, for example, by using a Memory Management Unit (MMU)
or Memory-Protection Unit (MPU), if present. The ESP32 offers both. Their impact on the
subsequent vulnerability is explored in the following section.

There are two general types of canaries, namely random canaries and terminator
canaries. The random canary word is, as its name suggests, a random data word. For
the random canary word to work, it is important to re-randomize it for every start of a
process, or even with a fork of a child process to not be vulnerable against certain attacks



Future Internet 2023, 15, 217 7 of 19

such as stack reading [20]. Since embedded devices typically do not operate with strict
processes that are created and loaded, re-randomization of the canary may take more effort
and cannot fully be covered by the compiler alone.

Terminator canaries are an alternative, as they do not require randomness or secrecy to
be secure. They rely on the idea that many buffer overflows are caused by unsafe functions
that operate on strings, i.e., strcpy. These functions typically use a terminator character that
indicates the end of the string instead of a length input parameter. An attacker can use
this to create a buffer overflow simply by supplying a very long string, if said string is not
checked before processing. Terminator canaries use this by embedding these terminator
characters into the canary word. This way, an attacker that tries to overflow a buffer using
one of the unsafe string functions can no longer overflow a buffer past the canary word
without modifying it.

Another factor that will become important for the attack is that canaries are typically
not applied to all stack frames to not impact performance too much. Instead, compilers rely
on heuristics to determine which functions to instrument. Both GCC and Clang support
the stack protector feature that allows the implementation of Stack Canaries with different
levels of granularity [26,27].

• -fno-stack-protector: disables canaries.
• -fstack-protector: adds canaries to all functions that have local arrays with a size

of at least eight bytes, including all usages of the alloca function.
• -fstack-protector-strong: adds canaries to all functions containing local arrays, or

when the address of a local variable is taken.
• -fstack-protector-all: adds canaries to all functions.

The specific attack to disable the canary protection will not work if all functions are
protected by canaries, for a reason that will be discussed later in detail. The attack itself is divided
into two parts, illustrated in Figure 4. More details are to be found in Sections 4.2.1 and 4.2.2.

• First part: where a register value is leaked to gain information about the attacked
application, and

• Second part: where the reference canary value is manipulated to disable the Stack
Canary protection.

Both parts are carried out using the same vulnerability. The main idea is that the
leaked register information is used to overwrite the reference canary value. The attacker
can use the leaked information to place the new canary value in the attack payload at
appropriate places. With the ability to overwrite the reference canary value, there is no
need to leak the original reference canary value. It also defeats terminator canaries as the
terminator characters are replaced by other values.

SP already
on stack

SP points to
string buffer

SP points to
reference canary

Value of a7
in string buffer

Reference canary
overwritten with

value of a7

Error message leaks
value of a7

Canary check
fails

First
Part

Buffer
Overflow

Window
Overflow

Canary
Check

Second
Part Buffer

Overflow
Window
Overflow

Canary
Check

Figure 4. Schematic of the window overflow attack to overcome Stack Canary protection.

4.2.1. Leak Application Information

The first step is mainly taken to gather information about the system. If the attacker has
other means to gain all or some of this information, i.e., reverse engineering or debugging,
this step can be (partly) skipped. Information such as the position of the reference canary
word may be easier to acquire with different methods. Therefore, the explanation will focus
on how to leak register values that are needed for the second step.



Future Internet 2023, 15, 217 8 of 19

Figure 5 shows how ESA i must be placed for the attacker to leak register a7. The rea-
son to only leak one register is to minimize the chance of overwriting any of the characters
with a terminator character as well as leaving the ‘\n’ character at the end of the string
intact to make sure the output buffer is flushed before the program terminates. Knowing
the value of a single register is also sufficient to carry out the next step.

a4 a5 a6 a7

‘\n’ ‘s’ ‘t’ ‘a’ ‘c’ ‘k’ ‘ ’ ‘s’

(Stack Pointer i − 1)− 20

manipulated position of ESA i

beginning of stack protector error message

Figure 5. Using the manipulated stack pointer to overlap ESA i with the error message of the stack
protector implementation.

A part of the execution sequence, based on the code snipped in Listing 1, is depicted
in Figure 6. After buffer was overflown using the strcpy function, compute is called, which
triggers a window overflow. This is where the error message string is overwritten. Only
when vulnerable is about to return is the stack buffer overflow detected by checking the over-
written canary value. The __stack_ckh_fail function is called, which prints the manipulated
error message and leaks the value of a7 accordingly.

vulnerable compute WindowOverflow8 __stack_chk_fail

call exception

overwrite
error message

return

canary manipulation detected

print error message
and leak a7's value

Figure 6. Execution sequence of a vulnerable program to leak a register value [7].

4.2.2. Overwrite the Reference Canary Value

This pattern of attack is very similar. Instead of writing the value of register a7 into a
string buffer, we now target the reference canary value. As a result, the reference canary
value is overwritten with the value of a7, which was leaked in the previous step. To bypass
the canary check, the leaked value just needs to be placed at the correct position in the
payload, and the check will pass as both canary values are now containing the leaked value
of a7.

4.2.3. Limitations

To make this attack work, some requirements need to be fulfilled. The Stack Canary
implementation itself must print a static string that can be overwritten. This condition



Future Internet 2023, 15, 217 9 of 19

is met by several implementations [28]. The value of register a7 should not contain any
terminator characters, and the positions of the error message string and the reference canary
value must be known or be obtained by brute-forcing it. To ensure the correct prediction
of the value of register a7, step one of the attacks should be performed multiple times to
make sure that either

• the value stays constant throughout multiple runs, or
• directly depends on the payload the attacker sends,
• or neither of the above.

Depending on the result, the attack may become easier or impossible. In a best-case
scenario, the register values depend directly on the input, which makes more elaborate
attacks easier, i.e., writing specific values to memory-mapped registers, influencing the
device configuration. If the register value does not depend on the input, it may stay
constant, in which it may contain a terminator character that stops the attack, following
a recognizable pattern such as being used for counting incoming messages, making the
attack more complicated but not impossible, or is completely random, which also breaks
the attack.

It is also possible that compute does not trigger an overflow directly (because vulnerable
called another function such as strcpy before) and further function calls inside compute
are necessary. In this case, it is critical that compute is not protected by canaries itself as it
would load the old canary value to the stack, but would use the manipulated reference
value for the check. As compute’s stack frame is located at a lower address than vulnerable’s
stack frame, it is not possible to manipulate its canary value. This condition is met when
using the –fstack-protector flag, which is the most common, but not when using the
–fstack-protector-all flag, which adds canary checks to all functions.

This attack has an advantage against terminator canaries. As the value of the canary
is actively changed, removing the terminator characters, stack buffer overflows caused
by functions such as strcpy can be exploited, which is not possible by simply leaking the
reference canary value.

4.3. MPU and MMU Protection

It is common practice to isolate memory regions that contain critical data from the rest
of the application to prevent the data from being tampered with. In a deeply embedded
environment, this might be even worse, as it is possible that there is no separation between
user- or kernel-space, or separation between different tasks. Although there are pure-software
solutions, such as Software Fault Isolation (SFI) [29], that can be used for that purpose,
solutions that rely on hardware support are often preferred due to lower overheads.

The ESP32 offers an MPU as well as an MMU, depending on the memory region that
should be protected [30]. Both protection units control access based on eight different
Process Identifiers (PIDs). PIDs 0 and 1 act as privileged PIDs, with access to all physical
addresses, and are not affected by the MMU memory mappings. For the other PIDs, the
MPU blocks all memory access and the MMU allows the creation of custom memory
mappings for each PID. Additionally, the PID controller provides a way to switch to PID 0
on an interrupt. Switching to another PID can be done manually when currently having a
privileged PID.

There are two problems with this feature set. The limit of only six different user-level
PIDs is very restrictive, even for an embedded system. This makes it complicated to
implement memory-protection features such as the FreeRTOS MPU Support [31], which
assigns a different PID to each task. It can be used to realize a simple kernel–user–space
separation, as done in Apache NuttX. The problem is that this implementation switches
to the kernel mode for window overflow and underflow handlers, and defines hooks that
switch back to the previous PID at the and of the handler [32]. As a result, all memory
access, including the vulnerable one, is done with PID 0, breaking the memory protection
for the window-overflow vulnerability.



Future Internet 2023, 15, 217 10 of 19

4.4. Applicability and Conflict with Return-Oriented Programming

Just bypassing the stack buffer overflow detection is most likely not the goal of
an attacker. Therefore, we investigated how the exploit can be further developed into
manipulating the control flow, in particular a ROP attack.

Without going into too many details on how ROP works on Xtensa’s windowed ABI,
it is important to know that window underflow exceptions are used to overwrite the return
address and the stack pointer of register values that have been placed onto the stack before.
It is important to control the stack pointer to be able to continue the gadget chain, as all
registers are loaded with offsets to the stack pointer. This gives us the following order
of events:

1. an overflow exception that saves the return address and stack pointer to the stack,
2. a buffer overflow that overwrites these values, and finally
3. an underflow exception that loads the manipulated values back into the register set.

On the other hand, we have the following order of events to execute the second step
to bypass the canary protection:

1. a buffer overflow that overwrites a stack pointer, so it points to the location of the
canary value, and

2. an overflow exception that loads this stack pointer and overwrites the canary value.

This gives us two overflow exceptions that need to happen, i.e., one before and one
after the buffer overflow. This also means that two corresponding underflow exceptions are
occurring in reverse order. That means the first underflow exception restores the registers
of the overflow exception that happens after the buffer overflow. In conclusion, the register
values cannot be manipulated with the buffer overflow itself.

To make matters worse, if we want to use the second underflow exception to load a
gadget address and stack pointer, it becomes apparent that the position for the stack pointer
is already occupied in the payload by the pointer to the canary value. That is because we
manipulated the stack pointer that was loaded by backtracking the stack one frame, which
is the frame that was stored by the first overflow exception.

In theory, we need a third underflow exception that loads the manipulated values;
however, with the second underflow exception loading the pointer to the location of the
reference canary value as the stack pointer, the position of the stack is now at a completely
different position and will most likely crash the program when we try to continue to use
it as a stack. Due to this fact, ROP attacks are very unlikely to be executed successfully,
although they are not impossible.

To be able to execute a ROP attack after bypassing the canary value, we need to add
more requirements to the attacked program, which decreases the chances that a program
can be attacked in this way. The problem is the stack pointer that points outside of the
stack segment, so we must either overwrite this value again, which would require another
buffer overflow, or we need to skip the underflow exception that loads this value into a
register. This can be achieved by mechanisms that subvert the regular control flow, such as
exception handling in C++ or setjmp/longjmp in C.

This is the case when we assume the attacker has capabilities explained in the extended
attack model. Being able to write to the stack multiple times, i.e., by triggering multiple
buffer overflows, would allow it to manipulate another stack pointer after it was written to
the BSA by a window-overflow exception that already executed the exploit, to chain an
arbitrary number of random-access writes together. It would also make ROP attacks easier
to execute for the same reason. This is also a more realistic scenario as it would only require
two memory corruptions, the first before a window overflow for the overflow exploit, and
one afterwards to fix the manipulated stack pointer and inject the ROP payload.

Besides ROP, other techniques would benefit from disabled Stack Canaries, e.g., Jump-
Oriented Programming (JOP). As JOP relies mainly on indirect jumps, it should not be
affected by the overflow/underflow mechanism. However, to the best of our knowledge,
JOP was not researched for the Xtensa architecture, and remains an open topic.



Future Internet 2023, 15, 217 11 of 19

5. Countermeasures

The vulnerability is specific to the LX version of the Xtensa architecture. In the newer
version, Xtensa NX, the number of different call instructions is reduced and only a window
rotation of eight registers is supported. This also results in a simplification of the window
overflow and underflow exception handlers, as there is no longer a separation into BSA
and ESA. No longer having an ESA also eliminates the need for stack backtracking, and
with that closes the vulnerability. However, current microcontrollers are still using the
Xtensa LX architecture and are probably staying in the field inside IoT devices for many
years before being replaced. Therefore, efficient countermeasures are still relevant.

With the Xtensa NX architecture, there is already a version of the Xtensa architecture
that only uses a window shift with a single size of eight and only uses a single register
save area without backtracking. Taking this as an inspiration and the fact that compilers
exclusively use the window shift of eight for code generation, a fix could be to apply the
fixed-window implementation of the Xtensa NX architecture to Xtensa LX cores. More
difficult, probably, is the adoption of low-level firmware code. Switching to a fixed-window
implementation could require lots of adoptions instead of just simply changing the used
function call instructions. We therefore cannot fully estimate the necessary work that this
change would require.

The problem of this vulnerability is not that it is hard to detect, but that it uses a new
kind of pointer before existing countermeasures can take effect. Although there are general
working countermeasures such as SFI, a more targeted solution with minimal overheads is
more desirable. In this section, we present countermeasures to detect an exploitation of the
vulnerability.

5.1. Plausibility Check

The basic idea is to use the inherent property of the pointer being used for backtracking
the stack. As a result, we know that the stack frame this pointer points to must be at a higher
address than the current stack pointer. Since the attacker is already able to manipulate
memory at higher addresses using the buffer overflow itself, we believe this attack is most
likely to be used to affect lower addresses. We will later also discuss possible scenarios
where this assumption holds not to be true.

With this assumption, however, we can create a simple test inside the relevant window-
overflow exception handlers to verify if a backtracking pointer is being tampered with.
Listing 2 shows the _WindowOverflow8 exception handler before the changes on the left side
and after the changes on the right side. The implementation for the _WindowOverflow12
handler looks equivalent and the _WindowOverflow4 handler is not changed as there is no
stack backtracking. There are three relevant pointers: a1 and a9 contain stack pointers of
adjacent windows, and line 2 loads a third stack pointer into register a0. We use one of the
already-present stack pointers to check if the recently loaded stack pointer in register a0 is
located at a higher address. We selected register a9, but register a1 would work just as well.

In case we detect manipulation of the value in register a0, we force the program to
crash by setting the value of a0 to 32. This results in the instruction in line 10 accessing
address null. This is enough for demonstration purposes, but a cleaner implementation
would probably invoke an error handler instead of simply crashing the program. At this
point, it suffices to say that invoking an error handler within the interrupt context, especially
with a manipulated stack and register values, comes with its own complications, which are
discussed in broader detail in [24].



Future Internet 2023, 15, 217 12 of 19

Listing 2. Overflow exception handler before (left) and after (right) adding a check for the loaded
pointer [7].

1 _WindowOverflow8:
2 s32e a0 , a9, -16
3 l32e a0 , a1, -12
4

5

6

7 s32e a1 , a9, -12
8 s32e a2 , a9, -8
9 s32e a3 , a9, -4

10 s32e a4 , a0, -32
11 s32e a5 , a0, -28
12 s32e a6 , a0, -24
13 s32e a7 , a0, -20
14 rfwo

1 _WindowOverflow8:
2 s32e a0 , a9, -16
3 l32e a0 , a1, -12
4 bgeu a0 , a9, _L
5 movi.n a0 , 32
6 _L:
7 s32e a1 , a9, -12
8 s32e a2 , a9, -8
9 s32e a3 , a9, -4

10 s32e a4 , a0, -32
11 s32e a5 , a0, -28
12 s32e a6 , a0, -24
13 s32e a7 , a0, -20
14 rfwo

5.2. Breaking with the Assumption

The core assumption for this protection mechanism is that the attacker uses the
vulnerability to access addresses that are located at lower addresses than the stack, as
higher addresses could be reached with the stack buffer overflow anyway. That said, in
an embedded environment, an attacker might have reasons to reach for higher addresses
instead of lower ones. In a multi-task scenario, one task that contains the stack buffer
overflow vulnerability could be used purely to modify values on another task’s stack,
which is located at a higher address. The reason could be that stack buffer overflows can be
sufficiently detected so the task is being shut down. Of course, if this leads to the whole
device being restarted, this is not an option. It can be assumed that access to other stacks is
possible, either due to the lack of memory-protection mechanisms or the fact that they can
be circumvented, as described in Section 4.3.

To account for the cases, the proposed check could be extended to also check for an
upper bound of the loaded stack pointer. This, however, raises some problems. The lower
bound can be defined by another stack pointer, but there is no stack pointer available for
a frame that is located at a higher address. Additionally, since all tasks share the same
exception handlers, it is not possible to use a fixed address as an upper bound. One
possibility is to use the largest stack size in the application as a bound. This would be
an upper bound of how much the loaded stack pointer would be allowed to increment
compared to the previous stack pointer. As this would only be a rough estimation, it would
still be possible for an attacker to reach past a stack frame. To make sure no memory
corruption is possible outside of the affected stack, a reasonable amount of memory must
be used as a buffer between the stack and the next memory region. In the case of only
one large stack frame in the entire program, this could lead to huge amounts of unusable
memory.

6. Evaluation

We evaluated our countermeasure using the simulation of an Xtensa LX7 core with
32 physical registers as well as an ESP32-WROVER-E development board with two Xtensa
LX6 cores with 64 physical registers. The simulation results were part of a previous
publication [7].

6.1. Simulation Results

For simulations, we used a minimalistic Xtensa configuration with 32 physical registers.
We profiled our implementation with a cycle-accurate instruction-set simulator by Cadence.
As a benchmark, we selected CoreMark [33], a CPU benchmark for embedded systems. We
did not use the reported performance numbers of the benchmark itself but instead, we used



Future Internet 2023, 15, 217 13 of 19

the results of the profiling tool, as we just wanted to have a complex-enough application
that represents typical tasks of an embedded system and makes use of the greater power of
the profiler.

The application was compiled with the xt-clang and the xcc compilers, and the test
was run three times with different optimization levels, as optimization techniques such
as inline functions can heavily affect the number of window exception handler calls. The
programs were compiled with

• -O0 for no optimization,
• -Os for size optimization, which is commonly used for embedded devices to create

the smallest binary possible, and
• -O3 to enable all optimizations to increase performance, even if it increases the code

size (i.e., inline function).

The results for the two compilers were very different; for xt-clang, they are shown
in Table 1 and for xcc, in Table 2. The top half shows the number of different window
overflows that occurred, and the bottom half displays the base number of clock cycles
without the protection mechanism, as well as the absolute and relative overhead introduced
by it. Although the overheads for the exception handler itself stay almost constant at around
36.3%, the overall overheads for the application greatly vary from 0.024–0.036% for xt-clang,
and up to 0.104–0.423% for xcc, depending on the level of optimization.

Table 1. Simulation results for 10 iterations of CoreMark compiled with xt-clang measured in clock
cycles [7].

-O0 -Os -O3

Number of exception handler calls

_WindowOverflow4 3 3 3

_WindowOverflow8 1104 453 288

_WindowOverflow12 0 0 0

Base (+ protection overhead) clock cycles

Total
17,359,869 5,025,383 4,522,967

+4230 +1807 +1139
+0.024% +0.036% +0.025%

_WindowOverflow8
12,188 4987 3172
+4416 +1812 +1152

+36.232% +36.334% +36.318%

Table 2. Simulation results for 10 iterations of CoreMark compiled with xcc measured in clock
cycles [7].

-O0 -Os -O3

Number of exception handler calls

_WindowOverflow4 3 3 3

_WindowOverflow8 3929 3924 3920

_WindowOverflow12 0 0 0

Base (+ protection overhead) clock cycles

Total
15,015,694 5,313,717 3,726,070

+15,672 +16,022 +15,752
+0.104% +0.302% +0.423%

_WindowOverflow8
43,224 43,168 43,124

+15,716 +15,696 +15,680
+36.359% +36.360% +36.360%



Future Internet 2023, 15, 217 14 of 19

These large differences can be explained by looking at the differences in the number
of window overflows for the different configurations. Although xcc shows great improve-
ments with higher optimization levels, the number of window overflows (and, with that,
also the absolute overhead) stays almost constant. In contrast, xt-clang heavily decreases the
number of overflows with higher optimization levels (e.g., by inlining functions) resulting
in smaller absolute overhead.

6.2. ESP32 Results

We repeated the benchmark on a recent microcontroller using the ESP32-WROVER-E
development board based on the ESP-IDF Software Development Kit (SDK). The test cases
are slightly different, as the SDK currently only supports the gcc compiler. Additionally, the
optimization flags that are available in the configuration are sightly different. It supports
-Og, which allows some optimizations if debugging is not affected, and -O2, which also
optimizes for performance but without having a negative impact on code size such as
with -O3. Table 3 shows the results for the different optimization flags. In these cases, we
used the reported results of the benchmark, measured with a high-resolution timer with a
microsecond resolution. We also increased the number of iterations from 10 to 100 to have
more precise results. Measurement results between two identical experiments may vary
within the range of one microsecond.

Naturally, the evaluation shown in Table 3 also misses the other information we
received from the profiling tool of the simulator, such as the exact number of window-
overflow exceptions and their execution time. We see, however, a drastically reduced
overhead compared to the simulations. Even the largest overhead of 0.0065% is drastically
lower than the best case for the simulation with 0.024%. when only comparing results from
the same compiler family, the differences are even larger, with 0.104% being the best simula-
tion result. The big difference between the simulated system and the microcontroller is the
number of physical registers. This is 32 for the simulation, but 64 for the microcontroller.
We assume that this drastically decreases the number of window exceptions during the
benchmark. We therefore tried to use a debugger to count the number of window-overflow
exceptions, but had crashes for most configurations, which we think has to do with using
breakpoints in the interrupt context. Our only successful run was with the -Og flag, where
we counted 105 window overflows for 10 iterations. As this flag generated our highest
absolute overheads, we assume that the number of window overflows is even lower for the
other flags.

Table 3. CoreMark results on an ESP32-WROVER-E development board with 100 iterations in µs.

-O0 -Og -Os -O2

Base value 1,364,352 534,468 432,150 318,670
Absolute overhead +28 +35 +24 +9
Relative overhead +0.0021% +0.0065% +0.0056% +0.0028%

6.3. Synthetic Benchmark

As the very low overheads might suggest, a benchmark may be a very beneficial use
case for the evaluation of our countermeasure. Benchmarks are more computationally
heavy, instead of complex or deep, when it comes to the control flow. We therefore designed
a synthetic program that represents a worst-case scenario for the control flow. This, of
course, depends on the number of functions being called in relation to the actual work being
done inside the functions. However, just calling a lot of functions, i.e., in a loop, would
not create many window overflows, as, with every returning function, the window moves
back again. To get the most window exceptions, the window must be moved in the same
direction as long as possible. All other function calls will only increase the runtime of the
benchmark, but not result in additional overheads generated by our protection mechanism.



Future Internet 2023, 15, 217 15 of 19

We therefore designed a benchmark that consists of a very simple control flow. Its
structure is depicted in Figure 7. Functions only contain the minimum of instructions that
are required to maintain the control flow. These are entry instructions which rotate the
window at the beginning of the function, call8 instructions to call the next function, and
ret.w to rotate the window back and return to the previous function. The call depth can
be configured. Additionally, we use nop.n operations to simulate an artificial workload.
(Although we previously associated window rotations with function calls, the actual
rotation is not performed by a call instruction, but by an entry instruction, which is also
responsible for stack space allocation.) We choose these instructions as they have no side
effects. The whole benchmark contains no conditional jumps, except for the loop that is
used to execute it multiple times.

entry a1, 32

nop.n

...

nop.n

call8

retw.n

entry a1, 32

nop.n

...

nop.n

call8

retw.n

entry a1, 32

nop.n

...

nop.n

call8

retw.n

entry a1, 32

nop.n

...

nop.n

retw.n

Figure 7. Structure of the synthetic benchmark.

We ran the benchmark for 1000 iterations each with different configurations. We
changed the call depth as well as the number of nop.n instructions inside each function.
The results are shown in Figure 8. Each point represents a run of the benchmark with the
specified call depth on the x-axis. The number of nop.n instructions inside each function
is marked in the legend. For each set of benchmarks, we run it with and without our
protection mechanism. These sets share the same mark, but use different colors, specifically
red for the unprotected and blue for the protected runs. We altered the transparency for
every other set of graphs for better distinguishability. The call depth ranges from 1 to 30,
and we selected 5, 15, 25, 35, and 45 nop.n instructions. More measurements for different
numbers of nop.n instructions in between were made but not included as they would
decrease distinguishability and fall within the expected results anyway. Figure 9 shows
all our results in a single graph for the sake of completion, but we will discuss the details
based on Figure 8. It shows the regularity of our results and how benchmark results would
look for different parameters.

The different measurement sets in Figure 8 show the effect of the window mechanism.
There is a noticeable increase in every graph at a call depth of eight. This directly correlates
with our expectations, where the effect of the window overflow and underflow exceptions
should be noticeable, as there are 64 physical registers, and each call (entry) shifts the win-
dow by 8. This also shows the effects of the exception handlers as a whole very well. With
greater call depths, we can observe a growing gap between the protected and unprotected
runs. The actual work done in the program (represented by the nop.n operations) does
not influence the absolute overhead generated by our protection mechanism, but on the
relative overhead. This was to be expected. This can also be observed in Figure 10, which
shows the measured difference between each protected and unprotected run. It also shows
that once the window exceptions start to take effect, the overhead increases nearly linearly
with around 36–38 µs per additional function call.



Future Internet 2023, 15, 217 16 of 19

0 5 10 15 20 25 30
0

5,000

10,000

15,000

20,000

Function call depth

Ti
m

e
in

µ
s

No Protection (5)
Protection (5)

No Protection (15)
Protection (15)

No Protection (25)
Protection (25)

No Protection (35)
Protection (35)

No Protection (45)
Protection (45)

Figure 8. Selected synthetic benchmark runtimes in µs based on the call depth and the number of nop.n
instructions in the function (noted in parenthesis) with and without the window-overflow protection.

0
10

20
30 0

20

40
0

10,000

20,000

Function call depth
Number of nop.n instructions

Ti
m

e
in

µ
s

No Protection
Protection

Figure 9. Synthetic benchmark runtimes in µs based on the call depth and the number of nop.n
instructions in the function with and without the window-overflow protection

Consequently, the highest measured overhead occurs with the least number of in-
structions executed in between window overflows. With only 5 nop.n instructions, the
absolute overhead with a call depth of 8 was 39 µs, and for a call depth of 30, it was 864 µs,
resulting in a relative overhead of 3.77% or 9.68%, respectively. This is still a very acceptable
outcome for an artificially constructed worst-case scenario. Of course, the overhead could
be increased even further with a larger call depth, but we argue that a call depth of 30 is
already very deep for an embedded system, occupying 960 bytes of stack space for register
save areas alone.

Just by looking at an average of 45 instructions per function, the overhead already
decreases to 1.22% for a call depth of 8 and 5.15% for a call depth of 30. When we assume
that the average number of instructions in each function is much higher (considering effects
such as loops, inlining of smaller functions, etc.) and the control flow of the program nor-
mally is not as straightforward as in the worst-case scenario, we can assume that multiple
hundreds and even thousands of instructions are executed between each window overflow.



Future Internet 2023, 15, 217 17 of 19

0 5 10 15 20 25 30

0

200

400

600

800

Function call depth

Ti
m

e
di

ff
er

en
ce

in
µ

s

5
15
25
35
45

Figure 10. Runtime difference between protected and unprotected benchmark runs.

If we assume a call depth of 8 (which corresponds exactly to one window overflow
per benchmark iteration), we can extrapolate the existing data to see that we reach the 1%
threshold at around 60 nop.n instructions, or 60 × 8 = 480 for the whole benchmark. To
cross the 0.1% overhead, we already are at around 750 instructions per function. To get at
least near the results of the CoreMark benchmark, we would need to increase the number
of instructions per function to around 4850.

7. Conclusions

This paper extended the contents of [7]. This previous paper introduced a new
vulnerability that allows the attacker to use an unprotected stack pointer to manipulate
arbitrary memory addresses. The paper demonstrated how this vulnerability can be used
to disable Stack Canaries and even discussed possibilities to combine it with other attack
techniques such as ROP. It introduced a low-cost software patch for this vulnerability and
used simulations in combination with the CoreMark benchmark to evaluate its overhead.
The simulated Xtensa core only had 32 general-purpose registers, and the overhead ranged
from 0.104% to 0.423%. It also showed the overhead for the exception handlers only, which
increased by 36.60%. These results were also included in this paper.

This paper extended the content using an ESP32-WROVER-E development board
for evaluation instead of simulations. This board uses two Xtensa LX6 cores, each with
64 general-purpose registers. We believe this difference led to significant differences in
our measured results. The overhead of the patch measured for the microcontroller was
between 0.0021% and 0.0065%. Additionally, a new benchmark was developed to showcase
the worst-case scenario. It was designed to maximize the occurrence of window overflows,
but can also scale and represent larger programs. In the worst case, we showed that we
were able to reach 9.68% overhead, which is still far below the 36.60% measured in the
simulation. Limits of the attack as well as defense mechanisms were discussed in detail.

In conclusion, the presented vulnerability can be a threat to systems that may have a
buffer overflow vulnerability and insufficient protection. Our software patch should be
easy to apply to existing systems with negligible consequences for the system performance.
It is also easy to integrate into an existing code base to protect systems. In the future, the
vulnerability will hopefully be resolved by replacing vulnerable devices either with devices
that are patched, or with devices using the next generation of Xtensa cores that no longer
contain the vulnerability.



Future Internet 2023, 15, 217 18 of 19

Author Contributions: Conceptualization, K.L. and P.L.; Data curation, K.L.; Funding acquisition,
P.L.; Methodology, K.L.; Project administration, P.L.; Software, K.L.; Supervision, P.L.; Visualization,
K.L.; Writing—original draft, K.L.; Writing—review and editing, P.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was supported by the Federal Ministry of Education and Research (BMBF) under
research grant number 01IS18065E. The publication of this article was funded by the Open Access
Fund of the Leibniz Association.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

ABI Application Binary Interface
AoI Area of Interest
ASLR Address Space Layout Randomization
BSA Base Save Area
CFG Control Flow Graph
CFI Control Flow Integrity
ESA Extra Save Area
IoT Internet of Things
JOP Jump-Oriented Programming
MMU Memory Management Unit
MPU Memory-Protection Unit
PID Process Identifier
ROP Return-Oriented Programming
SDK Software Development Kit
SFI Software Fault Isolation

References
1. Cadence Design Systems, Inc. Xtensa Instruction Set Architecture (ISA) Reference Manual; Cadence Design Systems, Inc.: San Jose,

CA, USA, 2019.
2. Cadence Design Systems, Inc. Xtensa Microprocessor Programmer’s Guide; Cadence Design Systems, Inc.: San Jose, CA, USA, 2018.
3. Lehniger, K.; Aftowicz, M.J.; Langendorfer, P.; Dyka, Z. Challenges of Return-Oriented-Programming on the Xtensa Hardware

Architecture. In Proceedings of the Euromicro Conference on Digital System Design, Kranj, Slovenia, 26–28 August 2020; Trost, A.,
Žemva, A., Skavhaug, A., Eds.; IEEE: Piscataway, NJ, USA, 2020. [CrossRef]

4. Amatov, B.; Lehniger, K.; Langendörfer, P. Return-Oriented Programming Gadget Catalog for the Xtensa Architecture. In
Proceedings of the 2022 IEEE International Conference on Pervasive Computing and Communications Workshops and Other
Affiliated Events (PerCom Workshops), Pisa, Italy, 21–25 March 2022; pp. 655–660. [CrossRef]

5. Shacham, H. The geometry of innocent flesh on the bone: Return-into-libc without function calls (on the x86). In Proceedings of
the 14th ACM Conference on Computer and Communications Security, Alexandria, VA, USA, 2 November–31 October 2007;
pp. 552–561.

6. Perry, W.; Crispin, C. Simple Stack Smash Protection for GCC. In Proceedings of the GCC Developers Summit, Ottawa, ON,
Canada, 25–27 May 2003; pp. 243–255.

7. Lehniger, K.; Langendörfer, P. Through the Window: On the exploitability of Xtensa’s Register Window Overflow. In Proceedings
of the 2022 32nd International Telecommunication Networks and Applications Conference (ITNAC), Wellington, New Zealand,
30 November–2 December 2022; pp. 353–358.

8. Aleph One. Smashing the stack for fun and profit. Phrack Mag. 1996, 7, 14–16.
9. PaX Team. Pax Address Space Layout Randomization (aslr). Available online: https://pax.grsecurity.net/docs/aslr.txt (accessed

on 3 May 2023).
10. Abadi, M.; Budiu, M.; Erlingsson, Ú.; Ligatti, J. Control-Flow Integrity: Principles, Implementations, and Applications. In ACM

Transactions on Information and System Security (TISSEC); ACM Digital Library: New York, NY, USA, 2009; Volume 13, pp. 1–40.
11. Li, J.; Wang, Z.; Bletsch, T.; Srinivasan, D.; Grace, M.; Jiang, X. Comprehensive and Efficient Protection of Kernel Control Data.

IEEE Trans. Inf. Forensics Secur. 2011, 6, 1404–1417. [CrossRef]
12. Fratrić, I. ROPGuard: Runtime Prevention of Return-Oriented Programming Attacks: Technical Report; IEEE: Piscataway, NJ, USA, 2012.
13. Cheng, Y.; Zhou, Z.; Miao, Y.; Ding, X.; Deng, R.H. ROPecker: A Generic and Practical Approach for Defending against ROP Attack;

Internet Society: Reston, VA, USA, 2014.

http://doi.org/10.1109/dsd51259.2020.00034
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767489
https://pax.grsecurity.net/docs/aslr.txt
http://dx.doi.org/10.1109/tifs.2011.2159712


Future Internet 2023, 15, 217 19 of 19

14. Clercq, R.d.; Verbauwhede, I. A survey of Hardware-based Control Flow Integrity (CFI). arXiv 2017, arXiv:1706.07257.
15. Li, J.; Chen, L.; Xu, Q.; Tian, L.; Shi, G.; Chen, K.; Meng, D. Zipper Stack: Shadow Stacks Without Shadow; Springer: Cham,

Switzerland, 2020; pp. 338–358. [CrossRef]
16. Liljestrand, H.; Nyman, T.; Gunn, L.J.; Ekberg, J.; Asokan, N. PACStack: An Authenticated Call Stack; USENIX Association: Berkeley,

CA, USA, 2021.
17. Ravichandran, J.; Na, W.T.; Lang, J.; Yan, M. PACMAN. In Proceedings of the 49th Annual International Symposium on

Computer Architecture, New York, NY, USA, 18–22 June 2022; Salapura, V., Ed.; ACM Digital Library: New York, NY, USA, 2022;
pp. 685–698. [CrossRef]

18. Cowan, C.; Pu, C.; Maier, D.; Walpole, J.; Bakke, P.; Beattie, S.; Grier, A.; Wagle, P.; Zhang, Q.; Hinton, H. Stackguard: Automatic
adaptive detection and prevention of buffer-overflow attacks. In Proceedings of the USENIX Security Symposium, San Antonio,
TX, USA, 26–29 January 1998; Volume 98, pp. 63–78.

19. Cowan, C.; Wagle, F.; Calton, P.; Beattie, S.; Walpole, J. Buffer overflows: Attacks and defenses for the vulnerability of the decade.
In Proceedings of the Proceedings DARPA Information Survivability Conference and Exposition. DISCEX’00, Hilton Head, SC,
USA, 25–27 January 2000. [CrossRef]

20. Bittau, A.; Belay, A.; Mashtizadeh, A.; Mazieres, D.; Boneh, D. Hacking Blind. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 227–242. [CrossRef]

21. Wang, Z.; Ding, X.; Pang, C.; Guo, J.; Zhu, J.; Mao, B. To Detect Stack Buffer Overflow with Polymorphic Canaries. In Proceedings
of the 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), Luxembourg,
25–28 June 2018. [CrossRef]

22. Marco-Gisbert, H.; Ripoll, I. Preventing Brute Force Attacks Against Stack Canary Protection on Networking Servers. In
Proceedings of the 2013 IEEE 12th International Symposium on Network Computing and Applications, Cambridge, MA, USA,
22–24 August 2013; pp. 243–250. [CrossRef]

23. Frantzen, M.; Shuey, M. StackGhost: Hardware Facilitated Stack Protection; USENIX Association: Berkeley, CA, USA, 2001.
24. Lehniger, K.; Langendorfer, P. Window Canaries: Re-thinking Stack Canaries for Architectures with Register Windows. IEEE

Trans. Dependable Secur. Comput. 2022, 1–11. [CrossRef]
25. Burow, N.; Zhang, X.; Payer, M. SoK: Shining Light on Shadow Stacks. In Proceedings of the 2019 IEEE Symposium on Security

and Privacy (SP), San Francisco, CA, USA, 19–23 May 2019; pp. 985–999. [CrossRef]
26. Instrumentation Options (Using the GNU Compiler Collection (GCC)), 2021-07-28T07:17:14.000Z. Available online: https:

//gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html (accessed on 4 April 2023).
27. Clang Command Line Argument Reference—Clang 15.0.0git Documentation, 2022-03-08T06:03:13.000Z. Available online: https:

//clang.llvm.org/docs/ClangCommandLineReference.html (accessed on 4 April 2023).
28. Bierbaumer, B.; Kirsch, J.; Kittel, T.; Francillon, A.; Zarras, A. Smashing the Stack Protector for Fun and Profit. In ICT Systems

Security and Privacy Protection; IFIP Advances in Information and Communication Technology; Janczewski, L., Kutyłowski, M.,
Eds.; Springer: Cham, Switzerland, 2018; Volume 529, pp. 293–306. [CrossRef]

29. Wahbe, R.; Lucco, S.; Anderson, T.E.; Graham, S.L. Efficient software-based fault isolation. In Proceedings of the Fourteenth ACM
Symposium on Operating Systems Principes, Asheville, NC, USA, 5–8 December 1993; Operating Systems Review; Black, A.P.,
Liskov, B., Eds.; Association for Computing Machinery: New York, NY, USA, 1993; pp. 203–216.

30. Espressif Ssytems. ESP32 Technical Reference Manual, version 4.8; Espressif Ssytems: Shanghai, China, 2022.
31. FreeRTOS-MPU—Memory Protection Unit Support in FreeRTOS. Available online: https://www.freertos.org/FreeRTOS-MPU-

memory-protection-unit.html (accessed on 12 April 2023).
32. GitHub Apache/Nuttx esp32_Window_Hooks.s. Available online: https://github.com/apache/nuttx/blob/master/arch/

xtensa/src/esp32/esp32_window_hooks.S (accessed on 12 April 2023).
33. EEMBC. CoreMark. Available online: https://github.com/eembc/coremark (accessed on 8 March 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/978-3-030-58951-6 _17
http://dx.doi.org/10.1145/3470496.3527429
http://dx.doi.org/10.1109/discex.2000.821514
http://dx.doi.org/10.1109/SP.2014.22
http://dx.doi.org/10.1109/dsn.2018.00035
http://dx.doi.org/10.1109/NCA.2013.12
http://dx.doi.org/10.1109/TDSC.2022.3230748
http://dx.doi.org/10.1109/SP.2019.00076
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
https://clang.llvm.org/docs/ClangCommandLineReference.html
http://dx.doi.org/10.1007/978-3-319-99828-2
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://www.freertos.org/FreeRTOS-MPU-memory-protection-unit.html
https://github.com/apache/nuttx/blob/master/arch/xtensa/src/esp32/esp32_window_hooks.S
https://github.com/apache/nuttx/blob/master/arch/xtensa/src/esp32/esp32_window_hooks.S
https://github.com/eembc/coremark

	Introduction
	State of the Art
	The Xtensa Register Window Mechanism
	Exploiting the Window-Overflow Exception Handler
	Attack Model
	Example Attack: Overcome the Stack Canary Protection
	Leak Application Information
	Overwrite the Reference Canary Value
	Limitations

	MPU and MMU Protection
	Applicability and Conflict with Return-Oriented Programming

	Countermeasures
	Plausibility Check
	Breaking with the Assumption

	Evaluation
	Simulation Results
	ESP32 Results
	Synthetic Benchmark

	Conclusions
	References

