
Received 28 January 2025, accepted 29 April 2025, date of publication 9 May 2025, date of current version 29 May 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3568598

COMMENTS AND CORRECTIONS

Comment on ‘‘RIO: Return Instruction
Obfuscation for Bare-Metal IoT Devices’’

KAI LEHNIGER AND PETER LANGENDÖRFER
IHP—Leibniz-Institut für Innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany
Brandenburgische Technische Universität Cottbus–Senftenberg, 03046 Cottbus, Germany

Corresponding author: Kai Lehniger (kai.lehniger@b-tu.de)

ABSTRACT This is a comment on ‘‘RIO: Return Instruction Obfuscation for Bare-Metal IoT Devices.’’ RIO
prevents finding gadgets for return-oriented programming attacks by encrypting return instructions. This
paper shows flaws in the design of RIO that allow for the easy retrieval of the plaintext return instructions
without decrypting them. Additionally, changes are proposed to improve upon the original idea.

INDEX TERMS ARM, Internet of Things, return-oriented programming, security.

I. INTRODUCTION
In the above article [1], the authors propose a novel protec-
tion against Return-Oriented Programming (ROP) [2] attacks.
ROP is a popular attack method for applications written in
unsafe languages. By utilizing some kind of memory vulner-
ability, an attacker can overwrite a return address with his
payload, jumping to a gadget, a small code snippet that ends
with a return instruction. Each return of a gadget will pop the
next gadget address from the stack, creating a gadget chain
that allows arbitrary computations.

The idea of Return Instruction Obfuscation (RIO) is to
prevent ROP attacks by removing the ability of finding gad-
gets. This is being done by encrypting return instructions
in the binary. Without gadgets, no ROP attack can be per-
formed. This article uncovers several flaws with this idea and
its implementation. A method is described which allows to
recover the unencrypted return instructionwith high precision
without the need of breaking the encryption. Afterwards,
possible improvements of RIO will be discussed.

The rest of this paper is structured as follows. Section II
briefly summarizes the function return mechanic in ARM,
Section III gives an overview of RIO, and Section IV dis-
cusses possibilities to break its protection. Section V shows
possible improvements of the original design and Section VI
concludes the paper.

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

II. FUNCTION RETURNS IN ARM
ARM processors have a dedicated register that holds return
addresses, lr, the link register. When bl or blx instructions
are used to perform a function call, the return address is
automatically being put in the lr register. A function return
can be performed with bx lr. In such a case, the return
address is never exposed to an attacker that has access to
the stack. When more function calls happen, lr needs to be
stored in the stack. Instead of restoring its value in the end, the
return address can be popped directly from the stack into the
program counter. This is typically done together with other
register values in a single pop {reglist} instruction.
Attackers can use this by controlling not only the return
address but also register values that can serve as an input for
the gadget.

III. RIO: RETURN INSTRUCTION OBFUSCATION
The main idea of RIO [1] is based on a threat scenario that an
attacker somehow gains access to the binary of an Internet of
Things (IoT) device, for example due to physical access or an
unencrypted firmware update. Analyzing the binary reveals
gadget positions that could be used for ROP attacks, if a buffer
overflow vulnerability exists.

RIO removes the possibility to find gadgets by encrypting
all return instructions. Typically, gadget finding algorithms
start to search for gadgets with the return instruction. By re-
moving this starting point from the binary, these algorithms

90358

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

https://orcid.org/0000-0002-3274-2469
https://orcid.org/0000-0002-6209-9048


K. Lehniger, P. Langendörfer: Comment on ‘‘RIO: Return Instruction Obfuscation for IoT Devices’’

FIGURE 1. RIO firmware binary generation (based on [1]).

LISTING 1. Return control flow module code [1].

need to be adapted in order to work again. Also, by removing
the information which registers are popped from the stack,
it is no longer possible to construct a payload, as it is un-
known how much the stack pointer advances and where in
the payload to place the next gadget address.

RIO is implemented by using compiler custom passes
of the LLVM compiler. The concept how the LLVM in-
termediate representation code is modified and compiled
into a binary is illustrated in FIGURE 1. An initializa-
tion module is inserted in the beginning of the existing
firmware and a Return Control Flow (RCF) module is
placed in front of every return instruction [1]. The re-
turn instructions themselves are encrypted. When running
the firmware, the initialization module scans the binary
for all RCF modules and decrypts subsequent return in-
structions. The decrypted instructions are placed in a table
in SRAM.

The RCF module consists of three instructions shown in
LISTING 1. The first instruction loads the base address of
the table into register r0, which is placed after the encrypted
return instruction. The second instruction adds an offset to the
base address to point to the corresponding return instruction
in the table. The last instruction jumps into the table, where
the return instruction is executed.

IV. ATTACK POINTS
RIO has three major flaws that attackers could exploit, two
of them being used to adapt binary analysis in order to find
gadgets.

The first flaw is the general assumption that in order to
perform ROP attacks, an attacker needs to perform binary

analysis. There have been examples in the past of attacking
a device without having a copy of the target binary [3].
However, without binary analysis, ROP attacks become more
difficult and therefore the goal of RIO to hinder this step is
still worth pursuing.

The second flaw is the assumption that RIO hides the
position of return instructions. The RIO initialization module
itself uses the RCF modules in order to find the positions of
return instructions. Consequently, any attacker could do the
same. Since eachRCFmodule is placed right in front of an en-
crypted return instruction, as shown in FIGURE 1, an attacker
can simply use the code sequence in LISTING 1 as indicator
to find all return instruction positions. Of course only know-
ing the position of return instructions is not enough for ARM,
as the exact registers need to be known in order to prepare the
payload.

This can be done by using the last flaw of the approach:
RIO keeps the push instructions in the prologue unen-
crypted. Typically, function prologues and epilogues are
symmetrical. Registers that are being pushed onto the stack in
the prologue are being popped in the epilogue. This can be il-
lustrated by taking the code examples from [1] that were used
to demonstrate the encryption. LISTING 2 shows the push
and pop instructions in the prologue and epilogue of two

LISTING 2. Symmetrical push and pop instructions of unencrypted
functions taken from [1].

VOLUME 13, 2025 90359



K. Lehniger, P. Langendörfer: Comment on ‘‘RIO: Return Instruction Obfuscation for IoT Devices’’

FIGURE 2. Example return instruction and the corresponding layout in the stack (left) alongside possible replacements with different positions of
return addresses.

functions. In the first function RIOtest four registers r4, r6,
r7, and lr are pushed onto the stack in the prologue. In the
epilogue, the same registers are popped, with the only differ-
ence of lr being replaced with pc. The same pattern repeats
for main2 with the registers r7 and lr. Even when com-
pletely removing the pop instructions from the binary, they
could easily be derived by looking at what registers where
pushed onto the stack and need to be restored. Of course,
instead of restoring lr, the return address is directly popped
into pc.
This flaw of course is specific to the ARM architecture

where pop instructions act as function returns and can take
different form depending on the registers that are being
popped. However, the problem is even more severe for other
architectures with dedicated return instructions. As soon as
the positions of the return instructions are determined, no fur-
ther analyses for such architectures are required, since the
plaintext is already known (the single possible return instruc-
tion). While this is not directly a problem for the proposed
implementation of RIO, it hinders its applicability to other
architectures. However, since ARM is widely used for em-
bedded devices, the authors think a protection mechanism
specific to its architecture is still worth investigating.

V. POSSIBLE IMPROVEMENTS
The first flaw is inherent and cannot be targeted, since no
amount of binary obfuscation can secure from attacks that
do not require access to the binary. The second flaw would
require large changes of RIOs design. This is because the
encrypted return addresses must be locatable in order to de-
crypt them, which, no matter how this information is put into
the binary, is also accessible to the attacker. Removing this
information from the binary and potentially adding it to the
secure key storage (if possible) would still require the RCF
modules to be removed. This would require a different mech-
anism to invoke the decrypted return instructions, that leaves
no trail in the binary. An alternative to RCFmodules could be
to use binary rewriting in order to replace encrypted return
instructions with their decrypted counterpart once an IoT
device is deployed. This approachwould be limited to devices
where the only point for attackers to collect information of
the binary comes before or during the dissemination process.
If a deployed device could be analyzed, rewriting the binary

is no option. Another idea could be to obfuscate the RCF
modules as well. However, if there is a way to obfuscate RCF
modules without leaving hints of the RCF module location
in the binary, the same approach could probably directly be
applied to the return instructions.

However, the third flaw can be addressed. By extending the
encryption to the push instructions as well, using a similar
method, the information of what registers are being stored
on the stack can be hidden. Doing so would take a bit more
effort due to the fact that, after the execution of the decrypted
push instruction, the control flow needs to jump back to the
function.

However, even encrypting both, push and pop, instruc-
tions would probably not suffice. The reason to push and pop
registers to the stack in the prologue and epilogue is given by
the calling conventions. Callee saved registers are registers
that must remain unchanged for the caller when calling a
function. In order to meet this guarantee, the callee is required
to store and restore all callee saved registers it uses during
its execution. Consequently, by analysing which callee saved
registers are being used inside a function, the push and pop
instructions can be derived.

The authors found two ways to remove this method of
deriving the instructions that can be used in conjunction:

• For each push and pop pair a random number of addi-
tional registers can be added. These additional registers
would not be possible to be derived from binary analysis.

• Each decrypted push and pop pair in the table could
be replaced by multiple instructions to randomize the
position of the return addresses in each stack frame.
Since the table is created at runtime, the positions on
the stack would be different with each reset of the IoT
device. FIGURE 2 shows a return instruction on the
left, as well as possible replacement sequences next
to it and how it effects the position of the return ad-
dress in the stack. The corresponding push instructions
have to be changed in a similar way to match the
layout.

Of course these changes would add more overhead to RIO.
While a one-time overhead during the startup phase due to
the additional decryption operations might be no concern,
the overhead of using decrypted push instructions might
be significant for IoT devices. While this could already be

90360 VOLUME 13, 2025



K. Lehniger, P. Langendörfer: Comment on ‘‘RIO: Return Instruction Obfuscation for IoT Devices’’

true for the original RIO design (with binaries increasing
around 29.9% and executing times increasing between 0%
and 16.83% [1]), the proposed improvements only add to
this problem.While detailed benchmarks would be necessary
for exact numbers, it can be estimated that the overhead
is at least doubled, due to the fact that for each already
encrypted pop instruction, a similar overhead is necessary
for the corresponding push instruction. However, as shown
in this paper, RIO does not offer sufficient protection
against ROP attacks, therefore changes should be considered
necessary.

VI. CONCLUSION
This paper showed several severe flaws of the RIO imple-
mentation and presented ideas how to use these flaws to
gain knowledge of the encrypted return instructions without
knowledge of the secret key. Additionally, improvements
have been proposed to remove possibilities of binary analysis
for attackers.

REFERENCES
[1] B. Kim, K. Lee, W. Park, J. Cho, and B. Lee, ‘‘RIO: Return instruc-

tion obfuscation for bare-metal IoT devices,’’ IEEE Access, vol. 11,
pp. 70516–70524, 2023.

[2] H. Shacham, ‘‘The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),’’ in Proc. 14th ACMConf. Comput.
Commun. Secur., Oct. 2007, pp. 552–561.

[3] A. Bittau, A. Belay, A.Mashtizadeh, D.Mazières, andD. Boneh, ‘‘Hacking
blind,’’ in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 227–242.

KAI LEHNIGER received the master’s degree in
computer science, in 2017. Since 2017, he has
beenwith the IHP—Leibniz-Institut für Innovative
Mikroelektronik, Frankfurt (Oder), where he is
currently a Scientist with theWireless SystemsDe-
partment. He has published more than ten articles.
His research interest includes efficient security for
resource constrained devices.

PETER LANGENDÖRFER received the Diploma
and Ph.D. degrees in computer science, in
1995 and 2001, respectively. Since 2000, he has
been with IHP—Leibniz-Institut für Innovative
Mikroelektronik, Frankfurt (Oder), where he is
currently leading the Wireless Systems Depart-
ment. From 2012 to 2020, he was leading the Chair
for security in pervasive systems with the Bran-
denburgische Technische Universität Cottbus–
Senftenberg. Since 2020, he has been owning the

Chair of Wireless Systems with the Brandenburgische Technische Univer-
sität Cottbus–Senftenberg. He is highly interested in security for resource
constraint devices, low power protocols, and efficient implementations of
AI means and resilience. He has published more than 150 refereed technical
articles and filed 17 patents of which 11 have been granted already. He is a
member of Gesellschaft für Informatik. He is an Associate Editor of IEEE
ACCESS, IEEE INTERNETOF THINGS JOURNAL, and Peer-to-Peer Networking, and
worked as the Guest Editor of many renowned journals, such as Wireless
Communications and Mobile Computing (Wiley) and ACM Transactions on
Internet Technology.

VOLUME 13, 2025 90361


