
Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2024.0429000

Comments on: RIO: Return Instruction
Obfuscation for Bare-Metal IoT Devices with
Binary Analysis
KAI LEHNIGER1, PETER LANGENDÖRFER12
1IHP - Leibniz-Institut für innovative Mikroelektronik, 15236 Frankfurt (Oder), Germany ({lehniger, langendoerfer}@ihp-microelectronics.com)
2Brandenburgische Technische Universität Cottbus-Senftenberg, 03046 Cottbus, Germany (e-mail: peter.langendoerfer@b-tu.de)

Corresponding author: Kai Lehniger (e-mail: lehniger@ihp-microelectronics.com).

ABSTRACT This is a comment on "RIO: Return Instruction Obfuscation for Bare-Metal IoT Devices with
Binary Analysis". RIO prevents finding gadgets for Return-Oriented Programming attacks by encrypting
return instructions. This paper shows flaws in the design of RIO that allow for the easy retrieval of the
plaintext return instructions without decrypting them. Additionally, changes are proposed to improve upon
the original idea.

INDEX TERMS ARM, Internet of Things, Return-Oriented Programming, Security

I. INTRODUCTION
Return-oriented programming (ROP) [?] is a popular attack
method for applications written in unsafe languages. By uti-
lizing some kind of memory vulnerability, an attacker can
overwrite a return address with his payload, jumping to a
gadget, a small code snippet that ends with a return instruc-
tion. Each return of a gadget will pop the next gadget address
from the stack, creating a gadget chain that allows arbitrary
computations.

Several countermeasures against ROP attacks have been
proposed, one of it being Return Instruction Obfuscation
(RIO) [?]. The basic presumption RIO works with is that an
attacker needs to know the return instructions in order to find
gadgets with binary analysis. Without gadgets, no ROP attack
can be performed. This paper will describe a method which
allows to recover the unencrypted return instruction with
high precision without the need of breaking the encryption.
Afterwards, possible improvements will be discussed.

The rest of this paper is structured as follows. Section II
briefly summarizes the function return mechanic in ARM,
Section III gives an overview of RIO, and Section IV dis-
cusses possibilities to break its protection. Section V shows
possible improvements of the original design and Section VI
concludes the paper.

II. FUNCTION RETURNS IN ARM
ARM processors have a dedicated register that holds return
addresses, lr, the link register. When bl or blx instructions
are used to perform a function call, the return address is auto-

matically being put in thelr register. A function return can be
performed with bx lr. In such a case, the return address is
never exposed to an attacker that has access to the stack.When
more function calls happen,lr needs to be stored in the stack.
Instead of restoring its value in the end, the return address can
be popped directly from the stack into the program counter.
This is typically done together with other register values in a
single pop {reglist} instruction. Attackers can use this
by controlling not only the return address but also register
values that can serve as an input for the gadget.

III. RIO: RETURN INSTRUCTION OBFUSCATION
RIO [?] removes the possibility to find gadgets by encrypting
all return instructions. Typically, gadget finding algorithms
start to search for gadgets with the return instruction. By
removing this starting point from the binary, these algorithms
need to be adapted in order to work again. Also, by removing
the information which registers are popped from the stack, it
is no longer possible to construct a payload, as it is unknown
how much the stack pointer advances and where in the pay-
load to place the next gadget address.
RIO is implemented by using compiler custom passes of

the LLVM compiler. An initialization module is inserted in
the beginning of the existing firmware and a Return Control
Flow (RCF) module is placed in front of every return instruc-
tion [?]. The return instructions themselves are encrypted.
When running the firmware, the initialization module scans
the binary for all RCF modules and decrypts subsequent
return instructions. The decrypted instructions are placed in a

VOLUME 11, 2023 1

ar
X

iv
:s

ub
m

it/
60

59
04

1 
 [

cs
.C

R
] 

 1
0 

D
ec

 2
02

4



Lehniger et al.: Comments on: RIO: Return Instruction Obfuscation for Bare-Metal IoT Devices with Binary Analysis

Listing 1. Return Control Flow module code [?]

l d r r0 , [ pc , #12]
adds r0 , # o f f s e t
mov pc , r0

table in SRAM.
The RCF module consists of three instructions shown in

Listing 1. The first instruction loads the base address of the
table into register r0, which is placed after the encrypted
return instruction. The second instruction adds an offset to the
base address to point to the corresponding return instruction
in the table. The last instruction jumps into the table, where
the return instruction is executed.

IV. ATTACK POINTS
RIO has three major flaws that attackers could exploit, two
of them being used to adapt binary analysis in order to find
gadgets.

The first flaw is the general assumption that in order to
perform ROP attacks, an attacker needs to perform binary
analysis. There have been examples in the past of attacking
a device without having a copy of the target binary [?].
However, without binary analysis, ROP attacks become more
difficult and therefore the goal of RIO to hinder this step is
still worth pursuing.

The second flaw is the assumption that RIO hides the
position of return instructions. The RIO initialization module
itself uses the RCF modules in order to find the positions
of return instructions. Consequently, any attacker could do
the same. Of course only knowing the position of return
instructions is not enough for ARM, as the exact registers
need to be known in order to prepare the payload.

This can be done by using the last flaw of the approach:
RIO keeps the push instructions in the prologue unen-
crypted. Typically, function prologues and epilogues are sym-
metrical. Registers that are being pushed onto the stack in
the prologue are being popped in the epilogue. This can be
illustrated by taking the code examples from [?] that were
used to demonstrate the encryption. Listing 2 shows thepush
and pop instructions in the prologue and epilogue of two
functions. In the first function RIOtest four registers r4, r6,
r7, and lr are pushed onto the stack in the prologue. In
the epilogue, the same registers are popped, with the only
difference of lr being replaced with pc. The same pattern
repeats for main2 with the registers r7 and lr. Even when
completely removing the pop instructions from the binary,
they could easily be derived by looking at what registers
where pushed onto the stack and need to be restored. Of
course, instead of restoring lr, the return address is directly
popped into pc.

V. POSSIBLE IMPROVEMENTS
While the first two flaws are inherent and cannot be targeted,
as the encrypted return addresses must be locatable in order to

Listing 2. Symmetrical push and pop instructions of unencrypted
functions taken from [?]

RIO t e s t :
push { r4 , r6 , r7 , l r }
. . .
pop { r4 , r6 , r7 , pc }

main2 :
push { r7 , l r }
. . .
pop { r7 , pc }

decrypt them, the third flaw can be addressed. By extending
the encryption to the push instructions as well, using a
similar method, the information of what registers are being
stored on the stack can be hidden. Doing so would take a
bit more effort due to the fact that, after the execution of the
decrypted push instruction, the control flow needs to jump
back to the function.
However, even encrypting both, push and pop, instruc-

tions would probably not suffice. The reason to push and pop
registers to the stack in the prologue and epilogue is given by
the calling conventions. Callee saved registers are registers
that must remain unchanged for the caller when calling a
function. In order to meet this guarantee, the callee is required
to store and restore all callee saved registers it uses during
its execution. Consequently, by analysing which callee saved
registers are being used inside a function, the push and pop
instructions can be derived.
The authors found two ways to remove this method of

deriving the instructions that can be used in conjunction:
• For each push and pop pair a random number of addi-

tional registers can be added. These additional registers
would not be possible to be derived from binary analysis.

• Each decrypted push and pop pair in the table could
be replaced by multiple instructions to randomize the
position of the return addresses in each stack frame.
Since the table is created at runtime, the positions on
the stack would be different with each reset of the IoT
device. FIGURE 1 shows a return instruction on the left,
as well as possible replacement sequences next to it and
how it effects the position of the return address in the
stack. The corresponding push instructions have to be
changed in a similar way to match the layout.

VI. CONCLUSION
This paper showed several severe flaws of the RIO imple-
mentation and presented ideas how to use these flaws to
gain knowledge of the encrypted return instructions without
knowledge of the secret key. Additionally, improvements
have been proposed to remove possibilities of binary analysis
for attackers.

2 VOLUME 11, 2023



Lehniger et al.: Comments on: RIO: Return Instruction Obfuscation for Bare-Metal IoT Devices with Binary Analysis

pop { r4, r6, r7, pc} pop {r6, r7, lr} pop {r7, lr} pop {lr}

pop {r4} pop {r4, r6} pop {r4, r6, r7}

bx lr bx lr bx lr

r4 r6 r7 ret addr

r6 r7 ret addr r4

r7 ret addr r4 r6

ret addr r4 r6 r7 st
ac
k
gr
ow

th

FIGURE 1. Example return instruction and the corresponding layout in the stack (left) alongside possible replacements with different positions of return
addresses

KAI LEHNIGER received the master’s degree in
computer science, in 2017. Since 2017 he is with
the IHP in Frankfurt (Oder). There, he is working
in the wireless systems department as a scientist.
He has published more than 10 papers. He cur-
rently is interested in efficient security for resource
constrained devices.

PETER LANGENDÖRFER received the diploma,
in 1995, and the doctorate degree in computer
science, in 2001. Since 2000 he is with the IHP
in Frankfurt (Oder). There, he is leading the Wire-
less Systems Department. From 2012 till 2020
he was leading the chair for security in pervasive
systems with the Technical University of Cottbus-
Senftenberg. Since 2020 he owns the chair wireless
systems with the Technical University of Cottbus-
Senftenberg. He has published more than 150 ref-

ereed technical articles, filed 17 patents of which 11 have been granted
already. He is associate editor of IEEEAccess, IEEE Internet of Things, Peer-
to-Peer Networking and worked as guest editor for many renowned journals
e.g., Wireless Communications and Mobile Computing (Wiley) and ACM
Transactions on Internet Technology. He is highly interested in security for
resource constraint devices, low power protocols, efficient implementations
of AI means and resilience. He is member of the “Gesellschaft für Infor-
matik.”

VOLUME 11, 2023 3


	Introduction
	Function Returns in ARM
	RIO: Return Instruction Obfuscation
	Attack Points
	Possible Improvements
	Conclusion
	Kai Lehniger
	Peter Langendörfer


