
JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

100 Gbps data link layer – from simulation to FPGA

implementation

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

Abstract — in the paper, simulation and hardware

implementation of a data link layer for 100 Gbps Terahertz

wireless communication is presented. The overhead of protocols

and coding should be reduced to a minimum. This is especially

important for high-speed networks, where a small degradation of

efficiency will degrade the user data throughput by several Gbps.

The following aspects are explained: an acknowledge frame

compression, the optimal frame segmentation and aggregation,

Reed-Solomon forward error correction, an algorithm to control

the transmitted data redundancy (link adaptation), and FPGA

(field programmable gate array) implementation of a

demonstrator. The most important conclusion is that changing

the segment size influences the uncoded transmissions mostly,

and the FPGA memory footprint can be significantly reduced

when the hybrid automatic repeat request type II is replaced by

the type I with a link adaptation. Additionally, an algorithm for

controlling the Reed-Solomon redundancy is presented.

Hardware implementation is demonstrated, and the device

achieves net data rate of 97 Gbps.

Keywords — aggregation, ARQ, FEC, HARQ, Reed-Solomon,

segmentation, link adaptation

1. Introduction

Within the last two years, a few new approaches for 100 Gbps
wireless communication have been proposed. Research on
physical transceivers and baseband processing changed the
state of the art in the targeted area. Blocks required to
modulate the 100 Gbps wireless signal in the Terahertz band
are close to release in engineering samples. In [1] a 100 Gbps
baseband signal has been sent over a 237.5 GHz link. Similar
results are shown in [2]. More THz communication activity on
the physical layer is documented in [3, 4, 5, 6]. In this paper,
we design a data link layer for a wireless 100 Gbps system.
The proposed solution is 14 times faster than the state of the
art 802.11ac (5 GHz) and 802.11ad (60 GHz) WLANs [7].
Even if the achievement in 100 Gbps wireless communication
is impressive, the PHY, baseband, and data link layer have not
been integrated yet. To the authors best knowledge, the fully
functional data link layer dedicated for 100 Gbps wireless THz
application has not been shown anywhere in the world.

2. Related Work

Many research efforts have been addressed to highly efficient
wireless protocols. A data link layer goodput analysis is a very
popular topic, especially for WLAN. Our methodology for a
frame segmentation is very similar to efforts presented by T.
Li et al. [8], where segmentation is deeply investigated. T. Li
proves that a frame fragmentation may increase a protocol
efficiency. There are many authors, who publish papers
similar to work of T. Li, for example: [9, 10, 11]. They

consider possible improvements for the WLANs, mostly by
using fragmentation and aggregation. The main difference is
that we are strongly focused on ad-hoc connections for short
distances with the highest possible efficiency (95% and more),
and data rate of 100 Gbps.
Another deeply investigated topic is an automatic repeat
request (ARQ). Similar work can be found in [12, 13]. We
have focused our work on the ARQ concatenated with forward
error control codes (FEC) [14]. Such technique is called
hybrid-ARQ (HARQ) [15].
There are only a few wireless transceivers working at high-
speed data rates. For example, ref. [16] introduces a system for
wireless communication working at the 60 GHz frequency
band. However, the supported data rate of 4 Gbps is still much
lower than our goal: 100 Gbps wireless.
The core task of this paper is to test adaptation algorithms for
forward error correction. This allows controlling the redundant
data in view of the channel quality.

3. Work details

In this paragraph, we introduce some details of the research.
Firstly, we explain how we generate the results. The employed
simulation environment and the emulated wireless channel are
explained. After that, we describe all implemented techniques
used in the research. At the end, our FPGA prototype is
presented.

3.1. Simulation Model

We performed Matlab simulations of the planned system,
before the real demonstrator was implemented. The
simulations are using the same algorithms to the solutions
implemented in the hardware. We use field programmable
gate arrays (FPGAs) for the final demonstrator.
Fig. 1 explains the simulation model. Two devices are
communicating by an emulated wireless channel. The devices
are exchanging data frames (the data path) and confirmation

 Fig. 1. A Matlab model used to generate transmission statistics. The

receiver uses an acknowledge generator to build the ACK-frame.

The transmitter uses the frame for retransmissions and statistic

calculations.

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

messages (the acknowledge path). Every successfully received
data frame is confirmed by the receiver device (RX). That
makes the data exchange process reliable, because the
transmitter (TX) can repeat all lost frames. This process is
called an automatic repeat request (ARQ). The core function
of the ARQ process is generation of the acknowledge frame
(ACK) and sending it to the transmitter device. Additionally,
the TX device can calculate communication statistics. That
allows estimating the efficiency of the implemented algorithm.

3.2. Wireless channel emulation

In this subsection, we introduce the implementation of the
wireless channel used in the simulation (according to Fig. 1).
We use a two state Markov Chain for errors emulation. This
solution requires two transition statistics, which defines the
channel. The probabilities of the transition define a bit error
rate and error length in bits. It does not use any physical
aspects of the wireless transmission. For testing the data link
layer it is acceptable. We need to know the characteristic and
distribution of the errors. The cause is unimportant, until the
parameters describe the channel moreover correctly. A
detailed description of the Markov Chain can be found in [11].

3.3. Frame segmentation and aggregation

A frame size and a bit error rate (BER) have a significant
impact on the efficiency of the wireless communication. When
the payload is longer in the frame, then less overhead is
generated by the headers and checksums. Transmission is
more efficient. Unfortunately, long frames are more
vulnerable to transmission errors. This is explained in Fig. 2.
If the frames become longer, then higher is the probability that
some bits in the frame will be corrupted. The frame can be
split to independent segments, to improve the robustness and
efficiency of the communication. The splitting process is
explained in Fig. 3. In the example, a single 4 kB frame is split
to four 1 kB segments. Now, the individual segments are
acting like sub-frames (frame fragmentation). Every segment
is using an individual header and checksum, but the preamble
is shared (frame aggregation). It means that the errors in one
segment do not influence the payload in the other segments.
That improves the communication efficiency (Fig. 4). In case
of a bit error, only the defected part must be repeated but not
the complete frame. In our case, the default frame size is 64
kB, and is segmented to 64 fragments. In a single ARQ
session 64 frames are transported (4 MB). The FPGA
implementation allows changing the frame settings in the fly,
and only the on-chip memory buffers are limiting the
flexibility of the frame format.

3.4. Automatic repeat request process

We have already mentioned that the TX and RX devices are
working in a closed feedback loop. This loop is called ARQ.
Every frame sent by the TX device is locally copied to the TX
ARQ buffer (Fig. 5). If the RX will not acknowledge all of the
sent frames, then the TX reads the lost frame from the buffer
and makes retransmission. The retransmission process repeats
until the positive ACK for the frame is received. If the ACK
frame is lost, then the transmitter sends an ACK-request frame

Fig. 2. A frame error rate in view of the frame size. If frame is

longer, then higher is the probability that an error will occur during

the transmission and the frame will be lost. Due to this aspect,

shorter frames are preferred in a noisy wireless environment.

Frame size [kBytes]
1 2 3 4 5 6 7 8

F
ra

m
e

er
ro

r
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Frame error rate in view of frame size (no FEC)

BER = 1e-3
BER = 1e-4
BER = 1e-5

Fig. 3. An example of segmentation for a frame payload. The

example payload is chopped to four segments of equal length. The

shorter segments are more efficient during a transmission in a noisy

channel.

Fig. 4. An explanation how the segmented frame can improve the

total efficiency. In a case of bit errors in a classical frame, the whole

payload has to be retransmitted. If the segmented frame is used, then

only invalid data part is rejected and there is no need to retransmit the

whole frame, but just only the defected segment.

Fig. 5. An automatic repeat request process (ARQ). All transmitted

frames are copied to the temporary TX ARQ buffer. If any frame will

be lost during the transmission, then the transmitter reads the lost data

from the buffer and starts the retransmission.

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

after a predefined timeout. In our case, we have adopted this
procedure to our implementation. Instead of acknowledging of
full frames, every single segment (sub-frame) is

acknowledged. It means that the ARQ process works on frame
fragments but not on full-frames. For our FPGA prototype, an
additional future is used. The implementation uses a zero-copy
approach. The transmitted data is not copied to a dedicated
buffer, but a pointer to a memory segment is requested from a
higher layer in a case of retransmission. This saves energy and
reduces memory footprint for the FPGA.

3.5. Forward error correction

The FEC algorithms are reducing the number of retransmitted
frames in the ARQ process. That significantly improves the
transmission efficiency. The transmitter is sending the data
with some redundant bytes. In our work, we are using Reed-
Solomon (RS) codes. We have selected the RS codes due to
relatively high throughput. We will skip a detailed
introduction to the FEC. This topic has many complicated
aspects. More details can be found in [18, 19]. We will just
explain how the RS is building the blocks. It is important to
understand results of our paper. We use in the simulation three
RS flavours: RS(255,249), RS(255,239), and RS(255, 223).
The numbers are defining the RS block size (255 Bytes in our
case) and the payload size (249, 239 or 223 Bytes). It means
that the redundant information is 6, 16, or 32 Bytes long. This
is explained in Fig. 6. The redundant bytes are used for error
corrections. If more redundant data is produced, then more
error symbols can be corrected. The RS(255,249) can correct
up to 3 Bytes in the block, RS(255,239) 8 Bytes, and the
RS(255, 223) 16 Bytes [18]. Our task is to find a trade-off
between the redundancy and the payload, so the transmission
process is efficient. The VHDL implemented FEC engine for
the FPGA is more flexible, and more RS flavours is available.
The implemented FPGA FEC engine is supporting any coding
in a range of 2-18 redundancy bytes per a single RS block. It
means that the following coding schemes are supported:
(255,237), (255,239), (255,241), (255,243), (255,245),
(255,247), (255,249), (255,251), and (255,253). Coding can be
adjusted on the fly, and this feature is used by the proposed
adaptation algorithm to choose the optimal coding for the
current wireless channel condition. In our case, the higher
coding granularity improves the overall performance.
The RS calculation is the most calculation demanding
operation performed in the FPGA logic. The encoders and
decoders occupy 55% of the FPGA logic resources. To
support the targeted 100 Gbps stream, eighty encoders and
eighty decoders are in use.

3.6. Hybrid ARQ

Any combination of the ARQ and FEC is called Hybrid-ARQ
(HARQ). Two mainly investigated in the paper HARQ

methods are HARQ type I and II. The HARQ-I adds error
detection code and FEC to every packet at every condition.
The HARQ-II sends the FEC data during the retransmission
only. In such case, the error correction data is not overloading
the link during the regular transmission (Fig. 7 and Fig. 8).
This can introduce some improvements in efficiency. We
answer in the next paragraph, which strategy is better for our
protocol. A detailed description of the HARQ-I and II can be
found in [18] and [20].

Fig. 6. The Reed-Solomon (RS) blocks. The algorithm is building the

blocks of size of 255 bytes in our case. The redundancy is adjustable.

If more redundancy bytes are used, then less payload is carried by the

segments. More redundancy bytes allow to correct more errors after

the transmission.

Fig. 7. The HARQ-I scheme. The transmitter always sends the frame

with a forward error correction data. The retransmitted frame is a

mirror copy of the original frame.

Fig. 8. The HARQ-II scheme. The transmitter usually sends the

frame without forward error correction data. The standard frame is

not extended by the FEC field. In a case when the frame is lost, then

the transmitter sends the FEC only. The frame data is not

retransmitted. The HARQ-II reduces the retransmission overhead in

compare to the HARQ-I.

Fig. 9. The demonstrator overview.

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

3.7 FPGA demonstrator

The hardware demonstrator consists of two hardware parts
(Fig. 9). The Tilera server is a dedicated 72 cores processor
employed for frames segmentation and fast memory access.
The FPGA is a calculation coprocessor supporting CRC, FEC
calculations, and frames aggregation. The main state machine
responsible for data link layer is run on the Tilera server. The
FPGAs and sever are connected with 10G Ethernet optical
fibers. For now, the architecture supports up to 80 Gbps with
two FPGA boards (interfaces constraints). Generally, the
Virtex7 FPGA can process up to 100 Gbps in a back-to-back
connection (Fig. 10). The baseband processor is not finished
yet. Thus, we can test our processor only in a loopback mode.
A single, logical FPGA processing pipeline (‘lane’) is shown
in Fig. 11.

3.8 Parallel FPGA processing

There is no possibility to process the 100 Gbps stream in a
single processing pipeline (lane) [14]. Even if one of the
fastest FPGA developments kit is used, the stream processing
have to be divided and calculated in parallel. For that purpose,
a parallel calculation array is implemented. The array
calculates 640 bits @ 156.25 MHz. Internally the 640-bits-
word is organized in ten sub-words processed by ten
calculation lanes (Fig. 12). Every lane runs at 10 Gbps, and is
connected to two 10G Ethernet ports (data input and data
output). Such processor uses 294115 lookup-tables and
239019 flip-flops. It is respectively 65% and 27% of the total
resources available in the Virtex7-690T FPGA. The slices
occupation is equal to 80%.

4. Results

4.1. Transmission limiting factors

We have performed transmission experiments and recorded
the most important parameters (the overall efficiency, the
percentage of successfully received segments, the percentage
of successfully received frame headers, the total number of
acknowledge frames, the number of timeouts, and the total
number of physical layer turnarounds). That allows us to
investigate which factors reduce throughput in our system.
Additionally, the retransmission segment size can be adjusted
in a range of 32 to 65536 Bytes. A following assumption can
be done after analysis of the results. The ACK-frame has to be
as short as it is possible and always encoded with robust
coding. Practically it means that the ACK-frame should be
encoded with a code rate lower that the code rate of the data
segments (a lower code rate means improved error correction).
This reduces the total number of lost ACK-frames, timeouts,
and PHY turnarounds. After that, only the loss of the data
segments limits the throughput. Intensive FEC coding and
segmentation for the data segments makes no sense without
improved reliability of the ACK-frame. Fig. 13 and Fig. 14
demonstrate the used methodology for un-coded and encoded
transmissions. In both cases the throughput is limited by lose
of the data segments but not by the ACK-frames. The total

Fig. 10. The FPGA demonstrator.

Fig. 11. A single processing lane (logical pipeline).

Fig. 12. The parallel FEC calculation array implemented in the

FPGA logic.

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

number of timeouts and the PHY turnarounds are relatively
low during the simulation.
The ACK-frame length is depended from the total number of
successfully received segments in a single ARQ session
(positive acknowledgment). If the data frame segmentation is
increased, then many small parts have to be sent and
acknowledged. That increases the ACK-frame size.
Unfortunately, too long ACK-frames cannot be delivered
errorless and are limiting the throughput. Instead of the
efficiency improvement, a degradation is observed. The ideal
solution is to keep the ACK-frame size smaller than the size of
the data segment. An ACK-frame compression is needed to
achieve that in our case. We considered three solutions: a bit
map coding, and two versions of a sequence number range
coding. A single uint16 value and a bit map are sent in the bit
map scheme. The uint16 value defines the first acknowledged
segment number, and the bit map defines all next values. The
bit position defines an offset and the bit value defines if the
segment is acknowledged or not.
The second and third methods send only a range of addresses
of the acknowledged segments. In some cases that may lead to
an extended frame size. All three methods were investigated,
and the results are shown in Fig. 15.

4.2. Optimal segment size

If the problem of the disadvantageous ACK-frame size is
reduced, then additional improvements for the data segments
can be done. First of all, we consider influence of the segment
size. By reducing the segment size, the efficiency can be
improved on “bad” channels. From the other side, more
segments have to be sent to transmit the same data. Every
segment is equipped with an individual header and checksum.
This induces overhead. Additionally, enabling the FEC
introduces some additional issues. This happens because block
codes are used (in our case the RS block size is equal to 255
bytes). This introduces additional indirect-segmenting. The
errors in each RS block are corrected individually, and each
RS block acts like an independent sub-segment. In Fig. 16 the
data segment size is investigated. It can be observed that the
optimal segment size for error rates below 1e-6 is in the range

Fig. 13. Limiting factors of the transmission. The data segments are

uncoded. The frame headers are delivered with a relatively low error

rate. The goodput is limited by lose of the data segments.

Error Rate
10-7 10-6 10-5 10-4 10-3 10-2
0

10

20

30

40

50

60

70

80

90

100

User data throughput [%]
Delivered data segments [%]
Delivered frame headers [%]
Number of ACK timeouts
Number of ACK-frames
Number of PHY turnarounds

Fig. 14. Limiting factors of the transmission. The data segments are

coded with RS(255, 223). The error rate of the data segment is

strongly reduced as compared to uncoded transmission simulation.

Error Rate
10-7 10-6 10-5 10-4 10-3 10-2
0

10

20

30

40

50

60

70

80

90

100

User data throughput [%]
Delivered data segments [%]
Delivered frame headers [%]
Number of ACK timeouts
Number of ACK-frames
Number of PHY turnarounds

Fig. 15. The maximal ACK-frame sizes during the simulation. Three

types of the ACK-frame compression methods are presented. The

compressed ACK-frame is significantly shorter and is much more

robust during the transmission.

Error Rate
10-7 10-6 10-5 10-4 10-3 10-2

A
C

K
-f

ra
m

e
 s

iz
e

 [
B

]

0

1000

2000

3000

4000

5000

6000

7000

8000

Uncompressed ACK
Bit map ACK
Range-coded ACK (15 bits)
Range-coded ACK (16 bits)

Fig. 16. The data link layer efficiency vs. the data segment size vs.

an error rate. The data segments are uncoded. If the error rate

increases, then smaller segments are preferred.

Number of segments
0 50 100 150 200 250 300 350 400 450 500

E
ffi

ci
en

cy
 [%

]

0

10

20

30

40

50

60

70

80

90

100

Err. rate=1.0e-06
Err. rate=1.0e-05
Err. rate=1.0e-04
Err. rate=1.0e-03

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

of 2 to 4 kB (16 to 32 segments for a 64 kB frame size). When
the error rate increases, then the segment size should be
reduced. Five hundred and more segments are required for

links with an error rate higher than 1e-5. It means that the
transmission without coding is very sensitive to the segment
size. Dynamic change of this parameter can introduce some
significant improvements to the efficiency. Slightly different
situation can be observed, when RS coding is used. This
situation is shown in Fig. 17. The transmission with RS coding
is less sensitive to the segment size. That means that,
advantages of the variable segment size can be reduced after
enabling the coding. In our FPGA demonstrator, we skip the
implementation of this feature in the first iteration. We
presume that the block-FEC can be a good substitute of the
variable segment size. To get better feeling of this observation,
more simulations were performed (Fig. 18). The improvement
of the variable segment size for the RS-coded transmissions is
marginal.

4.3. Dynamic FEC redundancy

In this paragraph, a dynamic algorithm to find a trade-off
between the FEC coding and the demanded error correction
performance is proposed. The algorithm analyses the number
of successfully delivered data segments and the number of
corrected errors in the RS blocks. If the efficiency is degraded
by loses of the data segments, then the algorithm increases the
FEC coding. This solution is uncomplicated, but it is
important to define a threshold, when the FEC mode should be
changed. In this paper, we set the thresholds to
249/255≈97.6%, 239/255≈93.7%, and 223/255≈87.5%. If the
data delivery efficiency is below the given values, then the
corresponding RS code is used. It tries to find a compromise
between the RS overhead and the rate of the lost segments.
The thresholds correspond to the code rates and define upper
bounding of the goodput. In our solution, we calculate error
statistics of all decoded RS blocks, and we categorize all
corrupted segments to some groups. Every error category can
be corrected by a different RS code. If the statistic is known,
then the best RS code can be chosen for all future
transmissions. Results of the algorithm are shown in Fig. 19. It
may happen that the channel changes so rapidly that this
solution will work too slowly. To minimize this factor,
HARQ-II can be applied. After that, any mistake of the
adaption algorithm can be corrected by the FEC data sent in
the next ARQ session. We performed an additional simulation

Fig. 17. The data link layer efficiency vs. the data segment size vs.

an error rate. The data segments are coded with the RS(255,223). The

RS encoded frames are less sensitive to the segment size that the

uncoded frames.

Number of segments
0 50 100 150 200 250 300 350 400 450 500

E
ff

ic
ie

n
cy

 [
%

]

0

10

20

30

40

50

60

70

80

90

Err. rate=1.0e-07 RS(255,223)
Err. rate=1.0e-03 RS(255,223)
Err. rate=1.7e-03 RS(255,223)
Err. rate=3.1e-03 RS(255,223)
Err. rate=5.6e-03 RS(255,223)

Fig. 18. The data link layer efficiency vs. the data segment size vs.

an error rate. The uncoded and RS coded transmissions are plotted in

one figure. The RS encoded frames are less sensitive to the segment

size than the uncoded frames.

Bit Error Rate
10-7 10-6 10-5 10-4 10-3 10-2

E
ffi

ci
en

cy
 [%

]

0

10

20

30

40

50

60

70

80

90

100

4kB no-coding
1kB no-coding
0.25kB no-coding
4kB RS(255,223)
1kB RS(255,223)
0.25kB RS(255,223)

Fig. 19. The dynamic FEC algorithm results. The probability P(C) is

equal to 0.5. The adaptive algorithm chooses the optimal coding and

maximizes the goodput.

Error Rate
10-7 10-6 10-5 10-4 10-3 10-2

E
ffi

ci
en

cy
 [%

]

0

10

20

30

40

50

60

70

80

90

100

no coding
RS(255,249)
RS(255,223)
RS-dynamic

Fig. 20. An example characteristic used for evaluation of adaptive

algorithms. The error rate is a permutation in a range of [1e-7; 1e-2].

Simulation point
0 5 10 15 20 25

Er
ro

r R
at

e

10-7

10-6

10-5

10-4

10-3

10-2

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

to test how the algorithm performs in rapidly changing
environment (Fig. 20). Results of this simulation are presented
in Table 1. The algorithm achieves quite high efficiency. It is
possible to improve the switching logic in the future. For
example, a proportional-integral-derivative (PID) or a fuzzy
logic controller can be employed. These controllers can rely
not only on the instantaneous value, but can track more
parameters on a longer period.

4.4. Performance of the FPGA implementation

The back-to-back connected FPGAs and the implemented
wireless channel emulator are used to test the algorithms in a
real hardware. Our FPGA-implementation accepts a BER up
to 2×10-3. Above this value, the RS engine cannot fix errors in
the stream, and the performance rapidly drops. In some cases,
the wireless channel may produce BER higher than 2×10-3.
The hardware-implemented data link layer cannot operate in
such conditions, and the device will lose the link. To improve
the error correction results, we propose an extended version of
our FEC engine.
In the simulation, we presume that the engine must support at
least the RS(255,223) with code rate R≈0.875. The used RS
VHDL-implementation cannot support a lower coding than the
RS(255,237) with code rate R≈0.929. Thus, the achieved
FPGA results are worse than simulated. There is a possibility
to use shortened RS codes to decrease the code rate of the
produced stream. That is the easiest approach to deal with the
problem. The second solution is to redesign the implemented
RS entity, that it can natively support the RS(255,223) [21].
We compare the both approaches in terms of consumed logic
area (Fig. 21) and error correction performance (Fig. 22 and
Fig. 23).
The implementation of the RS(127,109,8-bit symbol) is
realized by shortening the RS(255,237) by removing 128
symbols from the message part of the codeword. Practically, it
is achieved by using two hardware entities of the default code,
and by multiplexing/switching the data input and output
interfaces (Fig. 24). Every coder calculates half of the data
block, and the rest of the symbols are filled with zeroes.

Fig. 21. Consumed logic area by the proposed solutions.

Fig. 22. Error correction performance of the proposed coding

schemes.

Input BER
10-3 10-2

O
u

tp
u

t
B

E
R

10-6

10-5

10-4

10-3

10-2

RS(255,223) k=0.875
RS(127,109) k=0.858
RS(41,59) k=0.695

Fig. 23. Simulated throughput of the FPGA demonstrator with the

improved FEC engine.

TABLE I

PERFORMANCE FOR THE RAPIDLY CHANGING CHANNEL

Algorithm
Average

efficiency [%]

Peak efficiency

[%]

1. No coding (ARQ) 54.72 98.47

2. RS(255,249) (HARQ I) 74.69 96.23

3. RS(255,239) (HARQ I) 79.84 92.43

4. RS(255,223) (HARQ I) 79.19 86.20

5. Adaptive RS (HARQ I) 79.66 98.33

6. HARQ II with RS (255,223) 74.82 98.33

7. Adaptive RS with HARQ II 79.57 98.13

8. Adaptive RS (modified) 83.05 96.28

9. Adaptive RS with HARQ II

(modified)

82.46 96.10

Tab. 1. Different algorithms vs. the rapidly changing channel (Fig.

16). Nine algorithms were tested. The best performance is achieved

by using adaptive redundancy with the HARQ-I scheme. This

algorithm is relatively easy to implement in the FPGA hardware.

The HARQ-II scheme is giving similar results, but the complexity of

the HARQ-II is higher.

Fig. 24. Implemented code shortening.

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

The RS(59,41,8-bit symbol) is a shortened version of the
RS(255,237) by removing 196 data symbols. Practically those
are four calculation entities switched four times during a
single codeword coding. These uncomplicated operations
improve the error correction performance without any
significant complications of the system. Especially, the
resources used for implementation of the RS(255,223) can be
reduced by around 33%, when the coding is replaced with the
proposed RS(127,109). This simplification causes a small loss
of the error correction performance. The redundancy symbols

are spread more uniformly over the frame and the redundancy
cannot be used as flexible as during processing of the full-
length codewords. The error correction process is focused on
shorter blocks, and some of the redundant information is not
used efficiently.

5. Future work

We experiment with interleaving and multiplexing matrixes to
increase error correction performance of our implementation
(Fig. 25). The assumption is to improve decoding performance
of the RS(255,239) and to achieve error correction
performance similar to the RS(255,223). The proposed
decoder must be mathematically analysed and it have to be
proven, that the proposed structure requires less calculation
operations than the RS(255,223). Up to now, achieved by us
results are disappointing. The solution is inefficient against
single, uniformly distributed bit errors (e.g. AWGN channel).
In such a case, we cannot tune the structure to get any
optimistic results. Usually, we consume more power than a
single RS(255,239) decoder, and the increase of the error
correction performance is marginal.
Better results are achieved if the structure is run against burst
errors. In Fig. 26, an example error characteristic is presented.
We use the proposed characteristic to test our structure (Fig.
27). The solution achieves very good BER performance, but
this is not the most important statistic. Number of bit errors in
individual blocks is significantly reduced, but the total number
of fully recovered blocks is lower than after the RS(255,233)
decoding (Fig. 28).
An additional disadvantage is that the M and N matrixes (Fig.
25) are dependent from the error characteristic, and are not
universal for all burst error lengths. If the length of the typical
error produced by a channel is changing, then also the
matrixes have to be adopted.
The proposed scheme can be run iteratively. We do not
consider an iterative mode of operation due to energy
consumption and latency. For now, the presented solution
cannot be considered as a substitute of the typical RS decoder.

Fig. 25. Experimental RS decoder.

Fig. 26. Example error characteristic.
Error length [bits]

1 2 3 4 5 6 7 8 9 10

0

5

10

15

20

25

30

35

40

45

50

Fig. 27. Error correction results of the proposed decoder.

Input BER
10-8 10-7 10-6 10-5 10-4 10-3 10-2

O
ut

pu
t B

E
R

10-8

10-7

10-6

10-5

10-4

10-3

10-2

RS(255,223)
RS(255,239)
Proposed decoder

Fig. 28. Block correction results of the proposed decoder.

Error Rate

10
-4

10
-3

10
-2

10
-1

10

20

30

40

50

60

70

80

90

100

RS(255,223)

RS(255,239)

Proposed decoder

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

6. Conclusion

In the paper, three major aspects of the 100 Gbps data link
layer are explained. Firstly, we analysed the limiting factors of
the implementation. The data link layer robustness is
improved after introducing the ACK-frame compression and
coding. This reduces the total number of timeouts in the
system simulation. After that, the data segmentation can be
investigated. The most important observation is that the
segmentation has more influence on the un-coded
transmissions, than for the transmissions coded with the RS
block codes. Because of this reason, we skip the
implementation of a variable segment size in the first iteration.
Instead of it, we focus on the FEC algorithms and a solution to
manage the FEC overhead against the transmission
requirements. The goal is to use as little overhead as possible
and maximize the efficiency.
Link adaptation used with the HARQ-I simplifies the FPGA
design, and it is a good substitute of the more complicated
HARQ-II method. That allows to remove buffers from the
design, due to the fact that broken frames do not have to be
buffered.
All presented results are validated on the Xilinx VC709
Virtex7 FPGA platform. The implementation supports a net
data rate of 97 Gbps on the real FPGA-hardware (Fig. 29).

Acknowledgements

This paper is related to the End2End100 project and
cooperates with other proposed projects of the DFG Special
Priority Program 1655 (SPP1655) on “Wireless 100 Gbps and
beyond”, e.g. the Real100G.COM and Real100G.RF. This
group of projects will investigate a complete wireless 100
Gbps system at ultra-high frequencies (240 GHz).

References

[1] S. Koenig, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A.

Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer and

others, "Wireless sub-THz communication system with high data rate,"
Nature Photonics, vol. 7, no. 12, pp. 977-981, 2013.

[2] F. Boes, T. Messinger, J. Antes, D. Meier, A. Tessmann and I. Kallfass,

"Ultra-broadband MMIC-based wireless link at 240 GHz enabled by
64GS/s DAC," in Infrared, Millimeter, and Terahertz waves (IRMMW-

THz), 2014 39th International Conference on, 2014.

[3] H. Wang, W. Yuan, B. Zhang, H. Li, Z. Zhang, X. Yang and W. Shi,
"The design, test, and application of the front end in 0.3 THz wireless

communication systems," in Selected Proceedings of the Photoelectronic

Technology Committee Conferences held June-July 2015, 2015.

[4] T. Nagatsuma, K. Kato and J. Hesler, "Enabling Technologies for Real-

time 50-Gbit/s Wireless Transmission at 300 GHz," in Proceedings of

the Second Annual International Conference on Nanoscale Computing
and Communication, 2015.

[5] I. T. Monroy, "Photonic Techniques for Sub-Terahertz Wireless Data

Transmission," in Photonic Networks and Devices, 2015.

[6] K. KrishneGowda, T. Messinger, A. C. Wolf, R. Kraemer, I. Kallfass

and J. C. Scheytt, "Towards 100 Gbps Wireless Communication in THz

Band with PSSS Modulation: A Promising Hardware in the Loop
Experiment," in Ubiquitous Wireless Broadband (ICUWB), 2015 IEEE

International Conference on, 2015.

[7] Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications: Enhancements for Very High Throughput in the 60 GHz

Band, IEEE Std, 12.2012.

[8] T. Li, Q. Ni, D. Malone, D. Leith, Y. Xiao and T. Turletti, "Aggregation
with fragment retransmission for very high-speed WLANs," IEEE/ACM

Transactions on Networking (TON), vol. 17, no. 2, pp. 591-604, 2009.

[9] D. Qiao, S. Choi and K. G. Shin, "Goodput analysis and link adaptation
for IEEE 802.11 a wireless LANs," Mobile Computing, IEEE

Transactions on, vol. 1, no. 4, pp. 278-292, 2002.

[10] D. Skordoulis, Q. Ni, H.-H. Chen, A. P. Stephens, C. Liu and A.
Jamalipour, "IEEE 802.11 n MAC frame aggregation mechanisms for

next-generation high-throughput WLANs," Wireless Communications,

IEEE, vol. 15, no. 1, pp. 40-47, 2008.

[11] E. H. Ong, J. Kneckt, O. Alanen, Z. Chang, T. Huovinen and T. Nihtil,

"IEEE 802.11 ac: Enhancements for very high throughput WLANs," in

Personal Indoor and Mobile Radio Communications (PIMRC), 2011
IEEE 22nd International Symposium on, 2011.

[12] S. Choi and K. Shin, "A class of adaptive hybrid ARQ schemes for

wireless links," Vehicular Technology, IEEE Transactions on, vol. 50,
no. 3, pp. 777-790, 2001.

[13] L. Badia, N. Baldo, M. Levorato and M. Zorzi, "A Markov framework

for error control techniques based on selective retransmission in video
transmission over wireless channels," Selected Areas in

Communications, IEEE Journal on, vol. 28, no. 3, pp. 488-500, 2010.

[14] M. A. Ingale, "Error correcting codes in optical communication

systems," 2003.

[15] S. Falahati and A. Svensson, "Hybrid type-II ARQ schemes with
adaptive modulation systems for wireless channels," in Vehicular

Technology Conference, 1999. VTC 1999-Fall. IEEE VTS 50th, 1999.

[16] M. Ehrig and M. Petri, "60GHz broadband MAC system design for cable
replacement in machine vision applications," AEU-International Journal

of Electronics and Communications, 2013.

[17] E. Esteves, P. J. Black and M. I. Gurelli, "Link adaptation techniques for
high-speed packet data in third generation cellular systems," in European

Wireless Conference, 2002.

[18] S. Lin and D. Costello, Error Control Coding: Fundamentals and
Applications, Prentice-Hall Series in Computer Applications In Electrical

Engineering, 1983.

Fig. 29. Performance of the FPGA implementation in view of a bit

error rate.

Bit Error Rate
10-7 10-6 10-5 10-4 10-3 10-2

T
h
ro

u
g
h
p
u
t
[G

b
p
s]

0

10

20

30

40

50

60

70

80

90

100

Data throughput

L. Lopacinski, M. Brzozowski, R. Kraemer, S. Buechner, and J. Nolte

JOURNAL OF TELECOMMUNICATIONS

 AND INFORMATION TECHNOLOGY

[19] L. Lopacinski, M. Brzozowski, R. Kraemer and J. Nolte, "100 Gbps
Wireless - Challenges to the data link layer," in ICTF 2014, 2014.

[20] H. Chen, R. G. Maunder and L. Hanzo, "A Survey and Tutorial on Low-
Complexity Turbo Coding Techniques and a Holistic Hybrid ARQ

Design Example," IEEE Communications Surveys \& Tutorials, 2013.

[21] M. Marinkovic, M. Krstic, E. Grass i M. Piz, „Performance and
complexity analysis of channel coding schemes for multi-Gbps wireless

communications,” w Personal Indoor and Mobile Radio

Communications (PIMRC), 2012 IEEE 23rd International Symposium
on, 2012.

Brandenburg University of Technology Cottbus-Senftenberg
Platz der Deutschen Einheit 1
03046 Cottbus, Germany
E-mail: lukasz.lopacinski@b-tu.de

