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Abstract — in the paper, simulation and hardware 

implementation of a data link layer for 100 Gbps Terahertz 

wireless communication is presented. The overhead of protocols 

and coding should be reduced to a minimum. This is especially 

important for high-speed networks, where a small degradation of 

efficiency will degrade the user data throughput by several Gbps. 

The following aspects are explained: an acknowledge frame 

compression, the optimal frame segmentation and aggregation, 

Reed-Solomon forward error correction, an algorithm to control 

the transmitted data redundancy (link adaptation), and FPGA 

(field programmable gate array) implementation of a 

demonstrator. The most important conclusion is that changing 

the segment size influences the uncoded transmissions mostly, 

and the FPGA memory footprint can be significantly reduced 

when the hybrid automatic repeat request type II is replaced by 

the type I with a link adaptation. Additionally, an algorithm for 

controlling the Reed-Solomon redundancy is presented. 

Hardware implementation is demonstrated, and the device 

achieves net data rate of 97 Gbps. 
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1. Introduction  

Within the last two years, a few new approaches for 100 Gbps 
wireless communication have been proposed. Research on 
physical transceivers and baseband processing changed the 
state of the art in the targeted area. Blocks required to 
modulate the 100 Gbps wireless signal in the Terahertz band 
are close to release in engineering samples. In [1] a 100 Gbps 
baseband signal has been sent over a 237.5 GHz link. Similar 
results are shown in [2]. More THz communication activity on 
the physical layer is documented in [3, 4, 5, 6]. In this paper, 
we design a data link layer for a wireless 100 Gbps system. 
The proposed solution is 14 times faster than the state of the 
art 802.11ac (5 GHz) and 802.11ad (60 GHz) WLANs [7]. 
Even if the achievement in 100 Gbps wireless communication 
is impressive, the PHY, baseband, and data link layer have not 
been integrated yet. To the authors best knowledge, the fully 
functional data link layer dedicated for 100 Gbps wireless THz 
application has not been shown anywhere in the world. 

2. Related Work 

Many research efforts have been addressed to highly efficient 
wireless protocols. A data link layer goodput analysis is a very 
popular topic, especially for WLAN. Our methodology for a 
frame segmentation is very similar to efforts presented by T. 
Li et al. [8], where segmentation is deeply investigated. T. Li 
proves that a frame fragmentation may increase a protocol 
efficiency. There are many authors, who publish papers 
similar to work of T. Li, for example: [9, 10, 11]. They 

consider possible improvements for the WLANs, mostly by 
using fragmentation and aggregation. The main difference is 
that we are strongly focused on ad-hoc connections for short 
distances with the highest possible efficiency (95% and more), 
and data rate of 100 Gbps. 
Another deeply investigated topic is an automatic repeat 
request (ARQ). Similar work can be found in [12, 13]. We 
have focused our work on the ARQ concatenated with forward 
error control codes (FEC) [14]. Such technique is called 
hybrid-ARQ (HARQ) [15]. 
There are only a few wireless transceivers working at high-
speed data rates. For example, ref. [16] introduces a system for 
wireless communication working at the 60 GHz frequency 
band. However, the supported data rate of 4 Gbps is still much 
lower than our goal: 100 Gbps wireless. 
The core task of this paper is to test adaptation algorithms for 
forward error correction. This allows controlling the redundant 
data in view of the channel quality. 

3. Work details 

In this paragraph, we introduce some details of the research. 
Firstly, we explain how we generate the results. The employed 
simulation environment and the emulated wireless channel are 
explained. After that, we describe all implemented techniques 
used in the research. At the end, our FPGA prototype is 
presented. 

3.1. Simulation Model 

We performed Matlab simulations of the planned system, 
before the real demonstrator was implemented. The 
simulations are using the same algorithms to the solutions 
implemented in the hardware. We use field programmable 
gate arrays (FPGAs) for the final demonstrator. 
Fig. 1 explains the simulation model. Two devices are 
communicating by an emulated wireless channel. The devices 
are exchanging data frames (the data path) and confirmation 

 Fig. 1. A Matlab model used to generate transmission statistics. The 

receiver uses an acknowledge generator to build the ACK-frame. 

The transmitter uses the frame for retransmissions and statistic 

calculations. 
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messages (the acknowledge path). Every successfully received  
data frame is confirmed by the receiver device (RX). That 
makes the data exchange process reliable, because the 
transmitter (TX) can repeat all lost frames. This process is 
called an automatic repeat request (ARQ). The core function 
of the ARQ process is generation of the acknowledge frame 
(ACK) and sending it to the transmitter device. Additionally, 
the TX device can calculate communication statistics. That 
allows estimating the efficiency of the implemented algorithm.  

3.2. Wireless channel emulation 

In this subsection, we introduce the implementation of the 
wireless channel used in the simulation (according to Fig. 1). 
We use a two state Markov Chain for errors emulation. This 
solution requires two transition statistics, which defines the 
channel. The probabilities of the transition define a bit error 
rate and error length in bits. It does not use any physical 
aspects of the wireless transmission. For testing the data link 
layer it is acceptable. We need to know the characteristic and 
distribution of the errors. The cause is unimportant, until the 
parameters describe the channel moreover correctly. A 
detailed description of the Markov Chain can be found in [11]. 

3.3. Frame segmentation and aggregation 

A frame size and a bit error rate (BER) have a significant 
impact on the efficiency of the wireless communication. When 
the payload is longer in the frame, then less overhead is 
generated by the headers and checksums. Transmission is 
more efficient. Unfortunately, long frames are more 
vulnerable to transmission errors. This is explained in Fig. 2. 
If the frames become longer, then higher is the probability that 
some bits in the frame will be corrupted. The frame can be 
split to independent segments, to improve the robustness and 
efficiency of the communication. The splitting process is 
explained in Fig. 3. In the example, a single 4 kB frame is split 
to four 1 kB segments. Now, the individual segments are 
acting like sub-frames (frame fragmentation). Every segment 
is using an individual header and checksum, but the preamble 
is shared (frame aggregation). It means that the errors in one 
segment do not influence the payload in the other segments. 
That improves the communication efficiency (Fig. 4). In case 
of a bit error, only the defected part must be repeated but not 
the complete frame. In our case, the default frame size is 64 
kB, and is segmented to 64 fragments. In a single ARQ 
session 64 frames are transported (4 MB). The FPGA 
implementation allows changing the frame settings in the fly, 
and only the on-chip memory buffers are limiting the 
flexibility of the frame format. 

3.4. Automatic repeat request process 

We have already mentioned that the TX and RX devices are 
working in a closed feedback loop. This loop is called ARQ. 
Every frame sent by the TX device is locally copied to the TX 
ARQ buffer (Fig. 5). If the RX will not acknowledge all of the 
sent frames, then the TX reads the lost frame from the buffer 
and makes retransmission. The retransmission process repeats 
until the positive ACK for the frame is received. If the ACK 
frame is lost, then the transmitter sends an ACK-request frame 

Fig. 2. A frame error rate in view of the frame size. If frame is 

longer, then higher is the probability that an error will occur during 

the transmission and the frame will be lost. Due to this aspect, 

shorter frames are preferred in a noisy wireless environment. 
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Fig. 3. An example of segmentation for a frame payload. The 

example payload is chopped to four segments of equal length. The 

shorter segments are more efficient during a transmission in a noisy 

channel. 

Fig. 4. An explanation how the segmented frame can improve the 

total efficiency. In a case of bit errors in a classical frame, the whole 

payload has to be retransmitted. If the segmented frame is used, then 

only invalid data part is rejected and there is no need to retransmit the 

whole frame, but just only the defected segment. 

Fig. 5. An automatic repeat request process (ARQ). All transmitted 

frames are copied to the temporary TX ARQ buffer. If any frame will 

be lost during the transmission, then the transmitter reads the lost data 

from the buffer and starts the retransmission. 
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after a predefined timeout. In our case, we have adopted this 
procedure to our implementation. Instead of acknowledging of 
full frames, every single segment (sub-frame) is 

acknowledged. It means that the ARQ process works on frame 
fragments but not on full-frames. For our FPGA prototype, an 
additional future is used. The implementation uses a zero-copy 
approach. The transmitted data is not copied to a dedicated 
buffer, but a pointer to a memory segment is requested from a 
higher layer in a case of retransmission. This saves energy and 
reduces memory footprint for the FPGA. 

3.5. Forward error correction 

The FEC algorithms are reducing the number of retransmitted 
frames in the ARQ process. That significantly improves the 
transmission efficiency. The transmitter is sending the data 
with some redundant bytes. In our work, we are using Reed-
Solomon (RS) codes. We have selected the RS codes due to 
relatively high throughput. We will skip a detailed 
introduction to the FEC. This topic has many complicated 
aspects. More details can be found in [18, 19]. We will just 
explain how the RS is building the blocks. It is important to 
understand results of our paper. We use in the simulation three 
RS flavours: RS(255,249), RS(255,239), and RS(255, 223). 
The numbers are defining the RS block size (255 Bytes in our 
case) and the payload size (249, 239 or 223 Bytes). It means 
that the redundant information is 6, 16, or 32 Bytes long. This 
is explained in Fig. 6. The redundant bytes are used for error 
corrections. If more redundant data is produced, then more 
error symbols can be corrected. The RS(255,249) can correct 
up to 3 Bytes in the block, RS(255,239) 8 Bytes, and the 
RS(255, 223) 16 Bytes [18]. Our task is to find a trade-off 
between the redundancy and the payload, so the transmission 
process is efficient. The VHDL implemented FEC engine for 
the FPGA is more flexible, and more RS flavours is available. 
The implemented FPGA FEC engine is supporting any coding 
in a range of 2-18 redundancy bytes per a single RS block. It 
means that the following coding schemes are supported: 
(255,237), (255,239), (255,241), (255,243), (255,245), 
(255,247), (255,249), (255,251), and (255,253). Coding can be 
adjusted on the fly, and this feature is used by the proposed 
adaptation algorithm to choose the optimal coding for the 
current wireless channel condition. In our case, the higher 
coding granularity improves the overall performance. 
The RS calculation is the most calculation demanding 
operation performed in the FPGA logic. The encoders and 
decoders occupy 55% of the FPGA logic resources. To 
support the targeted 100 Gbps stream, eighty encoders and 
eighty decoders are in use. 

3.6. Hybrid ARQ 

Any combination of the ARQ and FEC is called Hybrid-ARQ 
(HARQ). Two mainly investigated in the paper HARQ  

methods are HARQ type I and II. The HARQ-I adds error 
detection code and FEC to every packet at every condition. 
The HARQ-II sends the FEC data during the retransmission 
only. In such case, the error correction data is not overloading 
the link during the regular transmission (Fig. 7 and Fig. 8). 
This can introduce some improvements in efficiency. We 
answer in the next paragraph, which strategy is better for our 
protocol. A detailed description of the HARQ-I and II can be 
found in [18] and [20]. 

Fig. 6. The Reed-Solomon (RS) blocks. The algorithm is building the 

blocks of size of 255 bytes in our case. The redundancy is adjustable. 

If more redundancy bytes are used, then less payload is carried by the 

segments. More redundancy bytes allow to correct more errors after 

the transmission. 

Fig. 7. The HARQ-I scheme. The transmitter always sends the frame 

with a forward error correction data. The retransmitted frame is a 

mirror copy of the original frame. 

Fig. 8. The HARQ-II scheme. The transmitter usually sends the 

frame without forward error correction data. The standard frame is 

not extended by the FEC field. In a case when the frame is lost, then 

the transmitter sends the FEC only. The frame data is not 

retransmitted. The HARQ-II reduces the retransmission overhead in 

compare to the HARQ-I. 

Fig. 9. The demonstrator overview. 
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3.7 FPGA demonstrator 

The hardware demonstrator consists of two hardware parts 
(Fig. 9). The Tilera server is a dedicated 72 cores processor 
employed for frames segmentation and fast memory access. 
The FPGA is a calculation coprocessor supporting CRC, FEC 
calculations, and frames aggregation. The main state machine 
responsible for data link layer is run on the Tilera server. The 
FPGAs and sever are connected with 10G Ethernet optical 
fibers. For now, the architecture supports up to 80 Gbps with 
two FPGA boards (interfaces constraints). Generally, the 
Virtex7 FPGA can process up to 100 Gbps in a back-to-back 
connection (Fig. 10). The baseband processor is not finished 
yet. Thus, we can test our processor only in a loopback mode. 
A single, logical FPGA processing pipeline (‘lane’) is shown 
in Fig. 11. 

3.8 Parallel FPGA processing 

There is no possibility to process the 100 Gbps stream in a 
single processing pipeline (lane) [14]. Even if one of the 
fastest FPGA developments kit is used, the stream processing 
have to be divided and calculated in parallel. For that purpose, 
a parallel calculation array is implemented. The array 
calculates 640 bits @ 156.25 MHz. Internally the 640-bits-
word is organized in ten sub-words processed by ten 
calculation lanes (Fig. 12). Every lane runs at 10 Gbps, and is 
connected to two 10G Ethernet ports (data input and data 
output). Such processor uses 294115 lookup-tables and 
239019 flip-flops. It is respectively 65% and 27% of the total 
resources available in the Virtex7-690T FPGA. The slices 
occupation is equal to 80%. 

4. Results 

4.1. Transmission limiting factors 

We have performed transmission experiments and recorded 
the most important parameters (the overall efficiency, the 
percentage of successfully received segments, the percentage 
of successfully received frame headers, the total number of 
acknowledge frames, the number of timeouts, and the total 
number of physical layer turnarounds). That allows us to 
investigate which factors reduce throughput in our system. 
Additionally, the retransmission segment size can be adjusted 
in a range of 32 to 65536 Bytes. A following assumption can 
be done after analysis of the results. The ACK-frame has to be 
as short as it is possible and always encoded with robust 
coding. Practically it means that the ACK-frame should be 
encoded with a code rate lower that the code rate of the data 
segments (a lower code rate means improved error correction). 
This reduces the total number of lost ACK-frames, timeouts, 
and PHY turnarounds. After that, only the loss of the data 
segments limits the throughput. Intensive FEC coding and 
segmentation for the data segments makes no sense without 
improved reliability of the ACK-frame. Fig. 13 and Fig. 14 
demonstrate the used methodology for un-coded and encoded 
transmissions. In both cases the throughput is limited by lose 
of the data segments but not by the ACK-frames. The total 

Fig. 10. The FPGA demonstrator. 

Fig. 11. A single processing lane (logical pipeline). 

Fig. 12. The parallel FEC calculation array implemented in the 

FPGA logic. 
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number of timeouts and the PHY turnarounds are relatively 
low during the simulation.  
The ACK-frame length is depended from the total number of 
successfully received segments in a single ARQ session 
(positive acknowledgment). If the data frame segmentation is 
increased, then many small parts have to be sent and 
acknowledged. That increases the ACK-frame size. 
Unfortunately, too long ACK-frames cannot be delivered 
errorless and are limiting the throughput. Instead of the 
efficiency improvement, a degradation is observed. The ideal 
solution is to keep the ACK-frame size smaller than the size of 
the data segment. An ACK-frame compression is needed to 
achieve that in our case. We considered three solutions: a bit 
map coding, and two versions of a sequence number range 
coding. A single uint16 value and a bit map are sent in the bit 
map scheme. The uint16 value defines the first acknowledged 
segment number, and the bit map defines all next values. The 
bit position defines an offset and the bit value defines if the 
segment is acknowledged or not. 
The second and third methods send only a range of addresses 
of the acknowledged segments. In some cases that may lead to 
an extended frame size. All three methods were investigated, 
and the results are shown in Fig. 15. 

4.2. Optimal segment size 

If the problem of the disadvantageous ACK-frame size is 
reduced, then additional improvements for the data segments 
can be done. First of all, we consider influence of the segment 
size. By reducing the segment size, the efficiency can be 
improved on “bad” channels. From the other side, more 
segments have to be sent to transmit the same data. Every 
segment is equipped with an individual header and checksum. 
This induces overhead. Additionally, enabling the FEC 
introduces some additional issues. This happens because block 
codes are used (in our case the RS block size is equal to 255 
bytes). This introduces additional indirect-segmenting. The 
errors in each RS block are corrected individually, and each 
RS block acts like an independent sub-segment. In Fig. 16 the 
data segment size is investigated. It can be observed that the 
optimal segment size for error rates below 1e-6 is in the range 

Fig. 13. Limiting factors of the transmission. The data segments are 

uncoded. The frame headers are delivered with a relatively low error 

rate. The goodput is limited by lose of the data segments. 
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Fig. 14. Limiting factors of the transmission. The data segments are 

coded with RS(255, 223). The error rate of the data segment is 

strongly reduced as compared to uncoded transmission simulation.  
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Fig. 15. The maximal ACK-frame sizes during the simulation. Three 

types of the ACK-frame compression methods are presented. The 

compressed ACK-frame is significantly shorter and is much more 

robust during the transmission. 
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increases, then smaller segments are preferred. 
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of 2 to 4 kB (16 to 32 segments for a 64 kB frame size). When 
the error rate increases, then the segment size should be 
reduced. Five hundred and more segments are required for 

links with an error rate higher than 1e-5. It means that the 
transmission without coding is very sensitive to the segment 
size. Dynamic change of this parameter can introduce some 
significant improvements to the efficiency. Slightly different 
situation can be observed, when RS coding is used. This 
situation is shown in Fig. 17. The transmission with RS coding 
is less sensitive to the segment size. That means that, 
advantages of the variable segment size can be reduced after 
enabling the coding. In our FPGA demonstrator, we skip the 
implementation of this feature in the first iteration. We 
presume that the block-FEC can be a good substitute of the 
variable segment size. To get better feeling of this observation, 
more simulations were performed (Fig. 18). The improvement 
of the variable segment size for the RS-coded transmissions is 
marginal. 

4.3. Dynamic FEC redundancy 

In this paragraph, a dynamic algorithm to find a trade-off 
between the FEC coding and the demanded error correction 
performance is proposed. The algorithm analyses the number 
of successfully delivered data segments and the number of 
corrected errors in the RS blocks. If the efficiency is degraded 
by loses of the data segments, then the algorithm increases the 
FEC coding. This solution is uncomplicated, but it is 
important to define a threshold, when the FEC mode should be 
changed. In this paper, we set the thresholds to 
249/255≈97.6%, 239/255≈93.7%, and 223/255≈87.5%. If the 
data delivery efficiency is below the given values, then the 
corresponding RS code is used. It tries to find a compromise 
between the RS overhead and the rate of the lost segments. 
The thresholds correspond to the code rates and define upper 
bounding of the goodput. In our solution, we calculate error 
statistics of all decoded RS blocks, and we categorize all 
corrupted segments to some groups. Every error category can 
be corrected by a different RS code. If the statistic is known, 
then the best RS code can be chosen for all future 
transmissions. Results of the algorithm are shown in Fig. 19. It 
may happen that the channel changes so rapidly that this 
solution will work too slowly. To minimize this factor, 
HARQ-II can be applied. After that, any mistake of the 
adaption algorithm can be corrected by the FEC data sent in 
the next ARQ session. We performed an additional simulation 

Fig. 17. The data link layer efficiency vs. the data segment size vs. 

an error rate. The data segments are coded with the RS(255,223). The 

RS encoded frames are less sensitive to the segment size that the 

uncoded frames. 
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to test how the algorithm performs in rapidly changing 
environment (Fig. 20). Results of this simulation are presented 
in Table 1. The algorithm achieves quite high efficiency. It is 
possible to improve the switching logic in the future. For 
example, a proportional-integral-derivative (PID) or a fuzzy 
logic controller can be employed. These controllers can rely 
not only on the instantaneous value, but can track more 
parameters on a longer period. 

 

 

4.4. Performance of the FPGA implementation 

The back-to-back connected FPGAs and the implemented 
wireless channel emulator are used to test the algorithms in a 
real hardware. Our FPGA-implementation accepts a BER up 
to 2×10-3. Above this value, the RS engine cannot fix errors in 
the stream, and the performance rapidly drops. In some cases, 
the wireless channel may produce BER higher than 2×10-3. 
The hardware-implemented data link layer cannot operate in 
such conditions, and the device will lose the link. To improve 
the error correction results, we propose an extended version of 
our FEC engine. 
In the simulation, we presume that the engine must support at 
least the RS(255,223) with code rate R≈0.875. The used RS 
VHDL-implementation cannot support a lower coding than the 
RS(255,237) with code rate R≈0.929. Thus, the achieved 
FPGA results are worse than simulated. There is a possibility 
to use shortened RS codes to decrease the code rate of the 
produced stream. That is the easiest approach to deal with the 
problem. The second solution is to redesign the implemented 
RS entity, that it can natively support the RS(255,223) [21]. 
We compare the both approaches in terms of consumed logic 
area (Fig. 21) and error correction performance (Fig. 22 and 
Fig. 23). 
The implementation of the RS(127,109,8-bit symbol) is 
realized by shortening the RS(255,237) by removing 128 
symbols from the message part of the codeword. Practically, it 
is achieved by using two hardware entities of the default code, 
and by multiplexing/switching the data input and output 
interfaces (Fig. 24). Every coder calculates half of the data 
block, and the rest of the symbols are filled with zeroes.  

Fig. 21. Consumed logic area by the proposed solutions. 

Fig. 22. Error correction performance of the proposed coding 

schemes. 
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Fig. 23. Simulated throughput of the FPGA demonstrator with the 

improved FEC engine. 

TABLE I 

PERFORMANCE FOR THE RAPIDLY CHANGING CHANNEL 

Algorithm 
Average 

efficiency [%] 

Peak efficiency 

[%] 

1. No coding (ARQ) 54.72 98.47 

2. RS(255,249) (HARQ I) 74.69 96.23 

3. RS(255,239) (HARQ I) 79.84 92.43 

4. RS(255,223) (HARQ I) 79.19 86.20 

5. Adaptive RS (HARQ I) 79.66 98.33 

6. HARQ II with RS (255,223) 74.82 98.33 

7. Adaptive RS with HARQ II 79.57 98.13 

8. Adaptive RS (modified) 83.05 96.28 

9. Adaptive RS with HARQ II 

(modified) 

82.46 96.10 

Tab. 1. Different algorithms vs. the rapidly changing channel (Fig. 

16). Nine algorithms were tested. The best performance is achieved 

by using adaptive redundancy with the HARQ-I scheme. This 

algorithm is relatively easy to implement in the FPGA hardware. 

The HARQ-II scheme is giving similar results, but the complexity of 

the HARQ-II is higher. 

 

Fig. 24. Implemented code shortening. 
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The RS(59,41,8-bit symbol) is a shortened version of the 
RS(255,237) by removing 196 data symbols. Practically those 
are four calculation entities switched four times during a 
single codeword coding. These uncomplicated operations 
improve the error correction performance without any 
significant complications of the system. Especially, the 
resources used for implementation of the RS(255,223) can be 
reduced by around 33%, when the coding is replaced with the 
proposed RS(127,109). This simplification causes a small loss 
of the error correction performance. The redundancy symbols 

are spread more uniformly over the frame and the redundancy 
cannot be used as flexible as during processing of the full-
length codewords. The error correction process is focused on 
shorter blocks, and some of the redundant information is not 
used efficiently. 

5. Future work 

We experiment with interleaving and multiplexing matrixes to 
increase error correction performance of our implementation 
(Fig. 25). The assumption is to improve decoding performance 
of the RS(255,239) and to achieve error correction 
performance similar to the RS(255,223). The proposed 
decoder must be mathematically analysed and it have to be 
proven, that the proposed structure requires less calculation 
operations than the RS(255,223). Up to now, achieved by us 
results are disappointing. The solution is inefficient against 
single, uniformly distributed bit errors (e.g. AWGN channel). 
In such a case, we cannot tune the structure to get any 
optimistic results. Usually, we consume more power than a 
single RS(255,239) decoder, and the increase of the error 
correction performance is marginal. 
Better results are achieved if the structure is run against burst 
errors. In Fig. 26, an example error characteristic is presented. 
We use the proposed characteristic to test our structure (Fig. 
27). The solution achieves very good BER performance, but 
this is not the most important statistic. Number of bit errors in 
individual blocks is significantly reduced, but the total number 
of fully recovered blocks is lower than after the RS(255,233) 
decoding (Fig. 28). 
An additional disadvantage is that the M and N matrixes (Fig. 
25) are dependent from the error characteristic, and are not 
universal for all burst error lengths. If the length of the typical 
error produced by a channel is changing, then also the 
matrixes have to be adopted. 
The proposed scheme can be run iteratively. We do not 
consider an iterative mode of operation due to energy 
consumption and latency. For now, the presented solution 
cannot be considered as a substitute of the typical RS decoder. 

Fig. 25. Experimental RS decoder. 

Fig. 26. Example error characteristic. 
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Fig. 27. Error correction results of the proposed decoder. 
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Fig. 28. Block correction results of the proposed decoder. 
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6. Conclusion 

In the paper, three major aspects of the 100 Gbps data link 
layer are explained. Firstly, we analysed the limiting factors of 
the implementation. The data link layer robustness is 
improved after introducing the ACK-frame compression and 
coding. This reduces the total number of timeouts in the 
system simulation. After that, the data segmentation can be 
investigated. The most important observation is that the 
segmentation has more influence on the un-coded 
transmissions, than for the transmissions coded with the RS 
block codes. Because of this reason, we skip the 
implementation of a variable segment size in the first iteration. 
Instead of it, we focus on the FEC algorithms and a solution to 
manage the FEC overhead against the transmission 
requirements. The goal is to use as little overhead as possible 
and maximize the efficiency. 
Link adaptation used with the HARQ-I simplifies the FPGA 
design, and it is a good substitute of the more complicated 
HARQ-II method. That allows to remove buffers from the 
design, due to the fact that broken frames do not have to be 
buffered. 
All presented results are validated on the Xilinx VC709 
Virtex7 FPGA platform. The implementation supports a net 
data rate of 97 Gbps on the real FPGA-hardware (Fig. 29). 
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