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Stochastic resonance in 2D materials based memristors
J. B. Roldán 1✉, A. Cantudo1, J. J. Torres 2, D. Maldonado 1,3, Yaqing Shen4, Wenwen Zheng4, Yue Yuan4 and M. Lanza 4✉

Stochastic resonance is an essential phenomenon in neurobiology, it is connected to the constructive role of noise in the signals
that take place in neuronal tissues, facilitating information communication, memory, etc. Memristive devices are known to be the
cornerstone of hardware neuromorphic applications since they correctly mimic biological synapses in many different facets, such as
short/long-term plasticity, spike-timing-dependent plasticity, pair-pulse facilitation, etc. Different types of neural networks can be
built with circuit architectures based on memristive devices (mostly spiking neural networks and artificial neural networks). In this
context, stochastic resonance is a critical issue to analyze in the memristive devices that will allow the fabrication of neuromorphic
circuits. We do so here with h-BN based memristive devices from different perspectives. It is found that the devices we have
fabricated and measured clearly show stochastic resonance behaviour. Consequently, neuromorphic applications can be developed
to account for this effect, that describes a key issue in neurobiology with strong computational implications.
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INTRODUCTION
Stochastic resonance (SR) includes phenomena linked to the
constructive effect of noise, e.g., a signal that is normally too weak
to be detected by a sensor can be partially detected by adding
noise (see Fig. 1). SR was first proposed in 1980 by Benzi et al. 1

using numerical methods, and later studies applied the concept of
SR in a wide variety of research fields, such as medical care2 and
biology3,4. Within this last one, SR is particularly useful for sensory
neurobiology, and it has been employed for explaining the animal
behaviours that lead to evolutionary success3–8. For example,
paddlefishes use SR to detect food with their rostrum (an optimal
amount of noise allows them to capture more plankton from their
surroundings)9, and crickets use SR to escape from predator
wasps10. The reason is that the building blocks of biological brains
(i.e., the neurons and the synapses) produce electrical signals
whose features can be described via SR3,4.
It is then not a surprise that recently SR has also started to

attract attention in the field of brain-inspired computing and
neuromorphic engineering. As in its biological counterparts,
electronic neurons and synapses store and compute data by
producing electronic signals (mainly trains of spikes), in which
electrical noise can bring associated constructive effects leading to
SR11. However, realizing solid-state micro/nano-electronic devices
for the hardware implementation of electronic neurons and
synapses exhibiting SR can be challenging. SR has been observed
in Schmitt triggers12, tunnel diodes13, phase change materials in
networked nonlinear systems7,8,14,15, and different types of
photodetectors16. In these devices the concept of resonance is
connected to a maximum signal-to-noise ratio or an optimal noise
frequency that produces a better output response than without
the noise or with noise of other frequencies.
Recently, memristors showing high nonlinearity have been

proposed for the hardware implementation of electronic neurons
and synapses17. In brief, memristors consist of an ultra-thin
insulating film with two or three adjacent metallic electrodes, and
the resistance of the insulator can be adjusted to different levels

by applying electrical stresses to the electrodes18–21. In these
devices, the concept of SR comes up in a natural manner because
there are many parameters capable of performing the threshold-
ing operation, such as the intensity and duration of the electrical
stresses applied (either voltage or current)11. The competitive
advantage of nonlinear memristors over the rest of aforemen-
tioned devices for the hardware implementation of electronic
neurons and synapses with SR is the coherent implementation of
spike generation mechanisms accounting for thresholding. More-
over, they can also show non-volatile multilevel operation that is
essential for synaptic weight building in artificial neural networks.
However, nonlinear memristors made of traditional materials
(metal-oxides, phase-change materials) suffer from variability22,23

and reliability issues18,24, and intense research on other potential
candidate memristive materials, devices and systems is necessary.
Here we show the fabrication, characterization and modeling of

memristors with metal/h-BN/metal structure, in which hexagonal
boron nitride (h-BN) is a two-dimensional (2D) layered material
with insulating properties (band gap ~5.9 eV, dielectric constant
~3). We introduce different types of electrical noise (Gaussian,
exponential) in the biasing signals applied to the devices, and we
clearly observe the presence of the SR phenomenon by analysing
the state transitions. We show SR effects by using two different
approaches to detect and measure this phenomenon.

RESULTS AND DISCUSSION
Device fabrication
We fabricated and measured our h-BN based memristors using only
methods scalable to the wafer level, ensuring compatibility with the
industry standards, as described in the methods section. In
particular, chemical vapour deposition (CVD) was used to synthesize
the h-BN stack, which was placed between two metallic electrodes
made of Au (40 nm) on Ti (10 nm), see Fig. 2a. The lateral size of the
cross-point Au/Ti/h-BN/Au memristors was 5 µm × 5 µm, see Fig. 2c
and h. This type of structures are known to exhibit stable
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non-volatile bipolar resistive switching (RS) behaviour, which has
been demonstrated by several independent groups25–27.

Electrical characterization of memristive effects
We applied sequences of ramped voltage stresses (RVS) with
different polarities to the top Au/Ti electrode of fresh memristors
(Fig. 2d), keeping the bottom electrode grounded. Initially the
devices exhibit high resistances running from 103 to 104 MΩ (read
at 0.1 V), and the currents driven by the Au/Ti/h-BN/Au devices
stay below 1 µA for voltages up to 2 V. If the voltage is increased,

the current across the devices increases sharply, leading to
resistances of 45 Ω (read at 0.1 V). If the bias is switched off, the
resistance value persists over time, indicating the resistance
change is a non-volatile effect. After that, if a RVS with negative
polarity is applied, the resistance of the h-BN stack suddenly
increases to values running from 1 to 103 MΩ (read at 0.1 V);
this transition, takes place at voltages between −0.5 and −1 V
(Fig. 2e). Then, if another positive RVS is applied, the device
resistance decreases sharply to values that are similar to those
reached after the first RVS (Fig. 2f). Figure 2b shows a cross-
sectional transmission electron microscope (TEM) image of
the CVD-grown multilayer h-BN stack; a the top-view optical
microscope image of some metal/h-BN/metal devices is also
shown (Fig. 2c), and the current versus voltage (I-V) plots recorded
during the three types of RVS, showing clear the abrupt resistance
changes (Fig. 2d–f). Notice that in the case of exfoliated h-BN
(Fig. 2g) the devices do not show resistive switching (Fig. 2i).
After that, if more sequences of RVS with alternating polarities

are applied, one can switch the device systematically between two
non-volatile resistance states, namely high resistive state (HRS)
and low resistance state (LRS). This phenomenon is known as non-
volatile bipolar resistive switching (RS), and it has been observed
in different materials including phase-change materials, metal-
oxides, magnetic materials, ferroelectric materials, organic materi-
als and 2D materials (among others)28. This effect is already being
used in commercially available electronic memories, and it might
be also useful for data computation, encryption and transmis-
sion18. The transition from HRS to LRS is often referred to as the
set process, and the transition from LRS to HRS is often referred to
as the reset process. Note that the device resistance, when it is
fresh, is even higher than in HRS, and that the sudden sharp
increase of current during the first positive RVS takes place at
voltages that are significantly higher than in the next positive RVS.
That is why the first transition is normally distinguished from the
rest and it is named the forming process. However, as shown in
Fig. 2e and f, corresponding to set and reset plots, the resistance
achieved after the reset is much lower than when it is fresh, and
for that reason the forming process does not play an important
role in the normal device operation (although it must be
considered when programming the devices for the first time).

Fig. 1 Schematic of stochastic resonance effects. A It describes
that a subthreshold input signal does not produce any output at all
because of the nature of the system (in order to get an output, the
input signal has to overpass the threshold). In our case, the
existence of set and reset voltages and the difference between
these internal device parameters and the input signals are
responsible for the thresholding (the inherent device variability
has to be taken in to consideration22). B The addition of noise to the
original subthreshold input signal makes the total input signal (the
sum of both signals) cross the threshold and generate some spikes
as output signal, see (C). The constructive role of the added noise is
therefore easily seen.

Fig. 2 Electrical phenomena in CVD-grown and mechanically exfoliated h-BN. a Three-dimensional schematic of a metal/h-BN/metal
structure. b Cross-sectional TEM image of the multilayer CVD-grown h-BN stack, c top view optical microscope image of an array of metal/h-
BN/metal memristors. d Forming plots of several Au/Ti/h-BN/Au devices, and the (e) reset and (f) set plots showing a few non-volatile bipolar
RS in a single device. g Cross-sectional TEM image of the multilayer mechanically exfoliated h-BN stack, h top view optical microscope image
of a metal/h-BN/metal memristor, i forming plot of the device corresponding to (g), and j topographic AFM map after the spot showing
irreversible breakdown by material removal (i.e., crater formation).
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The non-volatile bipolar filamentary resistive switching mechan-
ism25,29 is facilitated by the creation and rupture of one or a few
conductive nanofilaments (CNFs) during the SET and RESET state
transitions. The RS operation in our devices is linked to TiX+ ions
dynamics. For positive voltages, TiX+ ions move toward the
cathode across the dielectric30. This process helps in the CNF
formation across the h-BN multilayer, short-circuiting the electro-
des. TiX+ ions are assumed to diffuse in regions with lower density
of the material and large density of B and N vacancies, that favour
their migration. For negative bias (the bottom electrode is always
grounded) TiX+ ions may diffuse back to their original positions
leading to the CNF rupture and the consequent reset pro-
cess25,31,32. The polycrystalline h-BN grown by CVD allows RS
operation because it includes insulating 2D layered regions as well
as defect clusters that are more conducting (defect clusters may
be linked to lattice distortions that propagate from one layer to
another29,31). Other types of h-BN, such as exfoliated h-BN
(Fig. 2g), do not exhibit RS33. The reason is clear, in exfoliated
h-BN there are no regions with high density of defects to facilitate
the diffusion of TiX+ ions that lead to the CNF formation. See the
current versus voltage plot in this type of devices (Fig. 2i), no
resistance change is seen even at high voltages.
The very sharp current decrease during the RESET transition

indicates that the filament disruption is due to the Joule effect
(Fig. 2e), caused by the high currents flowing through the
filament, which are around 10mA and in some cycles they can
reach ~100mA. This increases the local temperature of the
filaments until they melt34,35.
In the Au/Ti/h-BN/Au devices fabricated using CVD-grown

multilayer h-BN, the value of the resistance in HRS (namely, RHRS)
and LRS (RLRS) reasonably maintains its value from one cycle to
another. The changes are due to the inherent stochasticity of the
atomic rearrangements involved in the formation and disruption
of the conductive nanofilament. The resistance values in each
state, measured at a read voltage (VREAD) of 0.1 V, are roughly
RHRS ~ 575.5 MΩ and RLRS ~ 156.7 Ω, and the RHRS/RLRS ratio is
always above 1000; this is large enough to warrant easy state
detection in each cycle for 100% of the cycles measured. The same

happens with the set voltage (VSET) and reset voltage (VRESET): the
value of VSET is 2.52 V and CV.SET is 0.16, while the value of VRESET is
−0.49 V and CV.RESET is 0.3. The numerical techniques employed to
extract the set and reset voltages are explained in the
Supplementary Note 1.

Stochastic resonance analysis
Next, we expose the Au/Ti/h-BN/Au memristors to sequences of
RVS with superimposed exponential and Gaussian noises (see
Fig. 3), and statistically study how the response of the devices
changes. To better understand the response of the memristors
under noisy signals and evaluate the presence of SR, we vary the
standard deviation (σ) of the noise sources in values ranging
from 50 to 150 mV, in steps of 25 mV. In Fig. 3, it is shown the
input voltage signal and the corresponding current versus time
(output) for consecutive set cycles. The effect of the noise added
to the original RVS signal is clear (Fig. 3a and b, in the latter case
for a higher noise standard deviation (SD) (in this case the noise
is assumed to be Gaussian distributed with zero mean)). The
corresponding current measured is given in Fig. 3c and d; see
that in addition to the external noise, the inherent RS
stochasticity has to be taken into account22. The same data
shown in Fig. 3 are plotted in Supplementary Fig. 2 versus time
for comparison.
We examine if the devices switch in each cycle (i.e., when

applying noisy RVS), and statistically analyze the values of RHRS,
RLRS and the RHRS/RLRS ratio. We use this figure-of-merit to
benchmark the effect of the noise intensity because the
calculation is straightforward and intuitive, based on magnitudes
that can be obtained in a quasi-static approach; in addition,
considering the perspective of non-volatile memory applications,
the resistance ratio shows a direct improvement in the potential
for these type of applications. Figure 4a-b shows the cumulative
distribution function (CDF) of the RHRS/RLRS ratio depending on the
magnitude of exponential and Gaussian noise sources added to
the RVS — CDF distributions are usually employed for SR analysis
in other electron devices too16,36.

Fig. 3 Input signals with added noise. Input voltage signal versus sample number without noise and with added Gaussian noise for two
different standard deviations, a σ= 50mV, b σ= 100mV. Corresponding measured current for an input signal without noise and with
Gaussian noise for the same noise intensities employed in (a) and (b) (c σ= 50mV, d σ= 100mV).
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A higher resistance ratio can improve the device behavior in
memory circuits; in this respect, it makes sense the use of the ROFF/
RON ratio. In addition, SR effects can also improve the resistive
memory bit error rate, which is an interesting result for non-
volatile memory systems37. The ratio of the medians of the ON
and OFF resistances (due to variability, the statistical median
works better than the mean in our case) versus noise SD has been
plotted for the data measured in Fig. 4c. See clearly a peak for a SD
of 80 mV, highlighting the existence of SR, and consequently, the
constructive role of noise that can be used for memory
applications. The ratio rises as the noise standard deviation
increases till a SD around 80mV is achieved. Then it drops off
again for the higher SD values. This behavior is compatible with SR
as it has been explained previously11,36–38.
SR can also be studied from a formal (also in a quantitative

manner) viewpoint by using the output and signal-to-noise ratio
(SNR) computed from power spectral densities39. We have
performed this analysis by using data from consecutive set
processes obtained in the RS series measured. The input voltage
versus time with added Gaussian distributed noise for different
SDs are plotted for a few cycles in Supplementary Fig. 2 (a, b). The
corresponding currents are shown in Supplementary Fig. 2 (c, d).
We have calculated the power spectral density for these

magnitudes in Fig. 5, for the same SDs shown in Fig. 4. The top
panels correspond to the power spectral density for the input
voltage that constitutes the time series for consecutive set
processes, and, in all cases, there is a clear main power peak at a

frequency f 0 2 0:02; 0:03ð ÞHz, corresponding to the inverse of the
“set” phase period which is around 30–50 seconds. Secondary
peaks in the power spectra density correspond to harmonics of
the main peak frequency appearing at 2nþ 1ð Þf 0 with
n ¼ 1; 2¼ ; and their appearance indicates that the voltage
input signals are not purely periodic. In the bottom panels similar
power spectral densities are depicted for the resulting output
current time series, corresponding to the voltage time series
plotted above; and, although these are noisier, still the main
power peak at f 0 is clearly illustrated. However, the prominence
of such a main frequency peak over the background of noise
frequencies f i is not the same for all considered Gaussian noise
SDs. To quantify such main peak prominence over the noise
frequencies around it, the signal to noise ratio (SNR) is commonly
used, defined as the ratio among the amplitude of the main
frequency peak over the mean power of the surrounding noisy
frequencies and the standard deviation of the power of the
surrounding noise frequencies. More specifically we used the
following measure for the SNR:

SNR ¼ PSD f 0ð Þ � PSDðf iÞh i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PSD2ðf iÞ
� �� PSDðf iÞh i2

q (1)

where f i 2 f 0 � n
T ; f 0 þ n

T

� �

; f i ≠ f 0, being T the time duration in
seconds of the voltage time series, n are the number of noise
frequencies considered around the mean frequency peak and :h i
is an average over these noisy frequencies f i .

Fig. 4 Stochastic resonance description. CDFs for the ROFF/RON ratio of the measured RS cycles assuming several values and types of noise,
a exponential, b Gaussian. c Median ROFF/RON ratio versus noise SD (30 values were considered for each symbol shown).

Fig. 5 Power spectrum densities. a–d Power spectrum density of the input voltage employed in the consecutive set measurements with
Gaussian distributed noise for different SDs. e–h Current power spectrum density corresponding to the voltage data.
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The behavior of SNR computed for the PSD of the output
current time series for different noise voltage SDs is plotted in
Fig. 6 for two different values of n. This clearly shows that there is
a SNR enhancement for a noise SD value around 125 mV,
depicting a SR phenomenon. Our analysis also reveals a possible
secondary SNR enhancement around a noise with SD of 60 mV,
and that could be related with the SR peak observed using the
ROFF/RON protocol (see Fig. 4c), a fact that needs further
exploration. Note that our findings are robust since they remain
qualitatively and quantitatively the same when one varies the
number of noise frequencies used to compute the SNR.
It is important to highlight the different noise intensities at

which the main resonance shows up when analyzing SR in Figs. 4
and 6. The methodology followed in Fig. 6 is the conventional SR
analysis tool11,39. The SDs corresponding to the resonance peak
are linked to an optimization of the SNR in a frequency sweep.
These SDs are higher than in the case of the RHRS/RLRS ratio. This
latter methodology is better adapted for memory applications.
However, as highlighted above, the conventional SR analysis also
depicts a possible lower noise and lower amplitude resonance
peak around the SDs at which the RHRS/RLRS ratio shows its
enhancement, and both peaks could be then related indicating
the possibility of double SR phenomena, as it has already been
reported in other systems3,4,40.

METHODS
Device fabrication
We fabricate Au/Ti/h-BN/Au/Ti memristors with cross-point struc-
ture and lateral size of 5 µm × 5 µm using an industry-compatible
process. First, we clean a 300 nm SiO2/Si sample with acetone,
isopropanol and deionized water using an ultrasonication bath for
10minutes (each step). Then, we do photolithography (mask
aligner SUSS MJB4) to pattern the bottom electrodes and deposit
10 nm Ti (first) and 40 nm Au (second) using a Kurt J. Lesker PVD75
electron beam evaporator without breaking the vacuum of 3 ×105

torr. Next, we transfer a sheet of multilayer h-BN ( ~ 6-nm-thick, or
~18 layers), previously grown by chemical vapor deposition (CVD)
on Cu foil, onto the SiO2/Si sample containing the bottom
electrodes. The wet transfer method used is explained in detail in
our previous publications41,42. Finally, top electrodes, similar to the
bottom ones but rotated 90°, are patterned by photolithography
and electron beam evaporator, leading to a small cross-point

Au/Ti/h-BN/Au region (the Ti underneath the bottom Au film is
simply an adhesion layer and it does not play any role in the
electronic properties of the devices).

Device characterization
Optical microscopy was performed using a Leica DM400 polarizing
microscope. For TEM investigations, lamellae were prepared with
the Helios nanolab 450 S/Helios G4 focus ion beam (FIB) system.
These lamellae were subsequently transferred to TEM grids and
analyzed under a JEM-2100 high-resolution TEM from FEI,
operated at 200 kV. The devices were measured by means of a
Keysight B1500A semiconductor parameter analyser and a probe
station (Karl Suss PSM6). A B1511B medium power source
measurement unit (MPSMU) was used for the quasi-static ramped
voltage stress measurements. Different types of noise were
implemented and added to the triangular signals employed in
the characterization process.
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