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Abstract— Resistive random access memory (RRAM)-
based hardware accelerators are playing an important role
in the implementation of in-memory computing (IMC) sys-
tems for artificial intelligence applications. The latter heav-
ily rely on vector-matrix multiplication (VMM) operations
that can be efficiently boosted by RRAM devices. How-
ever, the stochastic nature of the RRAM technology is
still challenging real hardware implementations. To study
the accuracy degradation of consecutive VMM operations,
in this work we programed two RRAM subarrays composed
of 8 × 8 one-transistor-one-resistor (1T1R) cells following
two different distributions of conductive levels. We analyze
their robustness against 1000 identical consecutive VMM
operations and monitor the inherent devices’ nonidealities
along the test. We finally quantize the accuracy loss of the
operations in the digital domain and consider the trade-offs
between linearly distributing the resistive states of the
RRAM cells and their robustness against nonidealities for
future implementation of IMC hardware systems.

Index Terms— In-memory computing (IMC), multilevel,
resistive random access memory (RRAM), vector-matrix
multiplication (VMM).

I. INTRODUCTION

TACKLING the “von Neumann bottleneck” limitation
in conventional computing architectures is one of the

Manuscript received 11 January 2023; revised 2 February 2023;
accepted 7 February 2023. Date of publication 22 February 2023; date
of current version 24 March 2023. This work was supported in part by
the Deutsche Forschungsgemeinschaft (German Research Foundation)
under Project 434434223-SFB1461; and in part by the Federal Ministry
of Education and Research of Germany under Grant 16ES1002, Grant
16FMD01K, Grant 16FMD02, Grant 16FMD03, and Grant 16ME0092.
The review of this article was arranged by Editor J. Kang. (Correspond-
ing author: Emilio Perez-Bosch Quesada.)

Emilio Perez-Bosch Quesada, Mamathamba Kalishettyhalli
Mahadevaiah, Tommaso Rizzi, Jianan Wen, Markus Ulbricht, and
Eduardo Perez are with the IHP-Leibniz-Institut fuer innovative
Mikroelektronik, 15230 Frankfurt (Oder), Germany (e-mail: quesada@
ihp-microelectronics.com).

Milos Krstic is with the IHP-Leibniz-Institut fuer innovative Mikroelek-
tronik, 15230 Frankfurt (Oder), Germany, and also with the Institute for
Informatics and Computational Science, University of Potsdam, 14476
Potsdam, Germany (e-mail: krstic@ihp-microelectronics.com).

Christian Wenger is with the IHP-Leibniz-Institut fuer innovative
Mikroelektronik, 15230 Frankfurt (Oder), Germany, and also with
BTU Cottbus-Senftenberg, 01968 Cottbus, Germany (e-mail: wenger@
ihp-microelectronics.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TED.2023.3244509.

Digital Object Identifier 10.1109/TED.2023.3244509

biggest challenges that the computer science community is
facing nowadays [1]. This problem arises when a substantial
amount of computational resources are usually invested into
data transportation between the memory units and process-
ing units, commonly physically separated. Systems running
applications based on deep learning, like image classifica-
tion, object detection, biometric pattern recognition, etc., are
steadily more limited in terms of power consumption and
latency due to the constant data exchange traffic between
the processing and memory units. These applications usually
collect significant amounts of data ready to be processed in
deep neural networks (DNNs) and in addition, impose design
constraints such as low power consumption and low latency,
constraints that traditional architectures are struggling to meet.
The von Neumann limitation indeed hampers the implemen-
tation of such accurate and fast, yet low-energy demanding
systems for artificial intelligence purposes. Although increas-
ing separately the performance of both processing and storage
units seems to be a short-term solution, it is not actually
alleviating the bottleneck in the long run [2], [3]. New com-
puter paradigms such as in-memory computing (IMC) assisted
by emerging nonvolatile memories (NVMs) are becoming
potential solutions to overcome the traditional architectures’
limitations [4], [5], [6]. IMC brings the possibility to perform
computing operations in situ, that is directly within memory
subarrays avoiding data exchange between processing and stor-
age units. IMC architectures become especially attractive in
artificial neural network (ANN) applications where most of the
workload of the inference phase relies on multiply-accumulate
(MAC) operations, more precisely in vector-matrix multipli-
cations (VMMs). In this context, NVMs such as resistive
random access memories (RRAMs), phase change memories
(PCMs), magnetoresistive random access memories (MRAMs)
and ferroelectric random access memories (FeRAMs) [7],
[8], [9], [10] can boost the performance and efficiency of
MAC operations computed directly within the memory units,
utilizing basic circuit laws like Ohm’s law and Kirchhoff’s
law [11], [12]. A simplified example is exposed in Fig. 1,
where the matrix elements correspond to the conductance
values of four RRAM cells programed in four conductive
levels (a, b, c, and d) and the two elements of the input
vector are represented by V1 and V2 voltages. The operation
results in a two-element output current vector represented by
I1 and I2.
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Fig. 1. MAC operation example performed in a memory subarray
composed by a 2 × 2 1T1R matrix. Following Ohm’s law (individual
current flowing through the memristors) and Kirchhoff’s current law
(summation of the individual currents flowing into the nodes) a simple
VMM operation is performed in situ.

Recently, the research community has intensively stud-
ied and optimized the performance of the RRAM technol-
ogy within in-memory MAC-based systems/circuits, specially
in simulation environments for early-stage design explo-
ration [13], [14], [15], [16]. Among others, Mehonic et al. [17]
reported hand-written digit recognition with up to 97% accu-
racy ratio using an RRAM-based ANN. However, to our best
knowledge, the overall assessment of the RRAM MAC opera-
tion in a simulation environment is not yet fully performed and
includes several simplifications due to the limits of the under-
lying hardware model [18], [19], [20], [21], [22]. Recently,
Bengel et al. [23] experimentally analyzed the impact of binary
RRAM nonidealities in VMM operations highlighting the fact
that the low resistive state (LRS) variability plays a major
role compared to the high resistive state (HRS) variability
when performing MAC operations. The results were supported
by circuit-level simulations using the physics-based Jülich
Aachen Resistive Switching Tools-valence change mechanism
(JART VCM) model considering ZrO2/Ta-based devices [24].

Our work experimentally assesses the accuracy loss of
1000 identical consecutive VMM operations due to the
resistive state degradation of HfO-based RRAM devices
integrated into 4-kbit arrays, both in the digital and analog
domain. The trade offs of linearly distributing the multiple
resistive states of the cells will be discussed taking into
account two different programming schemes (linear and
quasilinear). To properly disseminate the effects of RRAM
nonidealities over the VMM operations, we consider 8 ×

8 matrices embedded in the 4-kbit arrays.

II. EXPERIMENTAL METHODOLOGY

The RRAM devices under study are fabricated as a metal-
insulator-metal (MIM) structure located on the metal line 2 of
the CMOS process and it consists of a TiN/Al:HfO2/Ti/TiN
stack. The bottom and top TiN layers were deposited by
magnetron sputtering with a thickness of 150 nm. The 7 nm
Ti layer acts as an oxygen scavenging layer that enables
the resistive switching properties of the insulator layer. The
Al-doped HfO2 layer was grown with a thickness of 6 nm
and an Al content of about 10% by atomic layer deposition
(ALD). The MIM stacks were patterned with an area of about
0.4 µm2. Their resistive state can be electrically controlled
by the creation or disruption of conductive filaments (CFs)
consisting of oxygen vacancies within the insulator layer.

To protect the RRAM device against current overshoots
during the programming operations, it is built in series to a
nMOS transistor fabricated in the 250 nm CMOS technology,
resulting in a one-transistor-one-resistor (1T1R) structure. Its
main functionality is to limit the current through the cell by
setting a compliance current controlled by the voltage applied
to its gate terminal (Vgate). Such 1T1R structures are embedded
into 4-kbit memory arrays manufactured in a 64 × 64 manner,
where the transistor also acts as selector device preventing the
so-called sneak path currents among adjacent cells. Moreover,
thanks to the tuning capability of Vgate, multiple intermediate
resistive states can be achieved by means of the multilevel-cell
(MLC) approach. Setting the transistor’s Vgate in certain values
during the Set operation can move the individual RRAM cells
into different LRSs. The reader is referred to [25] for further
details concerning the array structure. To fine-tune the process,
the multilevel incremental step pulse with verify algorithm
(M-ISPVA) [26] was chosen to set the devices to the desired
resistive states. With this algorithm, we can target at least
4 resistive levels with excellent switching properties that can
be efficiently arranged following different distributions.

To enable multi-level behavior of the RRAM cells in an
optimum way, we followed the methodology proposed in [27].
In this work, two sets of 64 samples (8 × 8) were programed
by following two different distributions of resistive states: the
“quasilinear” distribution (already explored in the mentioned
article) and the “linear” distribution of just LRSs. The latter
distribution targets four linearly spaced LRSs in which the
HRS is only a “pivot” state to transit between them and
it is not considered a valid state for the VMM operations.
Distributing linearly the resistive states programed on the
individual RRAM cells loosens up the analog-to-digital con-
verter (ADC) parametrization constraints regarding the output
currents detection and conversion to the digital domain. On the
other hand, the former considers three linearly spaced LRSs
and a single nonlinearly spaced HRS as valid states.

Regarding both distributions, Table I indicates the target
current (Itrg) and Vgate parameters chosen to program the
devices to the various resistive levels using the M-ISPVA.
To illustrate both distributions of resistive states, we exper-
imentally programed 128 RRAM devices into all the resistive
levels shown in Table I and represented the cumulative distri-
bution functions (cdfs) associated with their read-out currents
in Fig. 2. Observing the cdf steepness of both distributions
of the resistive states, one can appreciate that programming
the LRSs with slightly higher Vgate values, which imposes
higher compliance limits during the set operations, leads to
broader cdfs for the quasilinear distribution. On the contrary,
the lower Vgate values used in the linear distribution allow
to target more accurately the desired current levels (Itrg)
at expense of making them more vulnerable to the RRAM
nonidealities, as it will be demonstrated below. For further
details concerning the programming phase of the samples
and the specific electrical parameters described in Table I, the
interested reader is referred to [26] and [27].

In order to reproduce the theoretical VMM scenario repre-
sented in Fig. 3, first of all, the devices under study have to be
switched to the resistive states illustrated with different colors.
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TABLE I
MAIN M-ISPVA PROGRAMMING PARAMETERS USED TO PROGRAM

THE FOUR CONDUCTIVE LEVELS OF QUASILINEAR AND LINEAR

DISTRIBUTIONS, RESPECTIVELY

Fig. 2. CDFs of the read-out currents experimentally measured for
the quasilinear (three LRSs and one HRS) and linear (four LRSs)
distributions.

The allowed voltage amplitudes that feature the input vector
of the multiplication are 0.125, 0.25, 0.375, and 0.5 V, in order
to minimize the read-disturb phenomenon [28]. The elements
of the input vector and the resistive matrix were randomly
selected using a standard uniform distribution. Specific matrix
configurations resembling concrete weight distributions within
trained DNNs will follow in future work. The correspond-
ing theoretical output vectors for the two distributions are
displayed in Fig. 3 as well. Every output current element is
theoretically calculated by summing the ideal read-out currents
of each RRAM device located in the corresponding row of the
matrix at a certain voltage (dictated by the input vector). In this
way, output element number i is the result of the summation
of the read-out currents of row number i when the read-out
voltages of the input vector are applied to the corresponding
RRAM devices within the mentioned row. This methodology
applies to all the output elements of the VMM.

A total number of 1000 identical VMM operations are
executed over every subarray. To monitor the evolution of the
resistive state of every cell, we perform individual read-out
operations (VTE = 0.2 V and Vgate = 1.7 V) to all the RRAM
cells within the subarrays right after every VMM operation.
The whole process (programming plus VMM computation
and monitoring) was executed using an in-house made set-up
composed by a Keithley 4200A-SCS semiconductor parameter
analyzer and an Arduino Mega, both coordinated using a
LabVIEW virtual instrument hosted in a PC (see Fig. 4).
The addressing of the individual 1T1R cells is performed
using 13 digital signals generated by the Arduino Mega.
On the other hand, all the analog signals required to perform
M-ISPVA and the VMM operations over the cells, e.g.,
VTE and Vgate, are generated by the pulse measurement unit
(PMU) integrated into the Keithley system. Such PMU is able

Fig. 3. Proposed VMM scenario where the output vector (right) contains
the expected current results for both resistive states distributions consid-
ering the input voltage vector (top) and the ideal current values for each
state indicated in Table I. Within the resistive matrix, it is indicated the
read-out currents measured after programming considering the quasi-
linear (top-left corner) and the linear (bottom-right corner) distributions.
The numeric values were rounded to no decimals for simplicity.

Fig. 4. Schematic of the in-house made set-up designed to program
and execute VMM operations over 1T1R samples embedded in 4-kbit
arrays. To do so, 16 digital plus two analog signals are generated as
described by the blue and red colors, respectively. The red arrows
make reference to the voltage and current elements described in Fig. 3.
Among the “control” signals, Vgate is considered.

to generate arbitrary voltage waveforms and simultaneously
measure current. The electrical signals feature a pulsewidth
of 10 µs. By means of three additional source measurement
units (SMUs), Keithley also generates three digital control
signals to enable the peripheral circuitry of the 4-kbit array to
perform the required operations. The analog read-out values
measured in each individual cell are sent to the control PC
where the computation of the output vector is performed
in software. Regarding the conversion of the analog output
currents to digital values, the ADC parametrization was carried
out following the methodology described in [29] considering a
linear distribution of the resistive states of the matrix elements.
Thus, we defined a 7-bit ADC with a dynamic range of 50–800
µA with 6.25 µA interval length. In order to avoid masking
the RRAM variability influence over the results, the ADC
is considered to be ideal and thus, its parasitic effects are
neglected.

III. RESISTANCE MONITORING DURING VMM
OPERATIONS

The RRAM cells involved in the computation of the VMM
operations may suffer from the device’s nonidealities which
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Fig. 5. Read-out currents measured at VTE = 0.2 V and Vgate =
1.7 V over both subarrays under test right after every consecutive
VMM operation. The lighter lines denote the individual read-out currents
of every RRAM cell programed in their respective level, whereas the
darker ones represent the averaged values over each resistive level.
(a) Quasilinear. (b) Linear.

lead to fluctuations in their resistive values. Such nonide-
alities are a big concern in the state of the art of this
technology and therefore, this study focuses on the impact of
the following phenomena over consecutive VMM operations:
read-out noise [30], [31], conductance relaxation [11], [32],
conductance drift caused by read disturb effects [28], [31] and
programming errors [26], [27]. Although intensive work has
been devoted to reduce the device-to-device (DTD) variability
of the RRAM cells at the device and algorithm levels [33],
it also impacts the accuracy of the RRAM operations. Never-
theless, the previously mentioned nonidealities may mask the
influence of the D2D variability over the VMM results.

Considering the MLC approach and its implementation in
VMM operations, the robustness of the RRAM’s conduc-
tive states against the nonidealities plays a major role in
the conservation of the accuracy during the execution of a
large number of consecutive VMM operations. As previously
mentioned, right after the execution of every VMM operation
we performed standard read-out operations to monitor the
resistance fluctuations of the RRAM cells involved. Fig. 5
depicts the read-out current measured in every cell programed.

At a first sight, Fig. 5 clearly exposes the superior robust-
ness of LRS3 against fluctuations during the execution of
VMM operations compared to the rest of the resistive states.
Followed by HRS in the quasilinear distribution, the most
resistive state also denotes larger robustness against the con-
secutive VMM operations compared to the rest of the interme-
diate states, namely LRS0, LRS1, and LRS2. This is denoted
by the more stable average LRS3 and HRS lines depicted in
the figure, compared to those obtained from the intermediate
levels. In our study, the later levels tend to suffer more from the
device’s nonidealities e.g., undesired resistance drifts and state
relaxations, in agreement with [23] and [34]. Hence they are
more prone to cause accuracy degradation in the output vector
calculations. This phenomenon is especially visible in LRS1.
This behavior is mainly caused by the degradation of the
CFs within specific cells due to oxygen ions/vacancies recom-
bination [35] along the execution of consecutive operations,
leading to variations in their resistive state. Moreover, read-
disturb effects may produce additional resistance variations.
VMM operations performed with input voltages above 0.2 V
induce the so-called “read stress” to certain cells which may
fall into undesired oxygen vacancies movement in the filament

and thus, modification of the resistive state of the cells [28],
[31]. Commonly, this effect can gradually affect the resistive
state of the cells (see a gradual current reduction of the average
values in Fig. 5) or in more rare cases, can suddenly drift their
resistive state toward LRS3 or even more conductive states,
as it can be appreciated in Fig. 5. Devices whose resistive state
suddenly drifts toward more conductive levels can be easily
spotted as step-like light-colored lines in Fig. 5. As we will
observe in the following analysis, these sudden drifts induce
larger errors in the VMM calculations as a consequence of the
higher resistive state fluctuation. Despite the sporadic nature of
this behavior, we could observe that single RRAMs programed
in LRS1 and LRS2 are more susceptible to suddenly drift
toward more conductive levels, usually after 500 to 600 VMM
operations. To minimize the impact of read-disturb effects over
the VMM operations, lower input voltage levels will be tested
in future work.

Read-out noise is the result of low current variations (of
about ±2%) measured on the involved RRAM cells. This
effect is also amplified when applying read-out voltages above
0.2 V. Samples programed into intermediate levels are once
again generally more vulnerable to such fluctuations [31].
However, this phenomenon is observable in all the samples to
a certain extent and also influences the final VMM operations
results. Additional contributions to the read-out noise might
accentuate its impact into the final results, such as noise
derived from imperfections in the measurement equipment and
array’s peripheral circuitry among others. This phenomenon is
observed in Fig. 5 as “burst noise” in the consecutive read-out
values.

Further, errors during the programming phase of the RRAM
cells induce accuracy issues in the execution of VMM opera-
tions. Although a specific Itrg is defined for each resistive level
in the execution of the programming algorithm (see Table I-
Itrg), the distribution of the resistive levels and their intrinsic
variability influence the achieved level. This final resistive state
may vary among RRAM cells and also differ from the intended
value to a certain degree. The linear scheme demonstrated a
lower programming error (narrower cdf curves) compared to
the quasilinear one (see Fig. 2). Nonetheless, the RRAM cells
programed following a linear scheme tend to gradually relax
their resistance levels toward more resistive values throughout
the execution of the VMM operations. Therefore, they tend to
settle their resistive value below their threshold currents [see
Fig. 5(b)]. On the other hand, those cells programed following
a quasilinear scheme, on average they keep steady within their
Ith. The most acute case is the one observed in LRS0 (linear
distribution), where most of the samples’ states relax toward
HRS after a few VMM operations, settling down their average
read-out current at around 6 µA.

IV. NONIDEALITIES IMPACT ON VMM OPERATIONS

The RRAM nonidealities listed above have different impacts
on the resulting output vector computation. The resistive value
of the RRAM cells fluctuates throughout the execution of
consecutive VMM operations, inducing errors in the output
current, later on, translated into digit errors during the AD
conversion. For the purpose of simplification, Fig. 6 exposes
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Fig. 6. Current evolution of outputs number 2 and 6 through-
out 1000 VMM consecutive operations considering the quasilinear and
linear distributions. The dashed lines represent the ideal calculated
values of the respective output. Different predominant fluctuations are
associated with different current outputs being (a) gradual degradation
of the output current level, (b) sudden increase of the output current,
(c) noise-like output fluctuations, and (d) combination of various types of
fluctuations.

the current evolution of two out of eight output elements
within both subarrays prior to the AD conversion along
1000 operations, where the dashed lines denote the theoretical
current level expected for each output element (see Fig. 3).
We can observe that the main current fluctuations measured
among all output elements within the two subarrays follow
similar behaviors as those exposed Fig. 6.

In Fig. 6(a), the predominant fluctuation gradually degrades
the output current level progressively moving the experimental
value below the theoretical level. This can be mainly attributed
to the resistance relaxation of the RRAM cells involved in
the calculation of certain outputs. In Fig. 6(b), the dominant
fluctuation implies a sudden increase of the current value dur-
ing specific VMM operations, which occurs due to immediate
resistance drifts of specific RRAM cells toward more conduc-
tive levels due to read disturb effects. As explained before,
these drifts may happen more frequently after 600 VMM
operations and they induce abrupt output variations. Fig. 6(c)
closely reproduces the expected theoretical values although we
can observe a constant current noise along the execution of
the operations. Such noise is the result of the accumulation of
individual read-out noise effects among the involved RRAM
cells. All the output elements are affected by this fluctuation.
In the worst case scenario, the consecutive computations of
certain output elements are affected by a combination of
several of the previously mentioned current fluctuations. This
can be observed in Fig. 6(d). As expected, these combinations
degrade the accuracy of the operations in a more significant
way.

Going one step further, we studied the accuracy impact on
the digital domain of the current variations described above.
To do so, we calculated the digit conversion error taking into
account the theoretical and experimental values obtained at
the output of the 7-bit ADC described in Section II. Fig. 7
represents the digit error computed for every output element
considering both current distributions of the resistive states.
To have a clearer view of the results, we only displayed the
computed error every 100 operations, being the negative (pos-
itive) errors the result of converted digits below (above) the
expected digital value. It can be observed that both subarrays
present an initial digit error during the first VMM operation.

Fig. 7. Digit error computed after the AD conversion for (a) quasilinear
and (b) linear distributions.

In absolute terms, such error is higher in the quasilinear
case. This may be the result of two factors: first of all, the
mismatch between the quasilinear distribution of the resistive
levels and the linear ADC parametrization; second, the higher
programming error reported by this distribution compared to
the linear one. Considering further VMM operations, on aver-
age the RRAM cells programed following a linear scheme
denote a gradual degradation of their resistive state toward
less conductive values, as concluded in Section III. This is
translated into a gradual reduction of the output current level
and thus, a predominant growth of the negative digit error.
Consequently, we also observe a reduction of the positive
error [see Fig. 7(b)]. After approximately 200 operations, the
measured error is mainly negative for most of the output
elements. On the contrary, the subarray programed following
a quasilinear distribution [see Fig. 7(a)] reports relatively
constant digit error along the consecutive operations compared
to its counterpart. This is due mainly to its higher resilience
against read-disturbance effects. Ultimately, the degradation of
the intermediate resistance levels after 100 VMM operations
implies a gradual growth of the digit error after the AD
conversion. Particularly, most samples programed to LRS0
tend to be driven toward HRS during the consecutive VMM
operations, which vanishes the main advantage of using a lin-
ear distribution to reduce the ADC parametrization constraints.
More robust programming techniques are required to ensure
the stability of this specific resistive state. Finally, for both
distributions, the dominant error impact is always measured
when the analog output suddenly increases due to individual
acute RRAM drifts [see Fig. 6(b) and (d)]. According to
this study, these are the most harmful nonidealities in terms
of digit error thus, partial or complete re-programming of
the resistive matrix might be required to solve this issue.
Moreover, He et al. [34] proposed to reduce the number of
intermediate states if, previously during the training period
of the ANN, a magnification factor is introduced. Thus,
the weights are pushed toward higher absolute values and
the resultant resistance matrix would be more polarized into
extreme and more stable resistive states, such as LRS3 and
HRS.

V. CONCLUSION

Within the framework of RRAM-based MAC calculations,
VMM operations performed by using linearly spaced resistive
states of the RRAM cells may alleviate critical constraints such



2014 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 70, NO. 4, APRIL 2023

as ADC design parameters. In addition, the linear distribution
presents a lower programming error with respect to a quasilin-
ear scheme. However, the former shows a higher vulnerability
to resistive state fluctuations, which degenerates the accuracy
of the results after approximately 200 VMM operations. Thus,
linear distributed resistive states of the RRAM cells may be
a good choice when high accuracy of the operations and high
refreshment rate of the resistive states is required (e.g., in situ
training of ANNs). On the other hand, the quasilinear scheme
demonstrated higher robustness against nonidealities among
consecutive VMM operations in terms of digit error of the
AD conversion phase. This work serves as an initial step
toward the implementation and optimization of larger array
sizes in RRAM-based VMM operations in a hardware fashion.
Thus, the impact of larger matrix sizes (e.g., 16 × 16) will be
explored in future work.

REFERENCES

[1] F. Zahoor, T. Z. A. Zulkifli, and F. A. Khanday, “Resistive random access
memory (RRAM): An overview of materials, switching mechanism, per-
formance, multilevel cell (MLC) storage, modeling, and applications,”
Nanosc. Res. Lett., vol. 15, no. 1, pp. 1–26, Dec. 2020.

[2] M. Horowitz, “1.1 Computing’s energy problem (and what we can do
about it),” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech.
Papers, Feb. 2014, pp. 10–14.

[3] F. Staudigl, F. Merchant, and R. Leupers, “A survey of neuromorphic
computing-in-memory: Architectures, simulators, and security,” IEEE
Design Test, vol. 39, no. 2, pp. 90–99, Apr. 2022.

[4] D. Ielmini and H. S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electron., vol. 1, no. 6, pp. 333–343, 2018.

[5] E. Miranda and J. Suñé, “Memristors for neuromorphic circuits and
artificial intelligence applications,” Materials, vol. 13, no. 4, p. 938,
Feb. 2020.

[6] W. Zhang et al., “Neuro-inspired computing chips,” Nature Electron.,
vol. 3, no. 7, pp. 371–382, 2020.

[7] D. Kuzum, S. Yu, and H.-S. P. Wong, “Synaptic electronics: Materials,
devices and applications,” Nanotechnology, vol. 24, no. 38, Sep. 2013,
Art. no. 382001.

[8] S. Yu, “Neuro-inspired computing with emerging nonvolatile memorys,”
Proc. IEEE, vol. 106, no. 2, pp. 260–285, Feb. 2018.

[9] A. Sebastian, M. L. Gallo, R. Khaddam-Aljameh, and E. Eleftheriou,
“Memory devices and applications for in-memory computing,” Nature
Nanotechnol., vol. 15, no. 7, pp. 529–544, 2020.

[10] Z. Wang et al., “Resistive switching materials for information process-
ing,” Nature Rev. Mater., vol. 5, no. 3, pp. 173–195, 2020.

[11] S. Yu, H. Jiang, S. Huang, X. Peng, and A. Lu, “Compute-in-memory
chips for deep learning: Recent trends and prospects,” IEEE Circuits
Syst. Mag., vol. 21, no. 3, pp. 31–56, 3rd Quart., 2021.

[12] A. Singh et al., “Low-power memristor-based computing for edge-
AI applications,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS),
May 2021, pp. 1–5.

[13] T. Rizzi, E. P.-B. Quesada, C. Wenger, C. Zambelli, and D. Bertozzi,
“Comparative analysis and optimization of the SystemC-AMS analog
simulation efficiency of resistive crossbar arrays,” in Proc. 36th Conf.
Design Circuits Integr. Syst. (DCIS), Nov. 2021, pp. 1–6.

[14] M. Bavandpour, S. Sahay, M. R. Mahmoodi, and D. Strukov, “Efficient
mixed-signal neurocomputing via successive integration and rescaling,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 28, no. 3,
pp. 823–827, Mar. 2020.

[15] S. Pechmann et al., “A low-power RRAM memory block for embed-
ded, multi-level weight and bias storage in artificial neural networks,”
Micromachines, vol. 12, no. 11, p. 1277, Oct. 2021.

[16] A. J. Perez-Avila, E. Perez, J. B. Roldan, C. Wenger, and F. Jimenez-
Molinos, “Multilevel memristor based matrix-vector multiplication:
Influence of the discretization method,” in Proc. 13th Spanish Conf.
Electron Devices (CDE), Jun. 2021, pp. 66–69.

[17] A. Mehonic, D. Joksas, W. H. Ng, M. Buckwell, and A. J. Kenyon,
“Simulation of inference accuracy using realistic RRAM devices,”
Frontiers Neurosci., vol. 13, p. 593, Jun. 2019.

[18] W. Wan et al., “33.1 A 74 TMACS/W CMOS-RRAM neurosynaptic
core with dynamically reconfigurable dataflow and in-situ transposable
weights for probabilistic graphical models,” in IEEE Int. Solid-State
Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2020, pp. 498–500.

[19] C. Xue et al., “Embedded 1-mb ReRam-based computing-in-memory
macro with multibit input and weight for CNN-based AI edge pro-
cessors,” IEEE J. Solid-State Circuits, vol. 55, no. 1, pp. 203–215,
Jan. 2020.

[20] P. Yao et al., “Fully hardware-implemented memristor convolutional
neural network,” Nature, vol. 577, no. 7792, pp. 641–646, 2020.

[21] S. K. Kingra et al., “Methodology for realizing VMM with binary
RRAM arrays: Experimental demonstration of binarized-ADALINE
using OxRAM crossbar,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), Oct. 2020, pp. 1–5.

[22] S. Shchanikov et al., “Fault tolerance of memristor-based perceptron
network for neural interface,” BioNanoScience, vol. 11, no. 1, pp. 84–90,
Mar. 2021.

[23] C. Bengel et al., “Reliability aspects of binary vector-matrix-
multiplications using ReRAM devices,” Neuromorphic Comput. Eng.,
vol. 2, no. 3, Sep. 2022, Art. no. 034001.

[24] C. Bengel et al., “Variability-aware modeling of filamentary oxide-based
bipolar resistive switching cells using SPICE level compact models,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 67, no. 12, pp. 4618–4630,
Dec. 2020.

[25] A. Grossi et al., “An automated test equipment for characterization
of emerging MRAM and RRAM arrays,” IEEE Trans. Emerg. Topics
Comput., vol. 6, no. 2, pp. 269–277, Apr. 2018.

[26] E. Perez, C. Zambelli, M. K. Mahadevaiah, P. Olivo, and C. Wenger,
“Toward reliable multi-level operation in RRAM arrays: Improving post-
algorithm stability and assessing endurance/data retention,” IEEE J.
Electron Devices Soc., vol. 7, pp. 740–747, 2019.

[27] E. Pérez et al., “Optimization of multi-level operation in RRAM
arrays for in-memory computing,” Electronics, vol. 10, no. 9, p. 1084,
May 2021.

[28] W. Shim, Y. Luo, J. S. Seo, and S. Yu, “Investigation of read disturb and
bipolar read scheme on multilevel RRAM-based deep learning inference
engine,” IEEE Trans. Electron Devices, vol. 67, no. 6, pp. 2318–2323,
Apr. 2020.

[29] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” ACM SIGARCH Comput.
Archit. News, vol. 44, no. 3, pp. 14–26, 2016.

[30] N. Raghavan et al., “Microscopic origin of random telegraph noise
fluctuations in aggressively scaled RRAM and its impact on read disturb
variability,” in Proc. IEEE Int. Rel. Phys. Symp. (IRPS), Apr. 2013,
p. 5E.

[31] W. Shim, J.-S. Seo, and S. Yu, “Two-step write–verify scheme and
impact of the read noise in multilevel RRAM-based inference engine,”
Semicond. Sci. Technol., vol. 35, no. 11, Nov. 2020, Art. no. 115026.

[32] M. Lanza et al., “Standards for the characterization of endurance in resis-
tive switching devices,” ACS Nano, vol. 15, no. 11, pp. 17214–17231,
Nov. 2021.

[33] E. Perez, M. K. Mahadevaiah, E. P.-B. Quesada, and C. Wenger,
“Variability and energy consumption tradeoffs in multilevel program-
ming of RRAM arrays,” IEEE Trans. Electron Devices, vol. 68, no. 6,
pp. 2693–2698, Jun. 2021.

[34] W. He et al., “Characterization and mitigation of relaxation effects on
multi-level RRAM based in-memory computing,” in Proc. IEEE Int. Rel.
Phys. Symp. (IRPS), Mar. 2021, pp. 1–7.

[35] Y. Lin, “Performance impacts of analog ReRAM non-ideality on neu-
romorphic computing,” IEEE Trans. Electron Devices, vol. 66, no. 3,
pp. 1289–1295, Mar. 2019.


