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A B S T R A C T

In this paper, we present a method of implementing memristive crossbar arrays with bimodally distributed 
weights. The bimodal distribution is a result of pulse-based programming. The memristive devices are used for 
implementing synaptic weights and can only have an ON (logical “1″) or an OFF (logical ”0″) state. The state of 
the memristive device after programming is determined by the bimodal distribution. The highly efficient noise- 
based variability approach is used to simulate this stochasticity. The memristive crossbar array is used to classify 
the MNIST data set and comprises more than 15,000 weights. The interpretation of these weights is investigated. 
In addition, the influence of the stochasticity of the weights and the accuracy of the weights on the classification 
results is considered and various programming settings are examined.

1. Introduction

Memristive devices (MDs) are non-volatile memories and are 
considered promising candidates for the development of hardware- 
based artificial neural networks (ANNs) [1,2]. The MDs can be in one 
of the two states: low-resistive-state (LRS) and high-resistive-state (HRS) 
[3]. During the SET process, the MD is switched to LRS, which corre-
sponds to a logical “1″. The RESET process switches the MD to HRS, 
which corresponds to a logical ”0″. Beyond this basic binary switching 
behavior [4] MDs can be programmed in multiple intermediate 
conductance levels (multi-level operation) [5,6]. Only the binary 
approach is considered in this work. The MDs exhibit stochastic fluc-
tuations which result in device-to-device and cycle-to-cycle variability 
[7]. This stochastic variability can be simulated using the Noise Based 
Variability Approach (NOVA) [5]. Synaptic weights of ANNs can be 
implemented as a memristive crossbar array, whereby a single cell, 
consisting of two MDs, functions as a weight with possible values from 
− 1 to + 1 [8].

2. Setup of the memristive crossbar array and programming 
Scheme

To classify the MNIST data set (images consisting of 28x28 pixels), 
the ANN consists of 784 inputs, 10 outputs and thus 15,680 memristive 
cells (as in [5]). In the simulation, the MDs are considered as simple 
fluctuating resistors for simplicity, whereby their conductance and its 
variability has been extracted from measurements on oxide-based MDs 
[4]. Two memristive cells with certain conductances G are required to 
design a weight W between − 1 and + 1: one G+ and one G− device [5,6], 
whereby the weight is given by 

W = G+ − G− (1) 

The input data is applied positively to G+ and negatively to G− in the 
form of voltage values (pixel values are converted). The current result in 
each MD depends on its conductance G+ or G− . These currents are then 
added together for classification. This results in a total current for each 
output. The required weight values come from the software training. 
The memristive cells are programmed by applying pulses, which can be 
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changed in terms of amplitude, pulse width and number of pulses [4]. 
This is shown in Fig. 1. The values of the weights result from their 
switching probability. The MDs can only become the logical values “0″ 
and ”1″ and their state changes with a certain probability depending on 
the pulses applied. Accordingly, their conductivity follows a bimodal 
distribution (see Fig. 2 (a) and (c) in black). For each applied pulse, the 
state of the memristive cell can be represented via a bimodal distribution 
(probability for the device being in the HRS or in the LRS) [9]. In [10] it 
is shown that the statistical variation resulting from a superposition of 
many bimodal distribution functions can be represented by the super-
position of Gaussian distribution functions. This allows the replacement 
of the bimodal distributions with Gaussian distributions for the usage of 
NOVA to simulate the fluctuations resulting from a large number of MDs 
in a crossbar array. The simulations are carried out with the Spectre 
simulator Cadence Virtuoso [11]. After the simulation, the winner is 
determined according to the winner-takes-all principle as in [12].

3. Interpretation of the weight Definition from pulse 
programming

A pulse with a pulse width of 1 µs and an amplitude of 0.8 V is 
defined for programming the devices (see Fig. 2 (a)). This pulse is sent 
max. 100 times to 128 different cells that are in the HRS before the first 
pulse. A MD can therefore be in the HRS state or in one of the 100 
programming states depending on the number of applied pulses (mea-
surement data from [4]). To be able to use NOVA, an average value and 
a standard deviation are calculated for each programming state using 
the 128 measured devices. According to equation (1), two MDs are 
required for a weight W, whereby a weight W can be composed from the 
average values of the bimodal distribution functions of G+ and G− (see 
Fig. 3 (a)).

Paths (e.g. C1 and C2) as in [6] can be formed within this matrix, 
which must be set for the range from − 1 to + 1 for W. At least G+ or G−

have the lowest conductance for C1 and the highest conductance for C2. 

The reason for this choice is that when comparing these two paths, the 
highest possible contrast in respect to power consumption of the settings 
is considered. However, it is noticeable that the values of G+/G− do not 
increase with a constant step size, which means that the values from − 1 
to + 1 can also be set with different accuracy. This is illustrated in Fig. 3
(b). Here the path C1 covers weight values in the range from − 1 to − 0.5 
and + 0.5 to + 1 with high accuracy, whereby C2 provides a higher 
resolution in the range from − 0.5 to + 0.5.

Fig. 4 shows the standard deviation of each possible weight W. Here 
it can be seen that path C1 has lowest standard deviations and C2 has the 
highest standard deviations.

4. Simulation results of the memristive crossbar array

The memristive crossbar array is tested with the same images of a “7″ 
and a ”4″ as from [5] (programming of weights by conductance level), as 
well as the image of a “1″ (see Fig. 5). For all cases, the weights are 
trained with a resolution of 0.1 wt stepping. The paths C1 and C2 are 
compared by adjusting the target weight to the closest possible value 
(see Fig. 3 (b)). The results are shown in Table 1, as percentage of 
classifying the given number as a winner.

Table 1 shows that path C2 delivers significantly worse classification 
results than path C1. The reason for this is that the variability in the 
weights is very large for path C2, which means that no precise classifi-
cation is possible. The three digits are all classified with a similar 
probability. In contrast, in path C1 the “7″ is classified correctly with 
87.84 % (in [5] in the worst case 99.4 % and best case 100 %) and the ”1″ 
with 76.74 %. The “4″ is misclassified in most cases and is most 
frequently identified as a 7. In [5], this ”4″ is correctly classified in the 
best case with 50.44 %.

Fig. 1. Depiction of the programming pulses, which can be varied in amplitude 
(red), pulse width (green) and number (pink).

Fig. 2. (a) Programming with 100 pulses, 0.8 V amplitude and a pulse width of 1 µs, (b) Programming with 100 pulses, 1.1 V amplitude and a pulse width of 1 µs, (c) 
Programming with 100 pulses, 0.9 V amplitude and a pulse width of 100 ns. The distribution function for the last pulse is shown in black. The current values of 128 
different cells are shown in gray and their mean values are colored.

Fig. 3. (a) Representation of the 10,201 possible weights within the − 1 to + 1 
range in the 101x101 matrix via paths. (b) Possible discrete weight values 
within the − 1 to + 1 range depending on the selected path.
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5. Influence of the weight stepping and the variations

Two factors play a role in the result of the programming: 1) The 
possible fluctuation of the desired weight value and 2) the number of 
adjustable weights or the accuracy of how finely resolved they should be 
set.

Path C1 was selected for testing the “1″ image, with weights set to 
increments of 0.1, 0.05 and 0.025 and noise levels of 100 % (referred to 
the statistical variations as observed in the measurements), 85 %, 67 %, 
25 % and 0 %. The results are shown in Fig. 6.

Fig. 6 shows that the classification with a step of 0.025 is better than 
with 0.1, but the result only improves slightly. However, the 0.05 step is 
worse than 0.1, as the finer discretization may lead to weight 

combinations with an increased σ. It is noticeable that a reduction of the 
variability provides significantly better classification results. Even with 
a reduction of 1/3, the results are in the 90 % range for all step sizes.

A reduction in the stochasticity therefore has more influence on the 
classification result than the weight stepping. This should be checked by 
taking the weights of paths C1 and C2 from Fig. 3 (b) together so that 
there are no gaps in the weight setting. The simulation results can be 
found in Table 2. In this instance, the programming from Fig. 2 (a) was 
set, the test images with the “7″, “1” and “4” were examined and the 
weight stepping were set to 0.1.

Table 2 shows that paths C1 and C2 together (this setting is called C1 
& C2 and ensures a weight range from − 1 to + 1, as shown in yellow in 
Fig. 3 (b)) provide a better result than C2, but worse than C1 for “7″ and 
”1″. This shows that setting less accurate weights from − 1 to − 0.5 and +
0.5 to + 1 (C1 only) provides more correct expected results than setting 
more accurate weights from − 1 to + 1 (C1 & C2). The cause is: Weights 
with high stochasticity as in C2 lead to more incorrect results than 
weights with low stochasticity as in C1. Even if only some of the weights 
have high stochasticity. This shows that the stochasticity has a major 
influence.

Fig. 4. Visualization of the resulting standard deviation for each possible weight to be set (101 states x 101 states). Zoom on the left shows even more clearly the 
standard deviation of the weights created with the help of the first 20 states. Zoom on the right shows with a new color scale how the standard deviation changes with 
the weights composed from the last 81 states.

Fig. 5. Test images of the MNIST data set: (a) “7″, (b) “4” and (c) “1”.

Table 1 
Classification results of the images of a “7″, ”4″ and “1″ with paths C1 and C2. The expected result is marked in green and the result with the highest probability is marked 
in blue.
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6. Different programming settings

Now three different pulse settings were tested to investigate the ef-
fect of different programming pulses. The amplitudes and pulse widths 
were:

1) 0.8 V and 1 µs (see Fig. 2 (a)): Programming as in the previous 
section. At the end of the sequence of pulses a MD is most likely ON.

2) 1.1 V and 1 µs (see Fig. 2 (b)): With just one pulse, the state of the 
MD is already very likely to change to ON.

3) 0.9 V and 100 ns (see Fig. 2 (c)): At the end of the sequence of 
pulses some MDs are already in the ON state and others remain in the 
OFF state.

The results of the simulation can be seen in Table 3 for path C1 and 
C2, each for the image of a “7″ and the weight stepping equal to 0.1.

Table 3 shows that the choice of programming conditions is impor-
tant. With (a), the measuring points are similarly distributed on average 
and a good result is achieved. In contrast, with (b) only the ON states can 
be represented very accurately, which means that the classification 
result is significantly worse. With (c), large stochasticity can be observed 
and mainly the range of the OFF state can be set, which also makes 
classification difficult. As many measuring points in the range of both 
bimodal distributions are important, it is also important that there is 
some stochasticity (path C1 with less stochasticity provides better results 
than path C2 with more stochasticity). One solution could be to use 
different pulse widths, heights and numbers depending on the weight. In 
addition, it would be helpful if there were a greater distance between the 
HRS values and the LRS values expressed in current values. Another 
solution would be to extend the structure of the simple perceptron. The 
use of hidden layers could be helpful to counteract this.

7. Conclusions

The programming via pulses shows strong variability in the weight 
values. As a result, the classification accuracy of the MNIST dataset is 
influenced by the variability depending on the G+/ G− settings. For these 
reasons, at least one of the MDs should always be in the HRS. This re-
duces the variations. In addition, for achieving a high probability for a 
correct classification, it is more important that the individual weights 
show less fluctuation than whether their conductivity can be set pre-
cisely. A reduction of the fluctuations observed in measurements by 33 
% already shows significant improvements. However, even without 
fluctuations a precise setting of conductance states is important to 
achieve the correct classification results. The choice of programming is 
also important. Adjusting the pulse according to the required weight 
could be helpful to set the desired settings with the smallest possible 
fluctuations. The technology should also be designed in such a way that 
the HRS and LRS are clearly distinguishable in terms of the flowing 
current. In addition, the supplement of Hidden Layer will be useful to 
compensate for the fluctuations.
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Fig. 6. Illustration of the effect of different increments of the weights and a 
reduction in the variability of the weights. The percentage for the correct 
classification of “1″ is given.

Table 2 
Classification results of the images of a “7″, ”4″ and “1″ with paths C1, C2 and C1 & 
C2.

Setting “7″ “4″ “1″

C1 87.84 % 8.52 % 76.74 %
C12 20.68 % 11.69 % 15.48 %
C1 & C2 23.42 % 12.30 % 17.15 %

Table 3 
Classification results of the image of a “7″ with programming conditions (a), (b) and (c) for path C1 and C2. The expected result is marked in green and the result with 
the highest probability is marked in blue.
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