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Accomplishing truly analog conductance modulation in memristive arrays is crucial in order to implement the synaptic plasticity in hardware-based
neuromorphic systems. In this paper, such a feature was addressed by exploiting the inherent stochasticity of switching dynamics in amorphous
HfO2 technology. A thorough statistical analysis of experimental characteristics measured in 4 kbit arrays by using trains of identical depression/
potentiation pulses with different voltage amplitudes and pulse widths provided the key to develop two different updating rules and to define their
optimal programming parameters. The first rule is based on applying a specific number of identical pulses until the conductance value achieves the
desired level. The second one utilized only one single pulse with a particular amplitude to achieve the targeted conductance level. In addition, all
the results provided by the statistical analysis performed may play an important role in understanding better the switching behavior of this particular
technology. © 2022 The Author(s). Published on behalf of The Japan Society of Applied Physics by IOP Publishing Ltd

1. Introduction

Artificial neural networks (ANNs) accomplished one of the most
important achievements within the field in 2016 when Google
AlphaGo defeated the Go world champion Lee Sedol.1) Up to
that moment, the implementation of such kind of systems had
been carried out by using pure software approaches executed in
supercomputers with thousands of CPU/GPUs. Nevertheless, the
need of frequent transferences of data between the main memory
and the processing unit in the von Neumann architecture, the so
called von Neumann bottleneck,2) limits drastically the
throughput and efficiency of ANN systems. In order to get rid
of this limitation, one obvious strategy is to rearrange the
hardware architecture to truly mimic the neural network of the
brain. Nowadays, the most promising implementation of this
computing paradigm relies on the idea of in-memory computing,
in which calculations are carried out in situ where the data is
stored.3) This approach automatically eliminates the von
Neumann bottleneck by suppressing the memory-processor
communications and lays the foundations for an intrinsically
parallel paradigm of computing.4)

In the last few years, memristive arrays have emerged as one
of the best technologies to implement the huge batches of
electronic synapses demanded by such hardware-based
ANNs.5,6) The most widespread method used to emulate the
synaptic plasticity on memristive devices is to adopt the multi-
level conductance approach by tuning the current compliance
during set operations.7–11) However, this strategy actually
requires complex and time/energy-consuming programming
algorithms.12–15) There is a different strategy that is gaining
momentum in overcoming the intrinsic limitations associated to
implement true analog update of the conductive state of
filamentary-based memristors. Such a strategy exploits the
inherent stochastic nature of the processes driving the resistive
switching operation within the memristors to mimic the synaptic
plasticity.16–20) In order to achieve this aim, the conductance
update stochasticity of the memristive devices has to be
statistically modeled. From this kind of analysis it is also

possible to develop alternative learning rules for the training
phase of the ANNs.16,18,19,21–23)

In previous studies,19,24) we already contributed to this
purpose by analyzing the switching probabilities of memristive
devices based on polycrystalline HfO2 dielectric layers as a
function of the number of identical voltage pulses applied
during potentiation/depression operations and their amplitude.
Based on these results, a novel learning rule was implemented
in an ANN intended for classifying the MNIST dataset.19,21)

Similar statistical studies can be found elsewhere,25–27) how-
ever every particular technology needs to be analysed in order
to obtain the specific characteristics of its stochastic switching.
In this work, the switching behavior of memristive devices
based on amorphous HfO2 layers, which are integrated in 4
kbit arrays, was characterized as a function of the amplitude,
the width and the number of identical programming pulses
applied on batches of 128 1-transistor-1-resistor (1T1R) cells.
Afterwards, the experimental measurements were statistically
modeled in order to provide methods to develop synaptic
updating procedures as well as alternative on-line learning
rules in stochastic hardware-based ANNs.

2. Methods

The samples employed to obtain experimental characteristics
of the stochastic switching are memristive devices integrated
into 4 kbit arrays [see Fig. 1(b)], which consist of 64 rows,
each with 64 memristive cells. These cells follow the 1T1R
structure [see Fig. 1(a)], which is constituted by a NMOS
transistor (manufactured in 250 nm CMOS technology)
connected in series to a metal–insulator–metal (MIM) structure
placed on metal line 2 of the CMOS process. The MIM
resistor consists of a TiN/HfO2/Ti/TiN stack with 150 nm TiN
top and bottom electrodes (TE and BE, respectively) deposited
by magnetron sputtering, a 7 nm Ti scavenging layer (under
the TiN TE), and a 8 nm amorphous HfO2 switching layer
grown by atomic layer deposition (ALD). After patterning the
MIM stack with an area of 600× 600 nm2, a SiON layer was
deposited to encapsulate and protect the memristive cell.

Content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this
work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

SM1007-1
© 2022 The Author(s). Published on behalf of

The Japan Society of Applied Physics by IOP Publishing Ltd

Japanese Journal of Applied Physics 61, SM1007 (2022) REGULAR PAPER
https://doi.org/10.35848/1347-4065/ac6a3b

https://crossmark.crossref.org/dialog/?doi=10.35848/1347-4065/ac6a3b&domain=pdf&date_stamp=2022-06-17
https://orcid.org/0000-0001-7545-9420
https://orcid.org/0000-0001-7545-9420
mailto:perez@ihp-microelectronics.com
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.35848/1347-4065/ac6a3b


The algorithm used to explore the stochastic nature of the
switching behavior of the HfO2-based memristive devices
consists of applying trains of 100 voltage pulses with the
same amplitude and pulse width either on the TE or on the S
terminal of the 1T1R cell [see Fig. 1(a)] for potentiation or
depression operations, respectively. Seven different voltage
amplitudes, namely, from 0.6 to 1.2 in steps of 0.1 V, as well
as three pulse widths, namely, 10 μs, 1 μs, and 100 ns, were
employed on a total of 42 batches of 128 memristive devices
(two rows of the array). After each programming pulse a
read-out operation at 0.2 V is carried out to track the
evolution of the conductive state of the stressed samples.
According to Milo et al.,8) such amplitude value is low
enough to have no impact on the switching characteristics. In
1T1R devices the G terminal [see Fig. 1(a)] has also to be
properly biased. During potentiation operations the G voltage
(1.4 V) controls the maximum current that flows through the
memristive device, avoiding its hard breakdown. During

depression operations, the G voltage (2.7 V) is selected to
minimize the series resistance of the select transistor. For the
read-out operation the G voltage is equal to 1.4 V.

3. Results

The memristive technology employed in the present work
requires a preliminary electroforming operation to activate
the resistive switching behavior.28,29) In particular, as show in
Perez et al.,30) an electroforming procedure in three steps has
shown to result in a more stable and reliable conductive
filament (CF). All three steps carried out in this stage,
namely, forming, reset and set, are based on the incremental
step pulse with verify algorithm (ISPVA).31) Prior to ap-
plying the 100 programming pulses, every batch of 128
memristive devices has been also programmed through the
ISPVA into either the low resistive state (LRS) or the high
resistive state (HRS) depending on the synaptic operation to
be characterized, namely, depression or potentiation,

Fig. 1. (Color online) Circuit schematic of the 1T1R memristive cells with the voltage waveforms applied on each terminal during potentiation (black) and
depression (red) operations and cross-sectional TEM image of the TiN/HfO2/Ti/TiN MIM stack (a). Schematic and micrograph of the 4 kbit array (b).

Fig. 2. (Color online) Evolution of the read-out current CDFs measured after applying 1, 10, and 100 programming pulses with the seven voltage amplitudes
starting from LRS during depression (a) and from HRS during potentiation (b) for the case of a pulse width equal to 1 μs.
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respectively. The current thresholds (Itrg) used to program the
LRS and the HRS are 30 μA and 5 μA, respectively, as
depicted by the red cumulative distribution functions (CDFs)
in Figs. 2(a)–2(b).
The evolution of the read-out currents collected while

applying the train of 100 programming pulses as a function of
the voltage amplitude and pulse width is illustrated in Figs. 3
and 4 for depression and potentiation operations, respec-
tively. Figure 3 shows a significant impact of the voltage
amplitude on the modulation of the conductivity whereas the
impact of the pulse width is somewhat unexpected. The
larger the voltage amplitude the faster the depression process,
starting from no conductance change at 0.6 V until switching
to LRS in almost one single step at 1.2 V. It is possible to
slow down the depression process by working with a pulse
width of 100 ns in comparison to 10 and 1 μs. However there
is not a noticeable difference between the modulation
performed by using a pulse width of 10 μs and a pulse width
of 1 μs. Somehow the modulation of the CF takes place at the
beginning of the voltage pulse: faster than 1 μs but taking
longer than 100 ns. Figure 4 also shows a significant impact
of the voltage amplitude on the modulation of the conduc-
tivity during potentiation operations. The larger the voltage
amplitude, the faster the potentiation process, starting from
no conductance change at 0.6 V until switching to LRS in
almost one single step at 1.2 V. In contrast to depression
operations, the pulse width has the expected strong impact on

the modulation of the conductivity. The larger the pulse
width, the faster the potentiation process. In this case the
modulation of the CF seems to take place during the whole
pulse width regardless of the value employed.
In order to understand better how the modulation of the

conductivity takes place along the 100 programming pulses
for the 128 memristive devices in each batch, the shape of the
read-out current CDFs in Figs. 2(a) and 2(b) is analyzed in
detail. Only the CDFs regarding the pulse width equal to 1 μs
will be considered in the present analysis since that explana-
tion can be easily extrapolated to the other two pulse width
values. On the one hand, for the depression operation in
Fig. 2(a), when the voltage amplitude is low, the CDF starts
to tail toward the HRS, increasing with the number of pulses.
At 0.8 V this lower tail achieves the HRS and from 0.9 V
onwards the upper tail of the distribution shifts towards the
HRS with increasing number of pulses. Such a shift is
performed faster with larger voltage amplitudes. On the other
hand, for the potentiation operation in Fig. 2(b), the CDF
splits mainly into two distributions. This is specially clear for
voltage amplitudes larger than 0.7 V. The upper part settles
on the LRS, while the lower part remains on the HRS. The
number of devices on the upper part increases with the
voltage amplitude and the number of pulses. When the
voltage amplitude is large enough, namely, larger than 1.1
V, all the devices switch toward LRS even after applying
only one single pulse.

Fig. 3. (Color online) Evolution of the read-out currents measured along the sequence of 100 depression pulses with the three pulse widths and the seven
different amplitudes. Grey lines represent each of the 128 devices while the median value is highlighted in different colours.
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4. Discussion

In order to design synaptic updating rules or even new
learning methodologies based on the stochastic conductance
modulation phenomenon, a thorough statistical analysis of
the experimental characteristics shown in the previous Sect.
is required. By taking the median values of the read-out
current CDFs, as shown in Figs. 2(a) and 2(b), it is possible
to define transference functions relating input voltage ampli-
tudes with the corresponding modulation effect on the
memristive conductance, depending on the number of
identical pulses applied. The results of this analysis are
shown in Figs. 5 and 6 for depression and potentiation
operations, respectively, for all three pulse width values
considered in this work after applying 1, 10, and 100
programming pulses. The transference functions illustrated
can be well fitted by utilizing the sigmoid function, which
was already used in Wenger et al.,19) Zahari et al.,21) and
Mahadevaiah et al.24) to model the switching probability of
HfO2-based memristive devices.
Figures 5 and 6 show again in a quite clear way that larger

voltage amplitudes and larger number of programming pulses
lead to stronger conductance modulation on memristive
devices. It is also possible to observe the strange dependency
already explained regarding the impact of the pulse width
during depression operations. Transference functions for 10
and 1 μs pulse widths in Fig. 5 overlap, which was an
unexpected result. Considering a theoretical equivalent

cumulative effect of programming pulses on the modulation
of the read-out current, that is, 1 pulse of 10 μs, 10 pulses of
1 μs, and 100 pulses of 100 ns, the curves shown in Fig. 7 are
obtained. Figure 7(b) shows that the conductance modulation
during depression for 1 pulse of 10 μs pulse width is weaker
than the modulation performed by 10 pulses of 1 μs pulse
width, as already explained. It would be expected that 100
pulses of 100 ns pulse width had the same modulating effect
as either of the other two, however surprisingly it was
obtained something in between. In addition, the results in
Fig. 7(a) for potentiation are also remarkable. As expected,
the curve resulting from applying 1 pulse of 10 μs pulse
width overlaps with the curve resulting from applying 10
pulses of 1 μs pulse width. However the curve resulting from
applying 100 pulses of 100 ns pulse width is shifted toward
larger voltages, that is, larger voltage amplitudes are required
than the theoretically expected for a particular amount of
conductance modulation when using a pulse width of 100 ns.
Such unexpected behaviors require further research in future
works.
The statistical study can not be considered complete if the

switching stochasticity is not analyzed in terms of the device-
to-device (DTD) variability of the read-out current modula-
tion. In Figs. 8 and 9 the evolution of the read-out current
during depression and potentiation operations, respectively,
is depicted in terms of the median value versus the standard
deviation (σ) calculated from batches of 128 memristive
devices as a function of both the voltage amplitude and the

Fig. 4. (Color online) Evolution of the read-out currents measured along the sequence of 100 potentiation pulses with the three pulse widths and the seven
different amplitudes. Grey lines represent each of the 128 devices while the median value is highlighted in different colours.
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number of programming pulses for the three different pulse
widths. The behavior already explained for the read-out
current CDFs in Fig. 2 can also be observed here. For
depression operations in Fig. 8, at low voltage amplitudes σ
increases with slight median value decrease from LRS

(orange arrow) as the number of pulses rises, which
corresponds to the CDF tailing. At larger voltage amplitudes,
both σ and median values decrease gradually (purple arrow)
as the number of pulses goes on, in correspondence to the
shift of the upper tail of the CDF toward the HRS. For
potentiation operations in Fig. 9, at low voltage amplitudes σ
increases with almost constant median value (purple arrow)
as the number of pulses rises, which corresponds to the CDF
split into two sub-distributions. At medium voltage ampli-
tudes, σ slightly increases while the median value is strongly
increased (black arrow) with increasing number of pulses,
which is linked to the transition of the median value from the
lower part of the CDF (at HRS) toward the upper part (at
LRS). Finally, at high voltage amplitudes σ decreases with
almost constant median value (orange arrow) as the number
of pulses goes on, which corresponds to the progressive
merging of both sub-distributions into a single one at the
LRS.
All the insightful knowledge provided by the experimental

measurements and statistical analyses previously presented

Fig. 5. (Color online) Transference functions connecting the voltage amplitude of the programming pulse and the resulting modulation of the read-out
current during depression operations for the three pulse widths depending on the number of pulses applied, in particular: 1, 10, and 100. Experimental (dots)
and modeled (solid lines) data are shown.

Fig. 6. (Color online) Transference functions connecting the voltage amplitude of the programming pulse and the resulting modulation of the read-out
current during potentiation operations for the three pulse widths depending on the number of pulses applied, in particular: 1, 10, and 100. Experimental (dots)
and modeled (solid lines) data are shown.

Fig. 7. (Color online) Transference functions with the same theoretical
equivalent cumulative modulation effect, namely, 1 pulse of 10 μs pulse
width (green line), 10 pulses of 1 μs pulse width (orange line), and 100
pulses of 100 ns pulse width (purple line), for potentiation (a) and depression
(b) operations.

Fig. 8. (Color online) Evolution of median values versus σ values of the read-out currents during depression calculated from batches of 128 memristive
devices as a function of the voltage amplitude (each colour) and the number of programming pulses (each dot) for the three different pulse widths: 1 μs, 10 μs,
and 100 ns.
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about our memristive technology can be used now to fulfil
the original goal of this work. Regarding the design of
synaptic updating rules, two different approaches are con-
sidered, namely, conductance modulation based on the
number of programming pulses and based on the voltage
amplitude of one single programming pulse. For the first one,
Figs. 3 and 4 should focus the attention. The programming
parameters that provide the most gradual and controllable
conductance modulation during depression operations are
either a pulse width of 1 or 10 μs with a voltage amplitude of
0.9 V or a pulse width of 100 ns with a voltage amplitude of
1.1 V. The programming parameters that optimize potentita-
tion operations in the same terms are either a pulse width of
1 μs with a voltage amplitude of 0.8 V or a pulse width of
100 ns with a voltage amplitude of 1.0 V. Finding the right
combination of programming parameters was more challen-
ging for potentiation since its behavior is well known to be
much more abrupt than the depression one.32,33) By using the
second approach, it is possible to obtain the desired con-
ductance modulation by applying just one single pulse with
the appropriate voltage amplitude, as shown in Figs. 5 and 6
(Pulse #1). The optimal programming parameters in this case
are those that place the transference function on the most
centered position within the voltage span. In particular, 1 and
10 μs for depression and 1 μs for potentiation. The second
approach has the advantage of consuming less time (just one
pulse) but at the cost of a much lower linearity. Regarding the
development of new learning methodologies, unfortunately,
it is too early and further research will be carried out in this
direction in future works.

5. Conclusions

In this study, the stochasticity inherent to the switching
dynamics of amorphous HfO2 memristive devices was
experimentally characterized by means of trains of 100
identical depression/potentiation pulses as a function of the
voltage amplitude and the pulse width in batches of 128
1T1R cells integrated within 4 kbit arrays. Afterwards, the
resulting characteristics were statistically analyzed in order to
develop gradual conductance updating methods that mimic
the synaptic plasticity feature. Two different approaches were
proposed, namely, conductance modulation as a function of
the number of programming pulses applied and conductance
modulation as a function of the voltage amplitude featured by
one single programming pulse. The former provides a more
linear control of the conductance update at the cost of larger

latency and energy consumption than the later. Based on this
insightful knowledge, future works will focus on developing
on-line learning rules to be implemented in hardware-based
ANNs intended to classify the MNIST dataset, which will be
used as standard benchmark.
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