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We characterize TiN/Ti/HfO2/TiN memristive devices for neuromorphic

computing. We analyze di�erent features that allow the devices to mimic

biological synapses and present the models to reproduce analytically some of

the data measured. In particular, we have measured the spike timing dependent

plasticity behavior in our devices and later on we havemodeled it. The spike timing

dependent plasticity model was implemented as the learning rule of a spiking

neural network that was trained to recognize the MNIST dataset. Variability is

implemented and its influence on the network recognition accuracy is considered

accounting for the number of neurons in the network and the number of training

epochs. Finally, stochastic resonance is studied as another synaptic feature. It is

shown that this e�ect is important and greatly depends on the noise statistical

characteristics.
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1. Introduction

Memristive devices are considered promising alternatives both for stand-alone and
embedded non-volatile memory circuits (Yu, 2022). Other applications are connected
to data security (Carboni and Ielmini, 2019; Wen et al., 2021; Yang et al., 2021) and
mobile communications (Lanza et al., 2022). However, the most interesting use of these
emerging devices is linked to the hardware implementation of artificial neural networks
in the context of neuromorphic engineering (Allen et al., 1989; Zhu et al., 2023). In
this latter case, the memristive device outstanding features to mimic the behavior of
biological synapses (conductance potentiation and depression, spike-timing dependent
plasticity (STDP), spike-rate dependent plasticity (SRDP), paired-pulse facilitation (PPF),
vector matrix multiplication (VMM) in crossbar arrays, etc.) play an essential role (Alibart
et al., 2013; Merolla et al., 2014; Prezioso et al., 2015; Ambrogio et al., 2018; Zidan et al.,
2018; Sebastian et al., 2020; Hui et al., 2021; Pérez-Bosch Quesada et al., 2021; Yu et al., 2021;
Roldan et al., 2022; Zhu et al., 2023).
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Among the variety of memristive devices, those based on
filamentary conduction are very common. In this case, the device
operation is facilitated by the formation and destruction of
nanometric filaments that short the metal electrodes grown at both
sides of a dielectric layer (Guy et al., 2015; Huang et al., 2017;
Dirkmann et al., 2018; Pérez et al., 2019; Aldana et al., 2020b;
Funck and Menzel, 2021). The devices we study in this manuscript
show this type of filamentary operation; they are known as resistive
random access memories (RRAMs) or resistive memories. RRAMs
show exceptional general characteristics such as fast speed (<10
ns), large (high resistance state, HRS/low resistance state, LRS)
ratios (>100), very low switching energy (<0.1 pJ), and high
scalability (they are CMOS technology compatible). From the
commercial viewpoint, Fujitsu has low-power 8-Mb stand-alone
RRAM chips (they operate at 1.6 V with an average read current of
0.15 mA), suitable for IoT applications (Lanza et al., 2022; Fujitsu,
2023); Sandisk/Toshiba reported stand-alone RRAMmemory chips
with 32 GB (24 nm node technology) (Liu et al., 2013; Lanza et al.,
2022).

Neuromorphic engineering using resistive memories enables
new computing schemes where the output is generated and stored
on-site without having to move data in and out. In this respect,
the limitations linked to the Von Neumann’s bottleneck are
avoided (Sebastian et al., 2020; Lanza et al., 2022). In addition
to the improvement in connection to Von Neumann’s bottleneck,
an advance can also be achieved in terms of overcoming the
hurdles linked to the memory wall (i.e., the steadily growing
performance gap between the different types of memory and
the microprocessors) (Tang et al., 2019). The role of resistive
memories in this new computing paradigm (Yu et al., 2011,
2021; Zheng and Mazumder, 2019; Sebastian et al., 2020; Zhao
et al., 2020; Romero-Zaliz et al., 2021; Roldan et al., 2022) is
vital to save time and reduce power consumption in artificial
intelligence solutions since CMOS-based solutions are not power-
and area-efficient. In this respect, as it is shown below, a single
device can successfully mimic many features of biological synapses
(Sebastian et al., 2020; Yu et al., 2021; Chen et al., 2022; Ismail
et al., 2022). Hence, the role of resistive memories in conventional
neural networks consists in implementing the synaptic weights.
These weights are obtained by means of a quantization process,
employing a multilevel conductance approach for the memristive
device operation (Milo et al., 2016; Perez et al., 2017; González-
Cordero et al., 2019; Sokolov et al., 2019; Ren et al., 2020; Ha et al.,
2022; Roldán et al., 2023a).

There are two main types of neural networks behind AI
applications: artificial neural networks (ANNs) and spiking
neural networks (SNNs). For ANN, information is encoded with
continuous values. They can reach high data recognition accuracy
with two or more layers of non-linear neurons connected by
synaptic weights (Sebastian et al., 2020). Thus, large networks with
thousands of synapses can be implemented (Yu et al., 2021). On
the contrary, information is coded with time-dependent spikes in
SNNs, this feature reduces power consumption in comparison to
ANNs (Zheng and Mazumder, 2019). Several features distinguish
ANNs and SNNs; among them, the most remarkable are the

following: (a) the manner in which information is encoded (in
ANNs real-value activations are employed to convey information,
while in SNNs a series of time-dependent spikes are used), (b)
ANN related neurons do not have memory; however, they do
have in SNNs, and (c) ANN output (e.g., feed-forward ones) is
not time dependent, while it is in SNNs (Zheng and Mazumder,
2019). In SNNs, it is feasible the use of algorithms able to adapt
and evolve with time; they have an asynchronous nature that
leads to a high system scalability and general efficiency since no
synchronization mechanisms are needed (Ezra Tsur, 2022). In this
context, we have analyzed SNNs implementing the device STDP
behavior as the learning rule (a temporally asymmetric form of
Hebbian learning induced by tight temporal correlations between
the spikes of pre- and postsynaptic neurons). In particular, the
role of variability in the STDP features has been comprehensively
studied by considering different SNNs and characterizing their
recognition accuracy for an input of standard image dataset. We
considered different number of neurons and different training
conditions (e.g. varying the number of epochs).

One of the representative biological synaptic features that can
be mimicked by memristive devices, in addition to those described
above, is stochastic resonance (SR), that is known to be essential
in sensory neurobiology (Douglass et al., 1993; Vázquez-Rodríguez
et al., 2017). The term SR was first used in 1980 in an explanation
of the periodic occurrence of ice ages on Earth (Benzi et al.,
1981). Experimentally, SR was seen in 1983 after a laboratory
demonstration in Schmitt triggers (Fauve and Heslot, 1983). SR
is applied to describe any phenomenon where the presence of
input noise (both internal or external) in a non-linear system
ends up with a better system response to certain input signal in
comparison with the lack of noise (Samardak et al., 2009; Stotland
and Di Ventra, 2012). It does not take place in linear systems
(McDonnell, 2008). The word resonance comes from a comparison
to systems that show a maximum signal-to-noise ratio or output
response for some resonance frequencies. In this case, SR would
be represented by a maximum output response for a certain noise
intensity.

We have studied here stochastic resonance in HfO2-based
memristors in addition to other synaptic characteristics. To do so,
several types of noise sources were employed (Gaussian, uniform,
etc.) whose standard deviations were swept in the study (from 50
mV to 150 mV). Our experiments correspond to the first case
studies in SR where the systems (the devices) were driven by a
combination of a periodic single frequency input signal (ramped
voltages to drive conventional resistive switching (RS) operation)
and a broadband noise (McDonnell, 2008). In our study, the
existence of set and reset processes poses the presence of thresholds
in the device operation that allows to observe SR effects. In this
respect, we are facing a non-linear device with thresholding (linked
to set and reset events) where SR (calculated as the resistance
ratio between the OFF and ON states) can be observed and used
for the improvement of the output signals in several applications
(Mikhaylov et al., 2021). We took into consideration progressive
switching events and the inherent RS variability (Pérez et al., 2019;
Perez et al., 2023; Roldán et al., 2023b).
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FIGURE 1

(A) Cross-sectional TEM image of a device fabricated on the metal line 2, (B) MIM stack schematics. (C) Experimental current vs. voltage curves for

1,000 consecutive RS cycles measured for a compliance current (ICC) = 300 µA. (D) Vset and Vreset cumulative distribution functions (CDFs) calculated

for the extraction methods [MS1 and MS3 for the set voltage extraction; and MR1 and MR3 for the reset voltage extraction as explained in

(Maldonado et al., 2022)] for the curves corresponding to (C). (E) Experimental current vs. voltage curves for 1,000 consecutive RS cycles measured

assuming a ICC of 900 µA. (F) Vset and Vreset CDFs calculated as in (Maldonado et al., 2022) for the curves corresponding to (E).

2. Device fabrication and
measurement setup

The devices employed here are single MIM structures placed
on the metal line 2 of the CMOS process (130 nm technology)
(Figure 1A). Each device is integrated within one of the 108
different dies included in the 200 mm wafer. Their size is 600x600
nm2. They are based on a TiN/Ti/HfO2/TiN stack (see Figure 1B),
with a TiN bottom electrode (BE) which is 150 nm thick, an 8 nm
HfO2 switching layer, a 7 nm oxygen scavenging layer made of
titanium and a TiN (150 nm thick) top electrode (TE). The metal
layers were deposited by magnetron sputtering, and the dielectric
layer was grown by atomic layer deposition (ALD). The electrical
measurements were performed by means of a Keysight B1500A
semiconductor parameter analyzer connected to a probe station
Karlsuss PSM6. The Keysight B1511B medium power source
measurement unit (SMU) module was employed for quasi-static
ramped voltage stress, and the Keysight B1530 module, a waveform
generator and fast measurement unit provided the voltage pulse
trains. The voltage signal was applied to the TE, while the BE was
grounded. The semiconductor parameter analyzer was connected
to a computer via GPIB and controlled using MATLAB.

We have plotted I–V curves measured as a long series (1,000
cycles) of successive set and reset processes. Different values of
ICC were employed in Figure 1C (ICC = 300 µA) and Figure 1E
(ICC = 900 µA). In order to extract the most representative RS
parameters such as the set and reset voltages and currents, different
advanced numerical procedures are employed. The first method to
determine the set voltage (MS1) consists in finding the maximum
value of the numerical derivative (Maldonado et al., 2022). Another
methodology [MS3 in Maldonado et al. (2022)] searches for the
maximum separation of the experimental curve to an imaginary
straight line that joins the first point in the measured curve and the
first point where this current presents its maximum (it finds the set
curve knee). Notice in Figures 1D, F that MS1 extracted values are

higher than the MS3 ones, as found in Perez et al. (2023). For the
reset voltage, we search for the current derivative minimum [MR1

in Maldonado et al. (2022)] and the current maximum [MR3 in
Maldonado et al. (2022)]. The behavior of MR1 and MR3 extracted
values is coherent to the one reported in Perez et al. (2023), as
shown in Figures 1D, F.

In Supplementary Figures S1, S2 in the Supplementary material
(SM), we show a thorough analysis of the set and reset processes in
addition to a cycle-to-cycle variability study. The high resistance
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FIGURE 2

(A) Voltage vs. time for a series of applied signals consisting in positive and negative pulse trains. Set pulses are shown in black lines (0.45 V and a time

length of 1 and 2 ms for Ton and To� respectively), while reset pulses are plotted in blue lines (-0.5 V and a time length of 1 and 2 ms for Ton and To�

respectively) as depicted in the inset. (B) Conductance vs. pulse number (non-volatile states). The potentiation and depression e�ects can be easily

observed. The input signals employed in these measurements are those described in (A).

state (HRS) to low resistance state (LRS) resistance ratio is
approximately 10 for the two ICC under consideration, an
appropriate value for memory applications. The variability for the
set and reset voltages is low (Supplementary Figures S1C, S2C)
although a better behavior is obtained in general for the high ICC
since a more stablished conductive filament is formed, and this
allows a more uniform switching (Aldana et al., 2020a,b).

3. Results and discussion

We have analyzed different synaptic features in the devices
under study to assess their appropriateness for neuromorphic
engineering applications.

3.1. Potentiation and depression
characteristics

In order to correctly mimic biological synapses, the devices
should show a controlled conductance variation. This means a
modulation of the switching behavior (by means of gradual set
and reset processes) to allow, in terms of ANN implementations,
a regulated synaptic weight change. To do so, different voltage
pulse trains can be employed. In particular, we used successive
set (Vset = 0.45 V and fixed pulse widths, Ton = 1 ms, Toff = 2
ms, for a progressive set process that produces potentiation) and
reset (Vreset = -0.5 V and fixed pulse widths, Ton = 1 ms, Toff

= 2 ms, for a progressive reset process that leads to depression)
pulse trains, as shown in Figure 2A. Multiple pulse widths and
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FIGURE 3

(A) Voltage vs. time series of positive and negative pulses applied to the device. Di�erent amplitudes are considered, potentiation spikes range from

0.4 V, 0.45 V, and 0.5 V with a duration of 1 and 2 ms for Ton and To�, respectively, while depression spikes range from -0.45 V, -0.5 V, and -0.55 V

with a duration of 1 and 2 ms for Ton and To�, respectively. See in the insets a zoomed-in part of the pulse series. (B) Synaptic plasticity, potentiation,

and depression events (non-volatile states). Device conductance vs. pulse number making use of the pulse series described in (A).

frequencies were employed in the measurements; in Figure 2, we
just show the best results obtained. The voltage values employed
are coherent with those found for the quasistatic I-V curves under
ramped voltage stress (Figures 1C, E); in addition, they are in line
with other previous works, see for instance Ismail et al. (2022). The
memristive device response to successive pulse trains in terms of
conductance is shown in Figure 2B for synaptic potentiation and
depression.

To further demonstrate the characteristics and the
reproducibility obtained with potentiation and depression
stimuli, three pulse series (to allow potentiation and depression
cycles) were repeated for different amplitudes (0.4 V and -0.45 V
for cycle 1; 0.45 V and -0.5 V for cycle 2; 0.5 V and -0.55 V for cycle

3), while the pulse widths are fixed to 1 ms (Ton, when the pulse
is active) and 2 ms (Toff, when the pulse is zero), as displayed in
Figure 3A. As highlighted above, in the context of neuromorphic
engineering, the pulses resemble spikes, the communication signals
at the neural level. During a sequence of potentiation spikes, the
memristive conductance rises. Afterward, a sequence of depression
spikes leads to a conductance reduction cycle, see Figure 3B.

3.2. Excitatory postsynaptic current

The device excitatory postsynaptic current (EPSC)
characterizes the synaptic response to applied stimuli with different
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FIGURE 4

(A) EPSC response after a train of 10 spikes applied with 0.5 V

amplitude for 1 ms. Di�erent pulse train frequencies were employed

(20, 50 and 100 Hz). (B) EPSC amplitude gain for A10/A1 vs. pulse

train frequency.

frequencies. In particular, in our EPSC study, we employed 20 Hz,
50 Hz, and 100 Hz, see Figure 4A. The stimuli consist in a train
of spikes with an amplitude of 0.5 V and a time length (Ton) of 1
ms, while the time values between spikes (Toff) are 49 ms for 20
Hz, 19 ms for 50 Hz, and 9 ms for 100 Hz, see the schemes in the
insets of Figure 4A. Notice that between the different spike trains,
corresponding to each frequency, a 200 ms delay has been included
to minimize inertial effects; after this delay time, the device
operational region is assumed to cool down in what is related to
thermal effects (Roldán et al., 2021). Consequently, previous signals
do not affect. The EPSC increases with the pulse train frequency.
This effect is depicted in Figure 4A, and it is visualized as the gain
ratio of the amplitudes corresponding to the last and the first spikes
in the series. The higher the stimulus frequency, the higher the
EPCS gain ratio (Figure 4B). Consequently, high-frequency inputs
make the synapse more active, which is beneficial for high-pass
filtering in the context of spiking neural networks (Ismail et al.,
2022; Li et al., 2023). At this point, it is important to highlight

FIGURE 5

(A) Temporal PPF current response to two consecutive pulses with a

set delay (1t) between spikes. (B) PPF index calculated as defined in

Equation 1 vs. 1t. The experimental data (black dots) have been

fitted (red line) by means of Equation 2 with the following relaxation

times and constants, τ1 = 0.17 ms, τ2 = 14.42 ms, C1 = 75.15 ms, C2

= 94.13 ms.

that in spike processing, the dynamic adaptation of the synaptic
weight gives rise to many significant pattern representation and
processing capabilities (He et al., 2021). In this respect, features
such as EPCS are key for correctly mimicking biological synapses
by means of memristors.

3.3. Paired-pulse facilitation

PPF occurs when two closely time-spaced spikes are applied to
a neuron, causing the second pulse to produce a stronger response
than the first. This effect is known as facilitation (Markram et al.,
1997; Zucker and Regehr, 2002), and it is required for decoding
temporal information in biological synapses and increasing the
selectivity and information capacity of neural circuits (Zucker and
Regehr, 2002). For its importance in neural processing, allowing
neurons to encode data more efficiently by increasing the strength
of synaptic connections between them, we have considered PPF
in our analysis. We introduce two consecutive spikes (pulses
generated with the semiconductor parameter analyzer, Figure 5A,
in the set process operation regime of the cell), with a set delay in
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FIGURE 6

(A) Time scheme of the spikes employed for the STDP characterization. To simplify the measurement process, the post-spike and pre-spike are

subtracted resulting in the signals in (B–E). For the measurements we assume distinct spike widths (Sw) with varying delays (1t = tpost − tpre).

between, to study the corresponding synaptic response (a typical
short-term synaptic plasticity effect). As explained, the first spike
induces a postsynaptic response and the second induces a larger
reaction. The interpulse time interval, 1t, was employed as the key
variable; the shorter this interval, the higher the ratio between the
average current measured for the first (I1) and second (I2) spikes
(see Figure 5B).

Equation 1 calculates a PPF index in the usual way (Ismail et al.,
2022):

PPFindex =
I2

I1
· 100 (1)

Moreover, a curve can be employed to fit PPF experimental
data that show an exponential dependence with the interspike time
(Zucker and Regehr, 2002) (Equation 2),

PPFindex = C1 · exp

(

−1t

τ1

)

+ C2 · exp

(

1t

τ2

)

(2)

where τ1 and τ2 are both relaxation times, and C1 and C2

are fitting constants. In particular, for our data (Figure 5B), the
following values work correctly for the fitting: τ1 = 0.17 ms; τ2 =
14.42 ms, C1 = 75.15 and C2 = 94.13.

For our data, a simplified version of Equation 2 could work
with just three parameters (τ1, C1 and C2). However, the two times
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constant are needed if fast and slow decaying terms need to be
modeled (Wang et al., 2015). See that a gradual decrease of the
PPF index is obtained as the spike intervals increases. From the
viewpoint of the physical mechanisms involved in the switching
operation of the devices, a shorter interpulse time involves a higher
temperature in the active region of the dielectric when the second
spike comes in. Taking into account that the physical mechanisms
behind switching are thermally activated (Dirkmann et al., 2018;
Aldana et al., 2020a), the effects of the second spike in taking the set
process further, and increase the device current, are more effective.

3.4. Spike timing dependent plasticity and
SNN analysis

As highlighted previously, STDP is an important synaptic
feature that allows the incorporation of a learning rule in spiking
neural networks (Roldan et al., 2022). It can be used to implement
associative learning in SNNs. Competition of spike-conducting
pathways plays an essential role in establishing associations of
neural connections; on the network scale, STDP potentiates the
shortest neural pathways and depresses alternative longer pathways
(Lobov et al., 2020). It describes the adjustment of the connection
strength between neurons based on the time relation between the
postsynaptic neuron and presynaptic neuron spikes in a particular
synapsis (Roldan et al., 2022; Zhu et al., 2023), this mechanism is
key for synaptic plasticity in biological neural circuits.

STDP characterization in memristive devices consists in the
application of a delayed pair of voltage spikes to the electrodes
(Roldan et al., 2022). In our experiments, the shape of the applied
pulses is displayed in Figure 6A. The timing of the spikes at the
top and bottom electrodes is referred to as tpre and tpost , with the
delay between them as 1t = tpost − tpre. The bottom electrode
can be left grounded to ease the measurement process and an input
signal obtained subtracting the post and pre-spikes is used at the
top electrode (Figures 6B–E).

In Figure 7, STDP measurements are shown. The change in
device conductance (1G) was determined based on the starting
conductance (GINITIAL) which was obtained at the beginning of
the measurement process. A good STDP behavior is obtained for
different spike time widths (Sw), namely, 10, 50, and 100 µs. In
order to implement the STDP as a learning rule for SNNs, Equation
3 is employed to fit the experimental data (Ismail et al., 2022;
Roldan et al., 2022). A and τ parameters for potentiation and
depression are employed for the experimental data fitting.















1G

GINITIAL
= A+exp

(

−1t

τ+

)

for 1t > 0

1G

GINITIAL
= −A−exp

(

1t

τ−

)

for 1t < 0

(3)

The fitting (the parameters are listed in Table 1) of the whole set
of experimental data is shown in solid lines, while two other fittings
to encompass the experimental dataset are depicted in dashed lines.

We have made use of the device characteristics analyzed here to
build a SNN. The network architecture is shown in Figure 8E, and
the operational features are given in the supplementary note 1 in

FIGURE 7

STDP measurements (symbols) vs. pre- and post-spike delay for

di�erent spike time widths (Sw) (A) 10, (B) 50, and (C) 100 µs. A

fitting procedure has been performed using Equation 3 to

reproduce the experimental data (solid lines). The dashed lines are

fitted to encompass the experimental data distributions while

retaining the same time constant parameters (τ+, τ−) in Equation 3

for the depression or potentiation curves. The fitting constants of

the STPD data are given in Table 1.
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TABLE 1 Parameters to reproduce the STDP measurements in Figures 7A–C for di�erent spike time widths (Equation 3).

Line Fitting Potentiation Depression

fitted variable 10 µs 50 µs 100 µs 10 µs 50 µs 100 µs

Top A+/A− 13.56 32.36 17.10 0.67 0.68 0.64

(dashed line) τ+/τ− (µs) 1.33 9.86 16.18 2.57 12.41 18.3

Average A+/A− 11.53 24.20 14.70 0.88 0.87 1.14

(solid line) τ+/τ− (µs) 1.33 9.86 16.18 2.57 12.41 18.3

Bottom A+/A− 9.50 16.04 12.31 1.11 1.06 1.65

(dashed line) τ+/τ− (µs) 1.33 9.86 16.18 2.57 12.41 18.3

FIGURE 8

(A, B) SNN recognition accuracy vs. number of epochs for di�erent number of neurons including (without) variability in the parameters of the STPD

data fitting. (C, D) SNN recognition accuracy vs. number of neurons for di�erent number of epochs including (without) variability. (E) SNN

architecture schematics.
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FIGURE 9

CDFs for the ROFF/RON ratio of the measured RS cycles assuming several values and types of noise, (A) normal, (B) uniform, (C) exponential. (D) Mean

ROFF/RON ratio vs. noise standard deviation (100 values were considered for each symbol shown).

the SM. The input image dataset was considered from the Modified
National Institute of Standards and Technology (MNIST). The
MNIST dataset is formed by 28×28 grayscale pixel images that
consist of 70,000 handwritten digits labeled in the interval [0, 9],
divided into a training set (60,000 images) and a test set (10,000
images).

We utilize the parameters shown in Table 1 coming from the
fitting of Figure 7 STDP data to determine the SNN learning
rule with an unsupervised learning scheme. The network input
layer consists of 784 neurons, and it has been adapted to the
dataset chosen in this case. Variability (as can be calculated with
the constants of Table 1) was incorporated in the equation that
determines the synaptic weight (Roldan et al., 2022) [traces are
employed, whose value is linked to spike magnitude, the time
constants in Table 1 are introduced in the differential equations
corresponding to the neuron model, in our case the leaky-
integrate and fire, and the A+ and A− constants are employed
in the equations that lead to the synaptic weight calculation
(Roldan et al., 2022)]. With the new differential equation for the
synaptic weight determination, including variability, we repeated
the training process. Once the SNN pieces were put together,
we analyzed the recognition accuracy considering a different
number of epochs (Figures 8A, B) as well as a different number
of neurons (Figures 8C, D). Notice that the higher the number of
neurons, the better recognition accuracy for the MNIST dataset;
nevertheless, the recognition accuracy improvement with the
number of neurons diminish for values above 400. The inclusion
of variability mostly affects the SNN accuracy with a low number
of neurons; nonetheless, for 400, and mostly for 800 neurons,

variability influence is low due to the SNN stochastic nature. In fact,
for the higher number of neurons employed (800) and the higher
number of epochs (5), there is no difference when variability is
included in the calculation of the synaptic weights (see Figures 8A–
D). In some experiments, higher accuracy values are obtained
including variability.

3.5. Stochastic resonance

The SR measurements were performed using a ramped input
signal (0.28 V/s) and adding input noise with a null mean and
different standard deviations (σ ) (Supplementary Figure S3 in the
SM). Furthermore, for the experimental SR analysis, three different
statistical distributions where employed: normal or Gaussian,
uniform and exponential (Heumann et al., 2016). A total of 100 I-V
complete RS curves were obtained, as in Figure 1, for each standard
deviation and statistical distribution. See the whole evolution of
RON and ROFF in the measurements in Supplementary Figure S4
(SM). There is a clear variation in the resistance evolution with
rising, as expected. In particular, for the normal distribution, the
variation is higher, for the exponential distribution the change in
RON and ROFF is found in between the results for the normal and
uniform distributions. In what is connected to the set and reset
voltages, notice in Supplementary Figure S5 that the added noise
does not disturb much the RS operation. This result is due to the
inherent stochasticity of RS operation that is resilient to added
random noise. As the noise intensity rises, the difference between
the set and reset voltages slightly shrinks for the three statistical
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distributions under study, this difference is higher for the normal
distribution. As expected, the variation of the set and reset voltages
increases as the noise standard deviation rises.

The cumulative distribution functions of the RON and ROFF

ratio are shown for different σ values and different statistical
distributions in Figure 9. The CDFs shift to higher values as the
noise intensity rises till approximately σ = 100 mV; at this point,
the CDFs shift back. In this respect, an improvement of the device
response is obtained bymeans of the addition of noise; in particular,
at the σ value, where the resonance takes place. This behavior is
clear for the normal distribution although it is not straight forward
for the exponential and uniform distributions case.

The mean ROFF/RON ratios vs. noise intensity was plotted
in Figure 9D. A clear SR behavior is seen as it was highlighted
in Mikhaylov et al. (2021) and Cirera et al. (2022). This result
is in line with those shown in Rodriguez et al. (2022) although
the technology employed in the study is different. In our case,
SR depends on the statistical distribution function employed to
generate the input noise.

4. Conclusion

TiN/Ti/HfO2/TiNmemristive devices have been fabricated and
experimentally characterized. The main features to make them
work by mimicking biological synapses are studied in the context
of neuromorphic computing. Different models are included to
reproduce experimental data. Among other effects, spike timing
dependent plasticity data are obtained in the laboratory and
modeled to be employed as the learning rule to implement a
spiking neural network to recognize the numerical MNIST dataset.
The SNN was trained with and without variability in the STDP
data. It has been shown that variability influences on the network
recognition accuracy although the increase of the number of
neurons and training epochs can help to compensate. Finally,
stochastic resonance is studied as another synaptic feature. It is
shown that this effect is important and greatly depends on the noise
statistical characteristics.
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