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ABSTRACT
Training and recognition with neural networks generally require high throughput, high energy efficiency, and scalable circuits to enable arti-
ficial intelligence tasks to be operated at the edge, i.e., in battery-powered portable devices and other limited-energy environments. In this
scenario, scalable resistive memories have been proposed as artificial synapses thanks to their scalability, reconfigurability, and high-energy
efficiency, and thanks to the ability to perform analog computation by physical laws in hardware. In this work, we study the material, device,
and architecture aspects of resistive switching memory (RRAM) devices for implementing a 2-layer neural network for pattern recognition.
First, various RRAM processes are screened in view of the device window, analog storage, and reliability. Then, synaptic weights are stored
with 5-level precision in a 4 kbit array of RRAM devices to classify the Modified National Institute of Standards and Technology (MNIST)
dataset. Finally, classification performance of a 2-layer neural network is tested before and after an annealing experiment by using exper-
imental values of conductance stored into the array, and a simulation-based analysis of inference accuracy for arrays of increasing size is
presented. Our work supports material-based development of RRAM synapses for novel neural networks with high accuracy and low-power
consumption.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5108650., s

I. INTRODUCTION

In recent years, artificial intelligence (AI) has achieved excellent
performance in tasks such as machine translation, face recognition,
and speech recognition which are now essential applications for big
data analysis in cloud computing. To carry out these machine learn-
ing tasks, deep neural networks (DNNs) are massively trained in
software by using very large datasets.1 In particular, the emergence
of specifically-designed computing machines, such as the graph-
ics processing unit (GPU)2 and the tensor processing unit (TPU),3

capable of significantly speeding up the network training, enabled
DNNs to outperform the human ability in classifying images4 or

playing Go.5 However, the training of DNNs generally requires an
extensive amount of time and energy, mostly contributed by the
intensive data transfer from the memory to the processing unit,
where the feedforward propagation, the backpropagation, and the
weight update are executed. To improve the energy efficiency of
these networks, the development of novel processing schemes, such
as analog memory and physical computing in non-von Neumann
architectures, is currently under scrutiny.6

Among the novel concepts to accelerate neural networks,
the emerging memory technologies such as phase-change mem-
ory (PCM) and resistive-switching random access memory (RRAM)
have attracted strong interest. The main advantage of emerging
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memory is the ability to compute by physical laws such as Ohm’s law
and Kirchhoff’s laws to enable matrix-vector multiplication (MVM)
with a significant reduction in energy and area.7 Also, RRAM and
PCM elements offer the opportunity to store multiple states8–10

which is essential to achieve synaptic weights with analog behavior
enabling scalable synaptic arrays with high accuracy in the learn-
ing phase.11 Achieving analog precision and low variation, however,
imposes in-depth investigations from the viewpoint of device mate-
rials able to offer large resistance window, high cycling endurance,
high device yield, and low forming voltages.11

There have been several hardware and software demonstra-
tions of neural networks implemented with memory-based synapses
in recent years. A small-scale experimental implementation of a
single layer perceptron network capable of image classification via
supervised learning12 was achieved using a 12 × 12 crossbar array
with 30 Al2O3/TiO2−x RRAM devices as synaptic connections and
a small dataset of 3 × 3 binary images.13 Moving from small-scale
to medium-scale implementations, a hardware accelerator based
on 165 000 PCM synapses was proposed in Ref. 14 by achieving
an inference accuracy of about 83% in image classification on the
well-known Modified National Institute of Standards and Tech-
nology (MNIST) handwritten digit dataset12 because of the asym-
metry and nonlinearity of PCM conductance response. A higher
inference accuracy of about 92% was obtained using Ta/HfO2/Pt
RRAM devices into an 8 kbit synaptic array although the power con-
sumption was not optimized due to the high current operation in
RRAM devices.15 In addition to classification of images from MNIST
dataset, recognition of grayscale faces was also investigated at a hard-
ware level by a 1024 TaOx/HfAlyOx RRAM cell array capable of
achieving accuracy performance very close to standard computing
systems.16 Binarized neural networks have also been implemented
with RRAM synapses.17,18 Overall, a hardware demonstration capa-
ble of combining high recognition accuracy, analog weight storage,
and low-power operation is still missing.

In this work, we report the hardware implementation of a 2-
layer perceptron neural network in a 4 kbit array of HfO2-based
RRAM devices with one-transistor/one-resistor (1T1R) structure
capable of multilevel operation. We first investigated three differ-
ent HfO2-based RRAM materials, namely, amorphous HfO2, poly-
crystalline HfO2, and Al-doped amorphous HfO2 in terms of I-V
characteristics, forming voltage, resistance window, and variability.
Based on this preliminary comparison, Al-doped amorphous HfO2
RRAM technology was selected for the implementation of synap-
tic weights mainly thanks to its lower variability. A novel multi-
level programming approach enabled to program a weight array
with 5-level accuracy achieving an inference accuracy above 80%

for the MNIST test dataset. Finally, networks with improved size,
decreasing variability and increasing number of levels, were calcu-
lated to support inference machine development with the best trade-
off between good accuracy and low-power consumption for edge
computing applications.

II. HfO2 RRAM DEVICES
HfO2 is a typical material for CMOS, RRAM, and FeRAM

devices thanks to the well consolidated know-how on deposition
and control of the chemical and structural property for high-k
gate dielectric applications. The properties of the HfO2 layer in
RRAM devices, however, are significantly different from CMOS gate
dielectric, in terms of leakage current and breakdown voltage. For
instance, the HfO2 layer should display a relatively large leakage cur-
rent in the pristine state, thus enabling a relatively low breakdown
voltage, which enables a low-voltage forming taking place in the
RRAM device.19 In addition, the requirements for analog synapses
are different from those needed in binary memory devices. As a
result, choosing the most proper RRAM technology for dedicated
inference machines requires a cross-layer characterization that spans
from the structural properties of the materials to their fundamental
electrical behavior.

To enable a detailed characterization of HfO2-based RRAM
devices, we compared various process flows in terms of structural,
forming and switching characteristics. Providing a tight control of
the device-to-device uniformity and low operating current/voltages
is in fact a key challenge for developing inference machines with
high accuracy and low operating energy. In particular, the deposi-
tion of the dielectric material in the RRAM stack is found to heav-
ily affect the conduction properties of the RRAM cell, with several
implications on characteristic parameters such as the resistance ratio
between high resistance state (HRS) and low resistance state (LRS),
the forming voltage, and the set/reset voltages.20 In this work, we
compare three deposition recipes of HfO2 material, leading to differ-
ent microstructure and composition, namely, amorphous hafnium
oxide (a-HfO), a poly-crystalline hafnium oxide (p-HfO), and an
Al-doped amorphous hafnium oxide (HfAlO).

Figure 1 shows the TEM cross section of the three HfO2 lay-
ers deposited on silicon, namely, (a) p-HfO, (b) a-HfO, and (c)
HfAlO. All the HfO2-based dielectric layers were deposited by the
atomic layer deposition (ALD) process by using a batch ALD furnace
and a halide precursor.21 By varying the temperature of the depo-
sition process, we could control the microstructure of the device,
namely, the HfO2 film deposited at 300 ○C appeared p-HfO with a
monoclinic phase, while the HfO2 film was deposited in the a-HfO

FIG. 1. TEM cross section for (a) p-
HfO, (b) a-HfO, and (c) HfAlO thin films
deposited on a silicon substrate. Note
the SiO2 interfacial layer of about 1 nm
thickness. The poly-crystalline structure
is visible for the p-HfO film, in con-
trast with the amorphous structures in (b)
and (c).
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FIG. 2. STEM-EDX image of (a) the 1T1R integrated struc-
ture and (b) the RRAM element. The select transistor was
fabricated in the front end, while the metal-insulator-metal
(MIM) RRAM device was fabricated in the back end, on top
of metal M2. The top and bottom electrodes consist of TiN,
with a Ti cap to induce oxygen scavenging between the TiN
top electrode and the HfO2 layer.

at 150 ○C. The HfAlO layer was grown at 300 ○C with an Al content
of about 10%. Note the presence of a crystalline texture in p-HfO,
while a-HfO and HfAlO layers show an amorphous structure. The
interfacial SiO2 layer of less than 1 nm between the Si substrate and
the HfO2 layer can be seen for all deposition processes. The grain
boundaries in p-HfO have been shown to serve as preferential leak-
age paths as a result of the higher defect concentration compared
to the bulk of the crystalline grain.22,23 On the other hand, electri-
cal conduction for a-HfO and HfAlO mainly takes place via uni-
formly distributed random percolation paths with a relatively high
concentration of defects.

Figure 2 shows a STEM-EDX image of the one-transistor/one-
resistor (1T1R) structure of area 890 × 965 nm2 that was adopted
as the synaptic element in this work. The transistor was integrated
in the front end [Fig. 2(a)] with 0.24 μm BiCMOS process technol-
ogy based on 3 metal layers with gate width W = 1.14 μm and gate
length L = 0.24 μm. The transistor allowed us to tune the compliance
current IC during the set transition, thus enabling a tight control of
the LRS conductance for analog weight storage.24 The HfO2-based
RRAM device consisting of a metal-insulator-metal (MIM) stack of
area 600 × 600 nm2 was deposited in the back end on top of metal
2 M2 [Fig. 2(b)]. The RRAM was connected to the drain terminal of
the select transistor with minimum interconnect length to minimize
the parasitic resistance and capacitance. The top and bottom elec-
trodes consist of TiN layers with a thickness of 150 nm deposited by
magnetron PVD sputtering (a sheet resistance of 10–50 Ω/sq) and
a 7 nm Ti scavenging layer between the top electrode and the HfO2
layer, the latter having a thickness of 8 nm except where noted.

Importantly, we observed in HfO2 RRAM devices that the scav-
enging layer is oxidized into a TixNyOy layer after the sintering pro-
cess at 400 ○C in forming gas, as already shown in Ref. 21. Note that
this process was also observed in TiN/Ti/HfOx/TiN RRAM devices
used in Refs. 25 and 26.

TABLE I. Process and forming yield of the various HfO2 RRAM devices with 1T1R
structure.

Process Process yield (%) Forming yield (%)

p-HfO 79 70
a-HfO 92 88
HfAlO 100 97

To assess the integration capabilities of the different materi-
als, we have investigated the yield from the point of view of both
the process and the forming operation. The yield is reported in
Table I for the various RRAM materials with the 1T1R structure.
The process yield was evaluated as the percentage of cells with a
read current Iread < 1 μA before forming, thus displaying a suffi-
ciently high resistance in the pristine state. The forming yield was
instead evaluated as the percentage of devices with Iread > 18 μA after
the forming operation. This minimum read current was observed to
correspond to a functional device capable of switching between the
HRS and LRS with a sufficient resistance window. RRAM devices
with p-HfO microstructure showed relatively low yield after the fab-
rication process, which might be due to the presence of anomalous
grain boundary with large metallic segregation, thus leading to elec-
trical shorts before forming. On the other hand, a-HfO and HfAlO
processes showed excellent yield both after fabrication and forming
operation; thus, they appear as promising candidates for integrated
RRAM synapses to develop inference machines.

III. ELECTRICAL RRAM CHARACTERISTICS
Figure 3 shows the measured quasistatic I-V curves of (a) p-

HfO, (b) a-HfO, and (c) HfAlO RRAM devices. The characteristics
include the forming operation, the first reset transition after form-
ing, and the first set transition after the first reset. The experiments
were carried out on individual 1T1R devices with the array by using
a Keithley 4200-SCS semiconductor parameter analyzer operated
within a Cascade PA200 semiautomatic probe station. A voltage
from 0 to 5 V was applied to the top electrode during the forming
operation with a fixed gate voltage of 1.5 V, corresponding to an IC
of about 30 μA at the maximum top electrode voltage. During the
reset process, the voltage at the source terminal was increased from
0 to 2.5 V with a gate voltage of 2.8 V, which was large enough to
minimize the transistor resistance with respect to the LRS resistance.
Finally, during the set procedure, the voltage at the top electrode
was increased from 0 to 2 V with a gate voltage of 1.6 V, corre-
sponding to an IC around 35 μA at the maximum applied voltage.
A sweep rate of 1 V/s was used for all the quasistatic operations
in Fig. 3.

The I-V curves show typical RRAM behaviors in Fig. 3, such
as the abrupt forming step at about 4 V, the noisy reset transition,
and the low-voltage set process. The latter is particularly beneficial
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FIG. 3. Measured quasistatic I-V curves for (a) p-HfO, (b) a-HfO, and (c) HfAlO. The I-V curves show similar behaviors, with abrupt forming, noisy reset transition, and low
set voltage. The latter is particularly beneficial for fine control of the LRS conductance by varying IC.

for proper control of the LRS resistance in analog synaptic applica-
tion. In fact, a large set voltage might lead to an unwanted overshoot
which results in a poor control of the LRS resistance.27 Low set volt-
age is therefore an essential property to enable tight control of the
LRS conductance and synaptic update in training algorithms such as
the backpropagation technique.14

To statistically evaluate the switching behavior of the three
RRAM technologies, a pulse mode scheme was applied on 100 1T1R
devices integrated in 4 kbit test vehicles by using a pulse width of
10 μs. Figure 4 shows (a) the cumulative distribution of the measured
forming voltage, (b) first reset voltage, and (c) first set voltage for the
various HfO2 devices. The forming voltage is defined as the voltage
for which the read current measured at Vread = 0.2 V exceeds 18 μA
after the applied pulse, where the voltage was incrementally updated
by 0.1 V at every attempt, starting from 0.2 V. The set voltage was
defined in a similar way, except that set transition was applied after

forming and reset. The reset voltage was defined as the first voltage
causing the read current to drop below the verify level of 5 μA.

The results in Fig. 4 show that p-HfO displays the lowest form-
ing voltage compared to other technologies; however, the set and
reset voltages show larger values and relatively large spread with
respect to a-HfO and HfAlO. Such a large device-to-device variabil-
ity in p-HfO devices prevents an accurate analog programming of
the RRAM elements for inference application.

Another crucial property of the RRAM devices is the endurance
performance, which was assessed for 1000 consecutive reset/set
cycles by using a reset pulse amplitude of 1.8 V and a set pulse
amplitude of 1.2 V. The resistance ratio of the RRAM elements was
evaluated at Vread = 0.2 V. Figure 5 shows the average read current at
Vread as a function of the number of cycles for (a) p-HfO, (b) a-HfO,
and (c) HfAlO RRAM. The cell-to-cell variability is shown by using
the dispersion coefficient, defined as σ/μ. Both LRS and HRS current

FIG. 4. Cumulative distributions of (a) forming voltage, (b) reset voltage, and (c) set voltage for the three RRAM technology splits, namely, p-HfO, a-HfO, and HfAlO. Although
showing a smaller forming voltage, p-HfO RRAM has higher set/reset voltages and their respective variability. On the other hand, a-HfO and/or HfAlO RRAM structures thus
seem best suited for neuromorphic synapse applications.
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FIG. 5. Read current as a function of the number of cycles for (a) p-HfO, (b) a-HfO, and (c) HfAlO. The error bar refers to the device-to-device variation for 1000 cells. Note
the larger resistance window and smaller degradation of the LRS current for HfAlO.

decrease with the number of cycles for p-HfO devices, which also
leads to a drop of the resistance ratio, mainly caused by the increase
in the LRS variability with increasing number of cycles. The degra-
dation of the LRS conductance and the higher cell-to-cell variability
in the array might be attributed to the grain boundaries conduc-
tion mechanism in the p-HfO structure.28 For instance, thermally
activated diffusion of the defects from the grain boundary might
lead to the gradual loss of conductance in Fig. 5(a). On the other
hand, a-HfO shows a smaller variability, a larger resistance ratio,
and a smaller degradation of the LRS conductance. Finally, the dop-
ing by Al atoms in the HfO2 layer supports the endurance properties
with minimum LRS drop and small variability. These results sug-
gest that Al doping stabilizes the HfO2 matrix by hindering oxygen-
vacancies relaxation without severe changes of the switching param-
eters.28 The LRS variability in HfAlO is almost suppressed compared
with p-HfO and a-HfO, providing an approximately constant resis-
tance ratio of about 10. Due to the large resistance ratio, robust

cycling, and limited variability, HfAlO seems a promising material
for RRAM-based neuromorphic synapses.

Figure 6 shows a systematic study of the variability for (a) p-
HfO, (b) a-HfO, and (c) HfAlO RRAM. In the figure, the standard
deviation σ for cycle-to-cycle (C2C) and device-to-device (D2D)
distributions is shown for both LRS and HRS as a function of the
median device resistance μ. Variability data were collected for a sub-
set of 1000 1T1R devices integrated in the 4 kbit test vehicle and
for 1000 cycles. The steep increase in variability from LRS to HRS
can be understood by the contributions of Poisson variation of the
defect number29,30 and the shape variation of the filamentary path
within HfAlO.31 Although the spread σ shows a similar behavior for
all three RRAM technologies, HfAlO exhibits the largest resistance
ratio between the LRS and HRS regions, in line with the results of
Fig. 5. Also, note that HfAlO displays a better endurance compared
with p-HfO and a-HfO counterparts since, based on the variability
characteristics shown in Fig. 6, it is easier to control the conductance

FIG. 6. Standard deviation σ of the resistance as a function of the median resistance R for (a) p-HfO, (b) a-HfO, and (c) HfAlO. Despite the similar trend of σ, HfAlO displays
a larger resistance window between LRS and HRS.
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FIG. 7. Schematics of the 4 kbit RRAM array used to demonstrate an inference
machine in hardware. It includes 64 × 64 cells with the 1T1R structure based on
an HfAlO RRAM device serially connected to a select NMOS transistor.

for HfAlO devices, which is in addition to the fact that its resistance
window is larger. As reported in Ref. 28, once a desired conduc-
tance level is achieved, HfAlO devices show less instability during
cycling. These results confirm the lower variability and large window
induced by Al doping and amorphous structure. In the following,
this RRAM technology will be considered for the implementation of
artificial synapses in inference machines.

IV. MULTILEVEL PROGRAMMING OF HfAlO RRAM
DEVICES

To explore the ability to store analog weights in RRAM
synapses, we selected HfAlO RRAM as the best technology from

the previous study, thanks to the improved resistance window, yield,
endurance, and variability. The multilevel storage in HfAlO RRAM
devices was studied for a 4 kbit array with 1T1R structures, which is
schematically shown in Fig. 7. In addition to the memory and select
transistor elements, the array also comprises (i) bit line (BL) and
word line (WL) address decoders to access the single 1T1R cells, (ii)
the BL voltage selection block and source line (SL) voltage selection
block that provide the voltages to activate forming/set/reset opera-
tions into RRAM devices, and (iii) a direct memory access (DMA)
interface connected with the BL decoder that provides the readout
current to selected devices.32

The key point making HfAlO RRAM suitable for neuromor-
phic applications is its ability to store multiple resistive states thanks
to its limited resistance variability. In particular, HfAlO RRAM
enables to program up to 5 resistance states to implement synap-
tic weights of the neural network. The first level, which is called
L1, corresponds to the HRS and was achieved by a programming
scheme under incremental step pulse with verify algorithm (ISPVA)
approach consisting of the application of sequential reset pulses
with increasing amplitude from 0 to 3 V at source terminal of cell
selectors with grounded drain, gate terminal biased at 2.7 V, and
a threshold current Ith = 5 μA [Fig. 8(a)]. On the other hand, the
other 4 programmable levels correspond to different LRS (L2-L5)
and were achieved via a multilevel application of ISPVA strategy
(M-ISPVA) schematically described in Fig. 8(b). Here, a sequence
of voltage pulses with increasing amplitude from 0 to 3 V is applied
to the drain of the transistor with grounded source and gate biased
by a variable voltage VG in the range 1 V–1.6 V to obtain increas-
ing IC and thus decreasing LRS.24 In addition, whereas a thresh-
old current of 5 μA was set for L1, current targets of 15 μA,
30 μA, 45 μA, and 60 μA were used in the M-ISPVA program-
ming scheme to achieve L2, L3, L4, and L5 levels, respectively.
Note that each sequential voltage pulse applied to source/drain to
achieve HRS/LRS is followed by a read pulse to check that the cur-
rent target set for each level is reached. To test the efficiency of
the M-ISPVA approach, resistance levels in HfAlO RRAM were

FIG. 8. Schematic representation of (a) the ISPVA approach used to program L1, which is the HRS, and (b) multilevel ISPVA (M-ISPVA) approach to program the other
4 levels (L2-L5) corresponding to LRS with decreasing resistance achieved by application of increasing VG or compliance currents IC. (c) Normalized resistance spread
measured for the 5 resistance levels programmed into the array at 0.5 V compared with experimental data collected by HfO2 RRAM cells.31
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compared with LRS experimental data collected by HfO2 RRAM
cells [Fig. 8(c)] evidencing a similar behavior with slope close to
1 of the relative variability of resistance for increasing average
resistance.31

Note that the ISPVA and M-ISPVA techniques do not specif-
ically require linearity and symmetry of weight update, which are
instead key requirements for backpropagation techniques of on-line
training.11,14 For off-line training, the essential feature of memory
devices is the ability to store multilevel weights which can be pro-
grammed at time zero as a code to perform pattern recognition
during the system lifetime. This is the main criterion for selecting the
most suitable memory device as the synaptic element in the neural
network.

V. NEURAL NETWORK FOR INFERENCE
DEMONSTRATION

As shown in Fig. 9(a), the 2-layer neural network designed into
the 4 kbit RRAM array consists of 197 input neurons, 20 hidden
neurons, and 10 output neurons. The network was first trained in
simulation on the well-known MNIST dataset of handwritten dig-
its by a supervised learning approach based on the backpropagation
rule.12 According to this scheme, the signal emitted by input neu-
rons in response to image submission is forward propagated through
all network layers leading to generation of an error signal which
is calculated as a difference of effective output signal and expected
network response. Sequentially, the error signal calculated at the out-
put stage is backpropagated toward the input layer and exploited to

update synaptic weights to make the error signal lower after next
image presentations. After repeating this training scheme (forward
and backward cycles) with a learning rate parameter of 0.01 for 20
epochs, where each epoch consists of the presentation of the entire
training dataset based on 60 000 images, the final weight matrix was
used to test the ability of the simulated network to correctly classify
10 000 unseen MNIST images resulting in an inference accuracy of
92%. Note that the array size forced us to use a downscaled version
(14 × 14 pixels) of original 28 × 28 MNIST images for both training
and inference phases.

To achieve in hardware an inference accuracy close to the one
obtained in simulation by using only 5 resistance levels, we applied
a random rounding strategy to lower precision of the calculated
weight matrix from 64-bit floating point to 5 evenly spaced discrete
levels centered around 0. This, however, led to a decrease in infer-
ence accuracy at the software level from 92% to 86.5%. Also, since
the levels can have both positive and negative signs and device con-
ductance can only be positive, we implemented any synaptic weight
as difference of two conductances Wij = Gij − Gr, where Gr is a
fixed reference conductance corresponding to the intermediate level
[Fig. 9(b)]. These steps enabled to map the calculated weight matrix
based on 5 levels into the 4 kbit array achieving an experimental
weight matrix based on 5 current levels.

Although software simulations were carried out using 5 evenly
spaced numerical levels, programming operation at the device level
is affected by variability. It is highlighted by the probability den-
sity function (PDF) distributions of the 5 current levels measured at
Vread = 0.5 V in Fig. 10(a) where their unavoidable broadening due

FIG. 9. (a) Illustration of neural network
implemented into the 4 kbit RRAM array.
Note that neurons labeled “0” in the
input layer and hidden layer correspond
to bias units. (b) Detailed representa-
tion of synaptic weights connecting the
input layer to hidden layer evidencing
that each weight is implemented as the
difference of a trainable conductance Gij
and a reference conductance Gr,i. All hid-
den neurons process input currents via
a sigmoid activation function providing a
voltage output VH that becomes the input
signal for next synaptic layer.

FIG. 10. PDF distributions of current levels tested at 0.5 V
(a) before and (b) after a 125 ○C bake experiment which
causes an additional broadening responsible for a signifi-
cant overlap among levels.
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FIG. 11. (a) Experimental classification accuracy of the network as a function of Vread for variable slopes of the sigmoidal neuron transfer function before and after an annealing
experiment at T = 125 ○C. Best inference performance of about 83% at 0.5 V with no temperature annealing is however lower than accuracies achieved in software with
5 ideal levels (86.5%) and using 64 bit floating point precision (92%). An inference performance of 72% is achieved after the annealing experiment. Confusion matrices of
experimental inference accuracy (b) before and (c) after 1 h-long temperature annealing process for the 2-layer neural network implemented in the 4 kbit RRAM array.

TABLE II. Comparison of neural networks assembled into memristive arrays to investigate energy efficiency.

Work Device stack N. synapses (k) MNIST image size Gmax (μS) ηtest (%)

Reference 14 GST-PCM 165 22 × 24 pixels 20 82.9
Reference 15 Ta/HfO2/Pt RRAM 8 8 × 8 pixels (grayscale) 400 91.71
Our work TiN/Ti/HfAlO/TiN RRAM 4 14 × 14 pixels 200 82.82

to variability can lead to some overlap between consecutive levels.
To test temperature retention of current levels after programming
operation, array cells were subjected to an annealing experiment at
temperature T = 125 ○C for 1 h. As a result, a level shift toward
lower currents combined with an additional broadening of PDFs
were observed, which resulted in highly overlapping current levels,
as shown in Fig. 10(b).

In view of the cell-to-cell variability of resistance in Fig. 10,
achieving more than 5 levels might be challenging for our HfAlO
RRAM. Therefore, we considered only 5-level synapses in our neu-
ral network with a consequent limitation in accuracy of recogni-
tion. Achieving more than 5 levels would require to finely tune the
ISPVA algorithm parameters, such as step voltage and compliance
current, at the expense of time and energy of the multilevel pro-
gramming. Alternatively, it might be possible to control the cell-
to-cell variability by carefully engineering the RRAM materials and
stack.

VI. PERFORMANCE OF THE NEURAL NETWORK
Inference ability of 2-layer neural network implemented at the

array level was evaluated testing the experimental weight matrix in
simulation via presentation of MNIST test dataset containing 10 000
binary digit images unused during the learning phase. In our appli-
cation, on pixels within presented image indicate the application of a
test voltage Vread, which can vary from 0.1 V to 0.5 V, to correspond-
ing synaptic device, whereas off pixels correspond to zero voltage
application. Figure 11(a) shows inference performance as a function

of Vread for variable slope of the neuron activation function. Here,
maximum inference accuracy ηtest obtained before performing the
temperature annealing is 82.82%, whereas ηtest = 72% was obtained
after the experiment, which supports detrimental effect of the bake-
induced level broadening on inference capability of the neural net-
work. Results also evidence that best accuracy is achieved by using
the maximum read voltage Vread = 0.5 V, which reduces the impact
of nonlinearity on programmed current levels, and a sigmoid slope
of 2 × 104 V/A in both cases. However, note that increasing the
read voltage amplitude during the inference phase also leads to an

FIG. 12. Calculated inference for increasing array size using 5 levels with vari-
ability lower than experimental variability (red dots) and 9 levels (blue dots). Note
that the additional levels were obtained in simulation using intermediate resistance
between consecutive levels and their corresponding relative variability shown in
Fig. 8(c).
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FIG. 13. Calculated inference confusion matrix achieved using 9 levels instead of 5 in case of (a) 4 kbit array, (b) 8 kbit array, and (c) 16 kbit array.

increase in power consumption since the power dissipated in each
synaptic element is given by P = VreadIread ≈ V2

read/R. This indi-
cates that there is an inherent tradeoff in our synaptic array between
inference accuracy and energy efficiency.

Figures 11(b) and 11(c) show the confusion matrices captur-
ing ability of neural network to associate each digit from 0 to 9
with corresponding class before and after the annealing experiment,
respectively. As expected, low performance suggested by the con-
fusion matrix in Fig. 11(c) further confirms the strongly negative
impact of annealing on classification of almost all digits compared
with recognition accuracy exhibited by network in Fig. 11(b).

While inference accuracy achieved on MNIST test dataset by
our array is still far from software performance, our implementa-
tion is competitive with other recently proposed hardware neural
networks, especially in terms of energy consumption during the
inference phase. To get an estimation of energy consumed by our
4 kbit neural network during inference cycles, we considered (i) the
number of operations involved into matrix-vector multiplications at
each network layer given by the array size of 4 kbit, (ii) the width
of applied read pulses or cycle duration tp = 12 μs, and (iii) the
calculated power dissipated on average per inference cycle at Vread
= 0.5 V, which is P ≈ 20 mW, eventually achieving a power effi-
ciency of about 17 GigaOps/s/W. However, note that tp could be
lowered to 10 ns by improvements of array and measurement setup,
thus enabling to reach a power efficiency of about 20 TeraOps/s/W,
which is four orders of magnitude better than state-of-art CPUs and
GPUs.33

Also, while a detailed comparison with other small/medium-
scale hardware networks is quite difficult, a good estimate can how-
ever be obtained taking into account fundamental parameters such
as the number of synaptic devices, the maximum synaptic con-
ductance Gmax, and the behavior of conductance response. As first
benchmark, a classification accuracy of 82.9% was experimentally
demonstrated in Ref. 14 using a 1T1R PCM array with 165 000 2-
PCM synapses featured by Gmax = 20 μS. Compared to our imple-
mentation achieving a similar accuracy, this inference performance
obtained in Ref. 14 however required a number of hardware synap-
tic devices (165 000 syn × 2 PCM/syn) being about 80 times the
number of devices within our 4 kbit array which results in a lower
energy efficiency. More recently, another hardware neural network

including about 8000 synaptic devices was proposed in Ref. 15 by
achieving a higher classification accuracy of 91.71% in MNIST clas-
sification task. Here, key role for achieving such inference accuracy
was first played by high linearity of G-response and high maximum
conductance of Ta/HfO2/Pt RRAM synaptic devices Gmax = 400 μS,
which is at least twice Gmax in our implementation (see Table II).
These considerations combined with higher synaptic density and
application of variable voltage at the input layer to encode MNIST
grayscale images lead to high power consumption to reach high per-
formance. Unlike aforementioned studies, our 4 kbit array is able to
realize an inference machine capable of combining a good inference
accuracy with low-power operation thanks to the novel M-ISPVA
approach whose refinement via material engineering promises a
more accurate control of device variability and consequently higher
power and classification efficiency.

In this frame, to evaluate the potential of an improved M-
ISPVA approach, we calculated inference ability for HfAlO RRAM
arrays of size 4 kbit, 8 kbit, and 16 kbit. As shown in Fig. 12, decreas-
ing level variability leads to a higher inference accuracy increasing
for larger arrays (red dots). Additionally, the use of more levels
(9 levels in this case) allows us to improve network inference ability
further, enabling to achieve classification accuracies higher than 90%
for arrays of size larger than 4 kbit (blue dots). Finally, to support
the calculated results obtained using 9 levels for synaptic weights,
Fig. 13 shows the corresponding inference confusion matrices which
evidence a significant improvement in terms of network ability to
classify all the digits compared to experimental results shown in
Fig. 11(b).

VII. CONCLUSIONS
This work investigates the RRAM-based synaptic devices for

neural networks with improved tradeoff between energy efficiency
and classification accuracy. We show that RRAM devices with amor-
phous HfAlO have superior performance with respect to p-HfO and
a-HfO in terms of resistance window, variability, and endurance.
5-level synaptic weights are stored in a 4 kbit array with the 1T1R
structure by using a novel multilevel programming scheme. An
inference accuracy larger than 80% is demonstrated in a 2-layer neu-
ral network with limited operation current thanks to relatively high
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resistance of the analog LRS synapses. Statistical cell-to-cell vari-
ability limits the maximum number of levels because of the over-
lap between adjacent resistance distributions, hence the maximum
accuracy of recognition. Our work shows that the combination of
material engineering and algorithm-based weight programming can
enable inference machines with scalable circuit area, low-power con-
sumption, and good recognition accuracy which are required for AI
tasks in the edge.
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