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Abstract: We have performed different simulation experiments in relation to hardware neural
networks (NN) to analyze the role of the number of synapses for different NN architectures in
the network accuracy, considering different datasets. A technology that stands upon 4-kbit 1T1R
ReRAM arrays, where resistive switching devices based on H f O2 dielectrics are employed, is taken
as a reference. In our study, fully dense (FdNN) and convolutional neural networks (CNN) were
considered, where the NN size in terms of the number of synapses and of hidden layer neurons
were varied. CNNs work better when the number of synapses to be used is limited. If quantized
synaptic weights are included, we observed that NN accuracy decreases significantly as the number of
synapses is reduced; in this respect, a trade-off between the number of synapses and the NN accuracy
has to be achieved. Consequently, the CNN architecture must be carefully designed; in particular,
it was noticed that different datasets need specific architectures according to their complexity to
achieve good results. It was shown that due to the number of variables that can be changed in the
optimization of a NN hardware implementation, a specific solution has to be worked in each case in
terms of synaptic weight levels, NN architecture, etc.

Keywords: memristor; multilevel operation; hardware neural network; deep neural network;
convolutional neural network; network architecture; synaptic weight

1. Introduction

Neuromorphic engineering is a booming research field, taking into consideration its
connections to Artificial Intelligence (AI) applications [1]. The current data centric context
where the amount of data generated is continuously growing due to Internet, 5G, edge
and cloud computing, etc., is pushing forward the need for neural networks (NNs), which
are getting deeper and deeper to be able to deal with continuously increasing datasets in
complexity and size and the efficiency requirements of today’s technological companies.
The resources available at current data centers allow the lengthy training processes of
these networks. Nevertheless, two main hurdles, among others, affect the advances in the
computing frameworks for AI. On the one hand, the limitations of computing architectures,
influenced by the slowing down of Moore’s law for device scaling, and mostly, by the
physical separation of processor and memory units (von Neumann’s bottleneck), that
causes an enormous burden to the computer operation since data have to shuttle back and
forth between these units. The memory wall problem (the rising performance gap between
memory and processors) also contributes to slow down AI-oriented applications [1,2]. On
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the other hand, the training process of state-of-the-art NNs has a huge carbon footprint, as
shown in Ref. [3].

Different general purpose neuromorphic frameworks have been developed so far, both
at the industry and academia, to overcome the hurdles described above in relation to AI
computing [4]. Among them, the following can be highlighted: the neurogrid developed at
Stanford University [1], SpiNNaker created at the University of Manchester [5], TrueNorth
developed at IBM [6] and Loihi made at INTEL [7]. In line with these developments,
new advances are being produced to accelerate AI. Certain operations at the core of this
computing paradigm, such as the vector-matrix multiplication (VMM), can be improved
if memristors are employed in crossbar structures [8]. Resistive switching devices based
on the conductance modulation of their layer structure are one of the most promising
types of memristors [9] for this purpose, since they are CMOS-compatible technology, have
good endurance [10] and retention behavior and low power operation features [2,8,11–13].
Memristor mimic synapses in the implementation of conventional NNs; also, their intrinsic
non-volatility adds a clear advantage in comparison with chips where SRAM and DRAM
(volatile memories) are employed; the low power consumption and scalability are also
key issues to take into account [12–15]. The key architecture of the circuits based on
memristors for neuromorphic engineering leads to In-Memory Computing (IMC), where
computational tasks are performed in place in the memory itself [16]. The idea behind IMC
is that introducing physical coupling between memory devices, the computational time
could be reduced [16]. The advances in neuromorphic computing are essential since they
can help on the development of the technology for edge computing linked to the Internet
of Things era [13,14,17–19].

In spite of the clear advances in this field, there are open issues that are currently
under intense research efforts. For instance, the different programming algorithms to
obtain device conductance multilevels (needed for the implementation of synaptic weight
quantization), the role of cycle-to-cycle variability on final circuits, the efficiency of training
processes when synaptic weight quantization is considered, etc., are under scrutiny nowa-
days. In addition, the details of the circuits needed for each type of memristor [16] and the
auxiliary circuitry for different types of crossbar arrays are a subject of investigation [20].
In particular, variability and multilevel operation [21–25] are in need of new adapted
NN architectures and training strategies [18]. There have been results related to these
issues linked to row-by-row parallel program-verify schemes [26], binary synaptic learning
that takes advantage from the set and reset voltage variability in CMOS integrated 1T1R
structures [27], etc.

The role of quantization and variability in different types of NNs has been analyzed.
The consequences of weight precision reduction have been described previously [18,19];
the variability on the quantization process was tackled from the perspective of device
modeling [28], circuit implementation [29] and NN architecture [30]; however, in all these
issues there is a long way to go till industrial maturity is reached. In this manuscript,
we have characterized the influence of the NN architecture (fully dense/connected or
convolutional), the number of synaptic weights (NN size) for different configurations of
the NN hidden layers, and the number of memristor quantized conductance levels on the
recognition accuracy achieved over different datasets.

The memristor-based array developed to implement all the different NNs proposed
is a 4-kbit 1T1R ReRAM array based on H f O2 dielectrics, which show a clear bipolar
operation where conductive filaments are made of oxygen vacancies. The multilevel
conductance modulation is achieved by using the Incremental Gate Voltage with Verify
Algorithm (IGVVA), which can provide any combination of levels between 2 and 8 [31].
We have kept in mind that it has been proven that only a 3-bit precision was needed to
correctly encode state-of-the-art networks [18]. This corresponds to the higher number of
levels analyzed here. From another viewpoint, quantization could be beneficial to deal
with common problems in the NN realm, such as overfitting. We have dealt with all these
issues as the manuscript unfolded; in Section 2 the technological features of the devices
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employed are described, the NN architecture and the basis of the study performed are
given in Section 3, finally, the main results and corresponding discussions are explained in
Section 4.

2. Experimental Description

The crossbar arrays utilized in this work are 4-kbit 1T1R ReRAM arrays integrated
together with basic circuit periphery and encapsulated in memory chips [32], as shown
in Figure 1. Each ReRAM cell is constituted by a NMOS transistor (manufactured in
0.25 µm CMOS technology) connected in series to a metal–insulator–metal (MIM) structure
placed on the metal line 2 of the CMOS process [29]. The MIM structure consists of a
TiN/H f O2/Ti/TiN stack with 150 nm TiN top and bottom electrode layers deposited by
magnetron sputtering, a 7 nm Ti layer (under the TiN top electrode) and an 8 nm H f O2
layer grown by atomic layer deposition (ALD) [33].

Figure 1. Simplified block diagram (a) and micrograph (b) of the 4-kbit ReRAM array with the circuit
periphery and photograph of the packaged memory chip (c).

In order to implement the quantized weight values in the NN architectures considered
here, a write-verify programming algorithm was employed, namely, the IGVVA. This
algorithm, tested on our technology for the first time in [31], keeps constant the pulse
amplitude applied on the terminal connected to the top electrode (TE) of the MIM structure
during set operations and increases step by step the gate voltage (Vg) value until a desired
readout (at 0.2 V) current target (Itrg) is achieved (see Figure 2a). The cumulative distri-
bution functions (CDFs) of the readout currents measured on 128 ReRAM cells for eight
different conductive levels are shown in Figure 2b. Therefore, this programming approach
provides the right tool to define all different quantization levels tested in this work.

Our arrays exactly contain 4096 cells, so this is the number we have considered in
our study as the reference for the number of synaptic weights of the NN analyzed (we
have considered mainly one and two arrays). We have studied NNs with a low number of
synapses, trying to optimize the NN recognition accuracy and considering the possibility
of implementing the NN in this technology and with the crossbar arrays described above.
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Figure 2. Circuit schematic of the 1T1R cells with the voltage waveforms applied on each terminal
during IGVVA programming operations (a) and CDFs of the readout currents measured for eight
conductive levels (b).

3. Neural Network Architecture

Different architectures have been considered here; in particular, as highlighted above,
fully dense and convolutional NNs. In Figure 3, the scheme of FdNN is shown, the number
of weights employed in this particular configuration is described. It is clear that if we vary
the number of hidden layers, the NN amount of weights can be changed for the study we
present below. Notice that deepening in a fully dense NN will highly increase the number
of synaptic weights as all units from a layer are connected to all units in the next layer.
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Figure 3. Fully dense neural network. The number of synaptic weights in this example NN is 26,506.
The dataset (Fashion MNIST) was employed here. It uses images of size 28 × 28 as input; therefore,
there are 784 neurons in the first layer. Later on, a first hidden layer of 32 neurons receives those
784 weights plus a bias term each (784 × 32 + 32 = 25,120), a second hidden layer of 32 neurons
receives 32 weights of previous layer plus a bias term each (32×32 + 32 = 1056) and finally an output
layer of 10 neurons receives 32 weights of the last hidden layer plus a bias term each (330).

In Figure 4, the architecture of a Convolutional Neural Network (CNN) is described.
They are widely employed for image recognition issues in perception activities; at this
task, they perform a fast and highly parallel data processing [34]. In a CNN, preprocessing
layers are used before the final FdNN. These special layers are called convolution layers
and pooling layers. The former apply a set of filters to the input data in order to create maps
that summarize the presence of detected features. The latter down-sample those features,
reducing the number of units needed to process the input data. We have employed this
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somewhat general scheme to build the CNN architecture following a previous work [30],
to be able to change the number of synaptic weights for our study.

…
Input

Layer

i2

i1

i800

32 filters

… …

4x4

5x5

Pooling

Layer

Convolution

Layer

Dense

ANN

Figure 4. Convolutional neural network scheme. The number of parameters in this particular
network is 544 plus the number of parameters of the FdNN following the convolutional layers. The
CNN uses Fashion MNIST images of size 28 × 28 as input and applies 32 filters of size 4 × 4 requiring
544 weights (32 × 4 × 4 + 32 = 544, note that there is a bias term in each filter). At this point, it has
25 × 25 × 32 = 20,000 values to deal with the information obtained after the processing employing
the 32 filters. After the convolution, a pooling layer of 5 × 5 (which do not require additional
parameters) is used, reducing the size of the input data significantly, precisely to 800. Finally, it
outputs 800 data as input for the first layer of the fully dense NN.

For both types of networks we have assumed a deep NN approach (we assume “deep”
as the use of two or more hidden layers in fully dense NNs; CNNs are considered always
deep) since these type of NNs have shown the correct features to fulfill a high degree of
accuracy in learning complex and massive datasets [35–38]. We have focused our study
in the influence of the number of synaptic weights on the accuracy of the networks. To
do so, we have changed the network architecture using the NNs explained above as a
starting point and increasing the number of hidden layers, neurons per layer, number of
filters, etc. The motivation behind this analysis stands on the limited size of the available
ReRAM crossbar arrays, namely, 4096 1T1R cells in our technology. This is a first approach
in this type of study, based on the NN size, calculated in terms of the number of the most
representative elements. There is still the possibility of using several crossbar arrays on
a tiled architecture in order to provide a larger number of synaptic devices for the NN
implementation. However, it is important to highlight that the optimization process of
the hardware-based NN stands upon the use of the lowest number of crossbar arrays,
obtaining a reasonable accuracy. The tiled structure design details are out of the scope of
the study presented here. At this point, notice that our approach is much different to the
conventional studies performed in the context of software engineering, where gigantic NN
are considered to achieve recognition accuracy top figures. In this respect, we make clear
that, in the latter context, obviously, the state of the art for the NN under consideration is
different to what we obtain here [39,40].

For our study, we have used two datasets: the MNIST [41] and Fashion MNIST [42].
The MNIST image dataset [41] consist of 70,000 grayscale pixel images; they represent
handwritten digits (labeled in the interval [0, 9]), divided into a training set of size 60,000
and a test set of size 10,000. The Fashion MNIST dataset [42] has 70,000 28 × 28 grayscale
images in 10 classes (T-shirt/top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
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Bag and Ankle boot). The training set has 60,000 images and a test set 10,000 (see Figure 7
in [30]), this dataset is more complex to learn than the original MNIST, and for image
recognition purposes, it represents a more real-world approach [42].

For each dataset, we have run several simulation experiments for the two types of
NNs described above. The NNs were trained using the default parameter values of the
keras/tensorflow implementation (some hyperparameters employed were linked to the
stochastic gradient descend algorithm with learning rate = 0.1 and momentum = 0.9). We
utilized the categorical accuracy as the comparison metric. It obtains the relative frequency
in which the prediction matches the labeled data, and this frequency is then returned as
categorical accuracy [43,44]. The main goal of this work is to study the effect of synaptic
weight quantization in hardware neural networks with different configurations that come up
because of the number of synapses constraints imposed by the use of memristor-based arrays
of 4-kbit 1T1R cells. Although we have not performed multiple simulation runs for all the
NN analyzed, we have considered a representative example (a CNN with three convolution
layers, 16 filters, 2 × 2 pooling layers and a hidden layer with 32 neurons in the fully dense
section of the network) and analyzed the random deviations among different simulations.
We obtained an average accuracy of 0.909 and standard deviation of 0.035 for 10 simulation
runs. In this respect, we expect, taking into consideration the similitude of the different NN
architectures, that the results within our work could be accurate within a margin of 5%.

4. Results and Discussion
4.1. Full Precision

As a first step in the analysis, we neglected synaptic weight quantization. The NN
accuracy in weight full precision was analyzed as shown in Figure 5 for CNN and FdNN
architectures using up to 150,000 synapses.
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Figure 5. Categorical accuracy obtained for the MNIST and Fashion MNIST datasets in training and
test for both FdNN and CNN using up to 150,000 synapses. We created different architectures in line
with the previous two figures to modify the number of synapses.
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We can see that as the number of synapses used in both FdNN and CNN increases, the
accuracy approaches optimal values. This behavior is similar in the train and test subsets,
although test results are always lower than in the train case due to probable overfitting [45].
The FdNN seems to have a slower improvement for the MNIST dataset when the number
of synapses increases compared to CNN. As expected, a deep NN is (therefore a high
number of synaptic weights) needed to obtain a reasonable accuracy; nevertheless, this
means a high cost in the hardware implementation due to the great number of memristors,
and therefore the number of crossbar arrays, required.

In order to clarify the correlation between NN accuracy and different aspects of our
study, the following calculations were made. Table 1 shows the correlation tests performed
to describe the link between the categorical accuracy and the number of synapses. As
can be seen, there is a clear relation between these magnitudes in all the simulation
experiments. In all cases the Spearman’s correlation test reports a p-value below 0.05.
Spearman’s correlation coefficient ρ is a nonparametric statistical measure of the strength
of a monotonic relationship between two variables, where values closer to 0 indicate a very
weak correlation, while values closer to ±1 indicate a very strong correlation. Statistical
significance is assessed in this test, as well in all the following tests performed, obtaining a
p-value that will allow us to distinguish statistically relevant observations from those likely
to occur by chance.

Table 1. Spearman’s correlation test between the number of synapses and the categorical accuracy
for each simulation experiment.

Experiment FdNN CNN

Dataset Subset p-Value ρ p-Value ρ

MNIST Train 2.64 × 10−6 0.96 <2.2 × 10−16 0.92
MNIST Test 2.16 × 10−14 0.97 <2.2 × 10−16 0.81

Fashion MNIST Train 2.74 × 10−6 0.95 <2.2 × 10−16 0.93
Fashion MNIST Test 3.13 × 10−6 0.93 <2.2 × 10−16 0.80

A parallel study shows us the link between the NN accuracy and the number of
neurons in the hidden layers (see Table 2). The correlation is clear in this case, however, the
ρ for CNNs is much lower that in the FdNNs case, indicating a weaker connection of the
magnitudes at stake.

Table 2. Spearman’s correlation test between number of hidden units and categorical accuracy for
each simulation experiment.

Experiment FdNN CNN

Dataset Subset p-Value ρ p-Value ρ

MNIST Train <2.2 × 10−16 0.99 <2.2 × 10−16 0.53
MNIST Test <2.2 × 10−16 0.98 <2.2 × 10−16 0.57

Fashion MNIST Train <2.2 × 10−16 0.99 1.63 × 10−11 0.41
Fashion MNIST Test 6.53 × 10−12 0.95 3.63 × 10−10 0.38

Concerning CNN, the correlation tests are shown in Table 3. The number of convo-
lutional layers are not correlated with the NN accuracy for the train subsets; however, it
seems to be a weak correlation for the test subset. Regarding the number of filters, there is
a statistically significant positive correlation; while for the size of the pooling layers, there
is a statistically significant negative correlation. These outcomes are not surprising since
the bigger the size of a pooling layer, the higher the reduction in the input data size; also,
the higher the number of filters generally helps to identify important features of the input
data, thus increasing the overall accuracy.
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Table 3. Spearman’s correlation test between number of convolutional layers/number of filters/size
of pooling layers and categorical accuracy for each experiment.

Experiment Conv. Layers Filters Pool. Size

Dataset Subset p-Value ρ p-Value ρ p-Value ρ

MNIST Train 0.1879 0.084 1.17 × 10−13 0.448 1.15 × 10−10 −0.394
MNIST Test 0.0041 0.182 7.08 × 10−11 0.399 1.05 × 10−9 −0.375

Fashion MNIST Train 0.2237 −0.077 3.33 × 10−14 0.457 3.38 × 10−9 −0.364
Fashion MNIST Test 0.0005 −0.219 6.46 × 10−9 0.358 5.41 × 10−5 −0.253

We also analyzed the behavior of the different neural network approaches using archi-
tectures with less than 4096 synapses (1 crossbar array) and with a number of synapses
between 4096 and 8192 (two crossbar arrays). This strategy makes sense taking into consid-
eration the architectural blocks of our ICs; i.e., arrays of 4096 1T-1R ReRAM cells; although
it is clear that each NN architecture would need a particular hardware implementation. In
this respect, we would consider one, two or multiples of sets of 4096 synapses. It can be
seen that the accuracy obtained is higher when using higher number of synapses. However,
some specific architectures may partially compensate it. For FdNN we considered hidden
layers, in the CNN case we accounted for several convolutional layers.

A summary of the results obtained in the previous figures is better explained in
Figure 6. In addition to the difference between both datasets, the results validate what
was expected: 8192 synapses work better than 4096 synapses, regardless of the type of
NN used.
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Figure 6. Boxplots for the categorical accuracy obtained for the MNIST and Fashion MNIST datasets
in training and test for both FdNN and CNN with different number of synapses categorized in two
groups: less than 4096 and between 4096 and 8192 synapses. For the sake of comparison, the results
for both types of NNs are merged in just one box for each number of synapses.
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4.1.1. Less than 4096 Synapses

To build FdNNs using less than 4096 synapses we require architectures with a low
number of hidden units (see Table 4). We employed four neurons per layer, obtaining most
of the lowest accuracy results compared to the rest of the simulation experiments (recall
Figure 7).

Table 4. Architectures for FdNN with less than 4096 synapses.

MNIST Fashion MNIST

Hidden Layers Hidden Units Synapses Train Test Train Test

1 4 3190 0.88 0.87 0.84 0.81
2 4 3210 0.84 0.85 0.79 0.79
3 4 3230 0.83 0.83 0.77 0.76
4 4 3250 0.82 0.81 0.74 0.76

For CNNs, different architectures are analyzed, some of them using as low as 422 synapses.
The best neural network with less than 4096 synapses is a CNN with 2 convolutional layers,
eight filters, pooling size matrix of 2 × 2 and 16 hidden units, achieving an accuracy of
0.988 in training and 0.984 in test for the MNIST dataset and 0.882 in training and 0.846 in
test for the Fashion MNIST dataset.
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MNIST

Figure 7. Categorical accuracy obtained for the MNIST and Fashion MNIST datasets in training and
test for both FdNN and CNN with different number of synapses categorized in two groups: less
than 4096 synapses (1 crossbar array) and in between 4096 and 8192 synapses. Several peaks can
be observed due to the different architectures that use similar number of synapses, thus producing
different outcomes.

4.1.2. Between 4096 and 8192 Synapses

FdNNs using between 4096 and 8192 synapses greatly improve the ones using less
than 4096 synapses (see Figure 6 and Table 5). To check the statistical significance of these
results we applied a Kruskal–Wallis Rank Sum Test, which is a non-parametric test used to
assess whether two or more samples (<4096 vs. between 4096 and 8192) originate from the
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same distribution. Results indicate that, for both datasets and in training and test, there is
a statistically significant difference (Table 6).

Table 5. Architectures for FdNN with a number of synapses between 4096 and 8192.

Hidden Layers Hidden Units Synapses Train Test

1 8 6370 0.927 0.914
2 8 6442 0.933 0.917
3 8 6514 0.929 0.918
4 8 6586 0.925 0.911

Table 6. Kruskal–Wallis Rank Sum Test between the accuracy in NNs with less than 4096 synapses
and with a number of synapses between 4096 and 8192.

Experiment FdNN CNN

Dataset Subset p-Value p-Value

MNIST Train 0.021 9.54 × 10−10

MNIST Test 0.021 1.79 × 10−7

Fashion MNIST Train 0.021 3.31 × 10−10

Fashion MNIST Test 0.021 2.52 × 10−8

For CNNs there are multiple architectures found in between 4096 and 8192 synapses
(see the top 10 in Table 7). The results show that the accuracy when using more than
4096 synapses increases. Once again, the Kruskal–Wallis Rank Sum Tests performed
indicate that for both datasets and for both training and test sets, using CNNs, there is a
difference in terms of statistical significance (see Table 6), meaning that the results obtained
are not likely to occur by chance.

Table 7. Top 10 architectures for CNN with a number of synapses in between 4096 and 8192.

conv.
Filters

Pooling Hidden
Synapses

MNIST Fashion MNIST

Layers Size Units Train Test Train Test

1 16 4 8 4866 0.985 0.974 0.883 0.857
1 8 4 16 4874 0.984 0.977 0.887 0.858
2 16 3 32 4890 0.989 0.982 0.880 0.847
2 16 2 8 5778 0.990 0.981 0.892 0.853
2 16 2 8 5778 0.990 0.981 0.892 0.853
1 16 5 16 6746 0.989 0.977 0.892 0.862
1 32 5 8 6818 0.988 0.975 0.893 0.864
1 8 5 32 6842 0.984 0.971 0.894 0.863
2 16 3 64 7290 0.992 0.985 0.885 0.858
2 8 2 32 7426 0.990 0.981 0.891 0.859

The best NN with a number of synapses between 4096 and 8192 is a CNN with
2 convolutional layers, eight filters, pooling size matrix of 3 × 3 and 64 hidden units,
achieving an accuracy of 0.992 in training and 0.985 in test for the MNIST dataset, and
also a CNN with one convolutional layer, 32 filters, pooling size matrix of 5 × 5 and eight
hidden units, achieving a 0.883 in training and 0.864 in test for the Fashion MNIST dataset.

4.2. Analysis Assuming Quantized Synaptic Weights

The synaptic weights are quantized following a conductance multilevel approach as
highlighted in Refs. [29,30] and along with the experimental results described above, see
Figure 2b. In line with previous developments, we have studied the correlation between the
NN accuracy and the number of synapses for different quantization levels, (see Table 8).
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Table 8. Mean values for Spearman’s correlation test between the NN number of synapses and the
categorical accuracy for each simulation experiment regardless of the quantization level.

FdNN CNN

Dataset p-Value ρ p-Value ρ

MNIST 2.639 × 10−6 0.92 6.05 × 10−18 0.65
Fashion MNIST 0.0007 0.83 9.28 × 10−18 0.69

In the same manner, the correlation between the number of hidden neurons and
the categorical accuracy has been studied for different quantization levels. The Spear-
man’s correlation test in Table 9 indicates that there is significant statistical difference
(p-value < 0.05) between the number of synapses and the accuracy for both datasets for all
levels of precision studied.

Table 9. Mean values for Spearman’s correlation test between number of hidden units and categorical
accuracy for each simulation experiment regardless of the quantization level.

FdNN CNN

Dataset p-Value ρ p-Value ρ

MNIST 9.88 × 10−11 0.95 8.00 × 10−17 0.62
Fashion MNIST 5.85 × 10−5 0.89 5.62 × 10−15 0.58

We analyze in Table 10 the possible correlation between the categorical accuracy and
three variables in CNNs: the number of convolutional layers, the number of filters and
the pooling size, taking into account the different datasets and levels from 2 to 8. Results
show statistically significant negative correlations in the Fashion MNIST dataset for almost
all the simulation experiments performed with different number of convolutional layers,
indicating that this feature is relevant to the NN outcome. On the contrary, the MNIST
dataset shows no correlation between the number of convolutional layers and the NN
accuracy. This is probably due to the fact that MNIST dataset is less complex than the
Fashion MNIST dataset, showing no impact in the categorical accuracy when the number
of convolutional layers is altered. The number of filters, however, present significant and
small positive correlation values for both datasets, specially when the number of levels is
high. This behavior implies that the number of filters is somewhat relevant to obtaining
better accuracy levels. Finally, the pooling size present a significant and small negative
correlation for levels greater than 2 in the MNIST dataset but no significant correlation
for the Fashion MNIST dataset. In this respect, an increase in the pooling size reduces the
number of neurons and thus negatively affects the NN accuracy.

In Table 11, we tested if the results obtained using less than 4096 synapses and using
between 4096 and 8192 differ with a high statistical significance. To do so, we applied a
Kruskal–Wallis Rank Sum Test with both samples, particularized to each dataset, number
of levels and NN type. The results show that for FdNN, the difference between the samples
were probably random, while for CNN there is an actual difference supported by the
statistical analysis. We simulated reducing the synaptic weights floating point precision
from 32 bits to a range of limited precision levels, between 2 and 8 levels (i.e., 1 to 3 bits)
using the test subsets for both datasets. Figure 8 shows the behavior of the limited precision
in both datasets.
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Table 10. Spearman’s correlation test between the number of convolutional layers/number of
filters/size of pooling layers and the categorical accuracy for each experiment using quantization
levels between 2 and 8.

conv. Layers Filters Pool. Size

Dataset Levels p-Value ρ p-Value ρ p-Value ρ

MNIST 2 0.508 0.042 0.455 −0.048 0.345 0.060
MNIST 3 0.873 −0.010 4.82 × 10−24 0.584 8.08 × 10−6 −0.279
MNIST 4 0.008 0.168 0.0003 0.226 9.41 × 10−6 −0.277
MNIST 5 0.010 0.163 0.002 0.196 2.87 × 10−6 −0.292
MNIST 6 0.0008 0.212 0.032 0.136 2.07 × 10−6 −0.296
MNIST 7 0.0006 0.215 0.001 0.207 6.60 × 10−7 −0.309
MNIST 8 0.016 0.153 0.0003 0.229 2.30 × 10−5 −0.265

Fashion MNIST 2 0.508 0.042 0.455 −0.048 0.345 0.060
Fashion MNIST 3 0.873 −0.010 4.82 × 10−24 0.584 8.08 × 10−6 −0.279
Fashion MNIST 4 1.99 × 10−16 −0.491 0.605 0.033 0.155 0.090
Fashion MNIST 5 4.84 × 10−6 −0.286 0.0006 0.217 0.465 −0.047
Fashion MNIST 6 0.0004 −0.221 0.0003 0.227 0.128 −0.097
Fashion MNIST 7 0.0006 −0.217 2.75 × 10−5 0.263 0.034 −0.134
Fashion MNIST 8 0.00008 −0.248 3.32 × 10−5 0.260 0.016 −0.153

Table 11. Kruskal–Wallis Rank Sum Test between CNNs comparing results obtained by using less
than 4096 synapses and between 4096 and 8192 synapses for each simulation experiment using
quantization levels between 2 and 8.

Experiment FdNN CNN

Dataset Levels p-Value p-Value

MNIST 2 0.08 1.34 × 10−3

MNIST 3 0.39 2.40 × 10−3

MNIST 4 0.56 3.19 × 10−4

MNIST 5 0.77 0.37 × 10−5

MNIST 6 0.04 4.07 × 10−6

MNIST 7 0.15 7.02 × 10−6

MNIST 8 0.08 2.50 × 10−4

Fashion MNIST 2 1.00 3.24 × 10−2

Fashion MNIST 3 0.25 5.14 × 10−4

Fashion MNIST 4 0.39 9.45 × 10−2

Fashion MNIST 5 0.25 2.49 × 10−3

Fashion MNIST 6 0.15 3.19 × 10−4

Fashion MNIST 7 0.25 1.57 × 10−5

Fashion MNIST 8 0.15 9.75 × 10−6

Comparing Figure 8 to Figure 7, we can see that the difference between MNIST
and Fashion MNIST fades. On the one hand, for the FdNN, the maximum precision
drops significantly, achieving no more than 75% of accuracy; on the other hand, CNNs
can obtain a similar precision to the original floating point version when the number of
levels is high enough. The accuracy obtained by using CNNs does not seem to follow
a clear trend as the number of synapses increases. This is due to the fact that there
are several and quite disimilar CNN architectures using a similar number of synapses
(recall Tables 7 and 12), showing how each distinct architecture positively or negatively
affects the final NN outcome. In the case of FdNN, the trend is smoother, since the number
of synapses is directly controlled by the number of hidden units and hidden layers. When
a new hidden layer is proposed, the number of neurons increases creating small peaks
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(shown in the lower boxes of the plot). If the number of levels is particularly small, the
accuracy of the network is highly affected since the NN architecture cannot compensate
it. Additionally, notice that the number of possible architectures using FdNN with small
amount of neurons is smaller than the number of options that can be achieved with CNN
architectures, mainly due to the pooling layers, that reduce the number of synapses.
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Figure 8. Categorical accuracy obtained for the MNIST and Fashion MNIST datasets in training and
test for both FdNN and CNN with different number of synapses categorized in two groups: less than
4096 and between 4096 and 8192 synapses for each experiment using quantization levels between
2 and 8.

A deeper study is shown in Figure 9, where it is easier to spot the differences between
precision level and accuracy. From Table 11, we can infer that there is a clear statistical
difference between using less than 4096 synapses compared to using between 4096 and
8192 when working with CNNs in both datasets. On the contrary, when working with
FdNN, only MNIST dataset with six levels of precision achieves a p-value < 0.05.

Table 12. Top 10 architectures for CNN with less than 4096 synapses.

conv.
Filters

Pooling Hidden
Synapses

MNIST Fashion MNIST

Layers Size Units Train Test Train Test

1 8 5 8 1778 0.968 0.966 0.861 0.841
1 16 6 8 2306 0.973 0.968 0.865 0.847
1 8 4 8 2482 0.978 0.972 0.875 0.843
2 16 3 8 3090 0.980 0.975 0.872 0.847
2 16 4 32 3354 0.974 0.965 0.871 0.844
2 8 3 64 3426 0.982 0.978 0.867 0.841
1 16 5 8 3458 0.977 0.965 0.880 0.858
1 8 5 16 3466 0.978 0.970 0.879 0.859
2 16 3 16 3690 0.986 0.982 0.881 0.848
2 8 2 16 4050 0.988 0.984 0.882 0.846
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Figure 9. Boxplots for the categorical accuracy obtained for the MNIST and Fashion MNIST datasets
in the test subset for both FdNN and CNN with different number of synapses categorized in two
groups: less than 4096 and between 4096 and 8192 synapses for each experiment using quantization
levels between 2 and 8.

5. Conclusions

We have analyzed the architecture of neural networks for hardware implementation
by means of simulation experiments to assess the connection between the NN number
of synapses and the accuracy. Both fully dense and convolutional neural networks were
studied by changing the architecture configurations, and mostly the NN size in terms of
the number of synapses and of hidden layer neurons. The results show that CNNs work
better when the number of synapses to be used is limited. Additionally, when the precision
is restricted to a low number of levels (that would mean a multilevel approach for the
memristors in the crossbar arrays), the NN accuracy drops off significantly as the number
of synapses is reduced. Therefore, in order to obtain good results we need a trade-off
between the number of synapses and the accuracy. To take advantage of this trade-off, the
CNN architecture must be carefully devised, balancing the parameters used in the different
layer components. We also noticed that different datasets would need specific architectures
according to their complexity. When the number of synaptic weight levels is as low as 2,
the NN accuracy obtained is low; therefore, in this case, instead of just discretizing the
synaptic weights of a full precision NN, an approach based on binary neural networks
could be the way to go [46]. As it was shown, due to the number of variables that can be
changed in the optimization of a NN hardware implementation, a specific solution has to
be worked in each case, in terms of synaptic weight levels, NN architecture, etc.
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