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ABSTRACT Joint communication and sensing (JCAS) is one of the key topics of the upcoming 6G
mobile communication standard. We propose a novel three-step method to extract the position of reflectors
from channel impulse responses (CIRs) obtained by multiple bi-static RADAR measurements. The method
consists of the extraction of angle-of-departure (AoD) and angle-of-arrival (AoA), the computation of
potential reflecting points and the classification of the propagation paths. For the extraction of AoD and
AoA, we propose a novel algorithm with low computational effort. It has a better resolution than the step size
of the underlying beam search process by utilizing the antenna beam pattern together with the evaluation of
the CIR. The algorithm is compared to a straightforward approach in a raytracing simulation. The evaluation
shows that the proposed novel algorithm outperforms the state-of-the-art approach. Furthermore, we discuss
the limitations of the proposed room reconstruction method and the potential impacts of physical effects not
covered in the simulation.

INDEX TERMS 6G, bi-static RADAR, joint communication and sensing (JCAS), room reconstruction.

I. INTRODUCTION
Joint Communication and Sensing (JCAS / JCS), sometimes
also called Integrated Sensing and Communication (ISAC),
has gained a lot of interest in recent years. Especially, the
current research on the 6th generation of mobile networks
(6G) focuses on the integration of JCAS [1], [2], [3]. This
will enable certain new use cases for mobile networks, like
traffic management and environmental monitoring. A good
overview of sensing applications is presented in [4].
Onemain element to enable the intended use cases of JCAS

is a digital twin as a virtual representative of the physical
world [5]. While this digital twin can be a comprehensive
digital world including physical entities, it’s basic form can
be a representation of the RF propagation environment, i.e.,
the RF channel characteristics. Such a basic digital twin can
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be exploited for sensing-assisted communication, e.g., for fast
beam training and predictive beamforming [6].

A fundamental task for creating a digital twin of the RF
surrounding is room reconstruction, i.e. the initial localization
of static objects like walls and furniture determining the
general propagation characteristics. Furthermore, the current
positions of moving objects have to be included and the
digital twin needs to be continuously updated. The general
idea of JCAS-based room reconstruction is the use of channel
measurements from the communication link to extract the
reflection paths and to estimate the positions of the reflectors,
e.g. walls.

In this paper, we propose a new algorithm for estimating
the positions of reflectors. It evaluates the channel impulse
response (CIR) obtained by a bistatic RADAR measurement,
deploying a mmWave communication system for this sensing
function. In contrast to the current algorithms, the new
algorithm avoids the noise enhancement of zero-forcing
methods. Furthermore, it has a better angular resolution than
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the step size of the underlying beam search process by
utilizing the antenna beam patterns during the evaluation
of the CIR. Last, it has a lower computational effort,
since it does not require matrix inversions or singular-
value decompositions. We also present a method to classify
the identified reflective paths in terms of the number
of reflections (direct, single or multiple reflections). The
proposed algorithm is compared to a straight-forward and
simple ’find maximum’ approach. The latter one just detects
the highest peak in the CIR and uses the beam angles of
transmitter and receiver to define the angles of departure and
arrival, respectively.

This paper is organized as follows: In Section II,
we summarize the state-of-the-art in room reconstruction
by wireless measurements. In Section III, we present
raytracing simulation methods used to create the CIRs and
the room reconstruction algorithm. Section IV deals with the
simulation results, while the findings and limitations of the
approach are discussed in Section V. A conclusion and an
outlook are given in Section VI.

II. STATE OF THE ART
Not only the detection of moving targets with RADAR,
but also the reconstruction of the local surrounding and
static objects by wireless measurements has been of interest
for a long time. The main technologies found in literature
are RF signal transmission, laser scanning and acoustic
measurements. Laser scanning has been applied in [7] to
generate a complete 3D model of an indoor environment.
While the accuracy of the reconstructed room is very good,
this approach does need a specific laser scanning device.

Room reconstruction by RF signal transmission or acoustic
measurements is mainly based on the reflection of the
transmitted signals at walls and objects. The main task is to
estimate the direction of arrival of the received signal, i.e.
the angle of the incoming wavefront. Based on the departure
and arrival angles as well as the length of the signal path,
the position of the reflectors can be calculated. The Multiple
Signal Classification (MUSIC) [8] and Estimation of Signal
Parameters via Rotational Invariance Techniques (ESPRIT)
[9] algorithms were well studied and used in a broad variance
of applications to estimate the direction of signal sources with
arrays of receiving sensors.

In case of phased arrays using beamforming for data
transmission,MUSIC andESPRIT can be only used for digital
beamforming systems with an individual sampling of the
signals for all antenna elements due to the principle of the
algorithm. Nevertheless, adaptations have been proposed to
use them also with analog beamforming [10], were only the
summed signal of all antenna elements is available for further
processing. Here, a full beam search is done to obtain the
data, making use of a quasi-static environment during beam
scanning.

Besides MUSIC and ESPRIT, others algorithms and
methods have been proposed. [11] uses the Kirchhoff
migration to detect walls of a room using an ultra-wideband

(UWB) system. It is based on a moving receiver. Due to
the very high bandwidth of the UWB signal, a very high
spatial resolution can be achived. This method is transferred
to mmWave beamsteering systems in [12]. It is furthermore
enhanced by using the angle of departure (AoD) and angle
of arrival (AoA). While the walls of the surrounding room
can be much better detected, the method still needs a moving
receiver to be able to detect static objects.

In [13], two methods for room reconstruction based on
a static transmitter and a static receiver are presented. The
first method is based on a power heat-map of the received
signal strength over different TX / RX beam combinations.
The authors also suggest an enhanced method, using the time
delay of the signals between a direct (line-of-sight, LoS) and
a reflective (non-line-of-sight, NLoS) path. While the good
performance of the second method was evaluated in a real
measurement, it is a pure RADAR approach with a complete
environmental scanning. It does not use the information
about NLoS components already included in the CIR, which
could e.g. be extracted from a data frame of a wireless
communication link.

Compressed sensing based approaches using simultaneous
orthogonal matching pursuit (SOMP) and multidimensional
representation MOMP are proposed in [14] resp. [15], using
the sparsity of the channel information in an mmWave
environment.

The authors of [16] use a convolutional neural network
(CNN) to determine the room geometry based on acoustic
measurements. The proposed method does not require the
position or distance of receivers and sources. It only requires
one room impulse response between a single sound source
and a single receiver. A multilayer perceptron (MLP) neural
network is used in [17] to estimate the room shape. In this
study, the network is previously trained with radio wave
propagation parameters like power delay profile, angle of
departure and angle of arrival, to predict the room shape based
on channel measurements. Another acoustic method for room
reconstruction is shown in [18]. It also does not require
a priori information about the position of sound sources
and microphones. A third acoustic approach using image
processing to approximate wavefronts and graph-theory is
given in [19].

The presentedmethods for mmWave RF signal based room
reconstruction are either of high computational effort, are not
able to use an analog beamforming approach or require the
use of a moving receiver. In contrast, our proposed room-
reconstruction algorithm uses static transceivers with analog
beamformers, allowing for a much more energy-efficient
implementation compared to digital beamforming [20].
Furthermore, it is based on pattern matching with low com-
putational effort in contrast to singular-value decomposition
required forMUSIC.
For our method, classifying the reflection type of the

identified path is essential. While we use an analytical
approach, other methods are applicable. In [21], a deep
neural network based non-line-of-sight identification method
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FIGURE 1. Flow chart of the raytracing simulation and the room reconstruction algorithm.

is proposed. This could be an extension for our classification
algorithm as discussed in Section IV.

III. ALGORITHMS AND SIMULATION METHODS
The reconstruction of the reflection points is performed
using simulated CIRs as an input in order to study the
performance of our reconstruction algorithm. In this Section,
the simulation for generating the CIRs is explained as well as
the algorithm to reconstruct the reflection points in 3D. This
algorithm includes a step to classify multipath components
in a CIR into the line-of-sight contribution, rays with one
reflection and rays received after more than one reflection.

Figure 1 shows a flow chart of the simulation generating
the CIRs (left side) interacting with the program for room
reconstruction (right side).

A. RAYTRACING SIMULATION
The CIRs are simulated using MATLAB’s raytracing capa-
bilities in a specific room geometry. For the reconstruction of
the reflection points in 3D, the antenna array patterns and the
temporal shape of the transmit pulse have to be known. This
part of the simulation is shown in Fig. 1 on the left side with
all required input files and parameters.

1) COMPUTATION OF THE CHANNEL IMPULSE RESPONSES
The CIRs are computed for the exemplary scenario of an
indoor office environment that is inspired by shared common
room offices. This scenario is depicted in Fig. 2. The room
is designed with the architecture software Revit LT [22] (s.
Fig.: 2a) and has a size of 8× 10× 4m3. 10 transmitters and
2 receivers are distributed in 1 m height along the walls of the
rooms. The arrays consist of n × m patch antennas that are
separated by a distance x and rotated in a way, that for a beam
steering angle of 0◦ (no phaseshift between the antennas in

the array), the main lobe of the beam is pointing orthogonally
away from the wall (s. Fig.: 2b).
The non-line-of-sight (NLoS) components of the CIR

are computed using a shooting and bouncing rays method
following the reflection condition, according to which the
incident angle is equal to the angle of the reflected beam.
All rays from all Rx and Tx combinations are shown in the
office room in Fig. 2c. The raytracing algorithm is already
embedded in MATLAB’s raytrace function, which provides
the path loss pPL , phase α, delay td , AoD, and AoA in
azimuth and elevation direction of the respective rays. The
components of the CIR are modeled as bandwidth-limited
Gaussian pulses in time with a carrier frequency fc of 60 GHz
and a bandwidth bw of 2 GHz:

E(t) = E0 · e
−π2bw2

2ln2 (ti−t⃗)
2
· ei2π fctd+α, (1)

where E(t) denotes the electric field at time t . This expression
comes from the slowly varying envelope approximation
(SVEA). The amplitude E0 is given by the path loss pPL and
the gain in dB at Tx pTx and Rx pRx in the angles of departure
and arrival for the respective beam steering directions:

E0 = e(pTx (φ,θ)−pPL+pRx (φ,θ))/20. (2)

To compute the CIR, the individual components are
following the superposition principle, i.e., they are added in
complex plane.

Unrealistic rays with angles of departure and
arrival ≥ |90◦

| leaving or approaching the antenna array on
its backside are excluded. The simulated channel responses
consist of reflected rays without adding artificial noise in
order study the fundamental limits of the reconstruction
algorithm. Scattering and diffraction or the polarization of
the transmitted signal are also not included. Figure 3 shows
two exemplary CIRs with the accumulated signals of all
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FIGURE 2. Raytracing simulation in an office room. a: Side view with front walls removed. b: Top view with Tx (red) and Rx (blue) antenna arrays, all with
0◦ beam steering angle. c: Direct and reflected rays between all Rx and Tx. Red: low path loss, blue: High path loss.

Tx at both receivers for a beam steering angle of 0◦. It
illustrates that for the given room geometry, a large number
of reflection peaks appear. Some reflection peaks are partially
overlapping, which is challenging for a reconstruction of the
reflection points.

We compute CIRs for steering angles of ±60◦ in azimuth
and ±20◦ in elevation, both with a step size of 10◦. The
set of CIRs employed to compute the reflection points
contains the individual CIRs for all possible combinations
of beam steering angles between the N transmitters and M
receivers. The information can be written in an array ACIR
with dimensions

dim(ACIR) = N ×M × nTx,az × nTx,el × nRx,az
× nRx,el × nt , (3)

where nTx,az and nTx,el are the number of azimuth and
elevation beam steering angles for the transmitter, nRx,az
and nRx,el are the number of angles for the receiver
and nt is the number of sampling points on the time
axis. ACIR(1,2,1,1,2,1,1:600) would, therefore, give the first
600 samples of the CIR between transmitter 1 and receiver 2,
using the transmitter beam 1 in both, azimuth and elevation
as well as the receiver beam 2 in azimuth and 1 in elevation.

This corresponds to the information obtained by an exhaus-
tive beam search procedure between two connecting nodes.
The maximum of the time axis is 100 ns, which corresponds
to a transmission distance of ≈ 30 m. Considering the
size of the room, the length of the time axis is sufficient
to cover all rays with one reflection: The room diagonal is√
82 + 102 + 42 = 13.42 m. Thus, the maximum expected

path length for the first reflection order is 26.83 m.
The number of reflections is limited to two in order to

keep the computation time at bay. Only peaks coming from
rays with one reflection can be accessed analytically without
further information (s. Par.: III-B). In our reconstruction
algorithm, peaks from rays with more than one reflection
are sorted into one common class and neglected. The exact
number of reflections does not matter.

FIGURE 3. Accumulated CIRs with simultaneous transmission from all Tx ,
received at Rx1 and Rx2. Array size: 4 antennas in horizontal direction,
2 in vertical direction.

2) EFFECT OF THE ANTENNA PATTERN
As described in the previous paragraph, each component in
the CIR is affected by the patterns of the Tx and Rx antenna
arrays and by the temporal shape of the transmitted pulse.
Taking a combination of a receive antenna array with a 1D
scanning capability and an omnidirectional transmit antenna
in an empty anechoic chamber as a simple example, the
received signal s⃗Rx is the transmitted signal s⃗Tx multiplied
with the matrix APat,1D:

s⃗Rx = APat,1Ds⃗Tx . (4)

Each row in the matrix APat,1D indicates one beam steering
angle and the columns are the sampling points of the
respective antenna pattern. Examples of one-dimensional
antenna patterns for a perpendicular beam and different array
sizes are shown in Fig. 4.
The effect of the antenna pattern on the received signal

can be seen as a kind of convolution of the transmit signal
with the antenna pattern. This is a convolution with a variable
convolution kernel since the antenna pattern is depending on
the beam steering angle. s⃗Tx is a column vector, where each
line corresponds to a different azimuth angle. s⃗Tx is one for
the angle, in which the Tx is placed relative to the Rx and zero
otherwise.
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FIGURE 4. Antenna patterns in azimuth direction, 0◦ elevation, for
different array sizes and 0◦ steering vector.

Multiplying the inverted Matrix A−1
Pat with the received

signal without noise would restore the original signal.
Unfortunately, every real-world system comes with noise.
This kind of ‘‘zero-forcing deconvolution’’ leads to noise
enhancement and is thus in practice often of no use. A better
choice are algorithms that aim for a maximum likelihood
deconvolution and can handle a varying convolution kernel,
e.g., the Lucy-Richardson algorithm [23], [24] or the Viterbi
algorithm [25]. An example for the application of the
Lucy-Richardson algorithm is given in [26]. Other suitable
algorithms can be found in the areas of channel equalization,
image processing, and acoustics [27], [28], [29], [30], [31].

However, in order to restore the original features of the
ray, i.e., AoD, AoA, and delay, the antenna patterns and
the temporal shape of the pulse have to be known for most
of these algorithms. Only blind or semi-blind equalization
techniques might be an exception but will be most likely
inferior toMLmethods with a prior knowledge of the antenna
patterns.

For a 2D beamsteering system, the antenna patterns in
azimuth and elevation for each possible pair of beam steering
angles in azimuth and elevation direction can be stored in an
array APat,2D according to APat,1D, with dimensions

dim(APat,2D) = naz × nel × maz × mel, (5)

where naz is the number of beams in azimuth, nel the number
of beams in elevation, and maz and mel are the numbers
of sampling points for the appropriate azimuth elevation
antenna pattern, respectively. Thus, APat,2D(1,2,:,:) represents
the two-dimensional antenna pattern (sampled in azimuth and
elevation) for the beam index 1 in azimuth and index 2 in
elevation. All possible combinations of Tx and Rx angles
result in a structure with twice asmany dimensions asAPat,2D.

As mentioned, the CIRs are not only affected by the
antenna patterns, but also by the temporal shape of the
transmitted pulse. To include the temporal shape with a
higher resolution than the temporal resolution of the CIR,
a matrix representing the pulse samples for different sub-
sample offsets according to Fig. 5 is generated. This matrix
is combined with the structure representing all possible
combinations of TX and RX beam patterns, finally forming
the structure APat,TxRx,t .

The structure APat,TxRx,t contains all additional informa-
tion used for the evaluation of the CIRs given by ACIR. Its

FIGURE 5. Generation of a matrix representing the pulse timing with
different sub-sample timing offsets a: The pulse amplitude as a function
of time as a black line, the pulse measured with a limited sampling rate
indicated by the green dots. b: Matrix with the timing information. Each
line contains the measurements with the given sampling rate (green
dashed line). Each line stands for a different peak time (path delay) and
the target time resolution is determined by difference between the peak
times in the different lines.

size is given by:

dim(APat,TxRx,t )

= nTx,az × nTx,el × nRx,az × nRx,el
× mTx,el × mTx,az × mRx,el × mRx,az
× nt,peak × mt,peak . (6)

nt,peak is the number of sampling points in the time
span tpeak , which a single multipath component of the
CIR is affecting. mt,peak is the number of different arrival
times within the sampling time covered by nt,peak . mt,peak
determines the target time resolution of the reconstruction
algorithm: For each arrival time tj (j = 1, 2, . . . nt,peak )
within tpeak , the power measured at the sampling points k =

1, 2, . . . , nt,peak is computed and multiplied by the antenna
pattern. In this way, a five-dimensional representation
(azimuth and elevation of Tx and Rx plus time) of a possible
component of the CIR is constructed.

3) SYSTEMATIC ANGULAR ANALYSIS
The angles of the reflected rays depend on the room
geometry and are determined by the reflection condition.
In order to evaluate the performance of the angle detection
systematically, we created an artificial data set that is
independent of the room geometry. For that, we skipped the
temporal component in (3) to create the structure BCIR for
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all combinations of Tx and Rx angles with azimuth angles
in between ±60◦ with a step size of 5◦ and elevation angles
between±30◦, also with a step size of 5◦. The dimensionality
of the structure BCIR is equal to the CIRs in the room ACIR
(cf. (3)) except for the last (temporal) dimension:

dim(BCIR) = nTx,az × nTx,el × nRx,az × nRx,el . (7)

The size of the structure containing the antenna pattern
BPat,RxTx is reduced by the two temporal dimensions com-
pared to the structure APat,RxTx,t described in (6):

dim(BPat,RxTx)

= nTx,az × nTx,el × nRx,az × nRx,el
× mTx,az × mTx,el × mRx,az × mRx,el . (8)

B. ROOM RECONSTRUCTION ALGORITHM
Figure 1 shows our algorithm to compute the reflection
points in 3D on the right side. The flow chart also includes
our assumptions and what kind of structures are taken
from the raytracing simulation. The algorithm needs the
antenna patterns in 2D for all measured beam steering angles
APat,RxTx,t (cf. (6)) together with the data set from the
beam search process ACIR (cf. (3)) as an input to perform
the following three steps consecutively for all possible
combinations of Tx and Rx:

• Analysis of the CIRs: Extraction of the AoD, AoA, and
the delay of all components of the CIR.

• Computation of the reflection points from the angles
of departure and arrival.

• Classification of the rays into five categories:

1) Line-of-Sight components,
2) rays with one reflection,
3) rays with more than one reflections,
4) rays with ‘‘NaN’’ (‘‘Not a number’’) elements in

the reflection point coordinates, and
5) rays that cannot be categorized.

These steps are described in detail in the next paragraphs.

a: ANALYSIS OF THE CIR
In this part of the algorithm, the AoD, the AoA, and the
path delay of the peaks in the CIR are extracted for all
possible combinations of Tx and Rx. First, the highest peak
is evaluated, the angular and temporal information stored and
then, the peak is deleted and the algorithm proceeds with
the next highest peak. This is done, until the peak height
falls below a threshold (here: 25 dB) compared to the highest
peak or the maximum number of peaks (here: 15) is reached.
The first condition emulates the limited dynamic range of
hardware available for experiments.

The AoD and AoA are detected in the local coordinates of
the respective antenna arrays. This expression is required for
a later evaluation of the detection algorithm. However, for the
computation of the possible reflection points, the angles need
to be transferred to global coordinates.

For each detected peak, the simulated ray which is closest
in delay is selected to compare our results with the original
angles and delays from the simulation.

We compare two different approaches to extract the angular
and temporal information from the peaks within the CIR.
The first and simple method, referred to as ’find maximum’
approach, is to search for the maximum within the five-
dimensional CIR structure ACIR (cf. (3)) of the beam search
process. In this way, the results are provided with the
resolution of the scanning process (here: 10◦ in angle and
167 ps in time), which leads to 2.5◦ angular deviation and
42 ps time difference in average. This method also relies on
a relatively decent beam pattern, where the maximum of the
pattern is found in the direction of the beam steering angle.
Considering the quality of some measured antenna patterns
and the noise within measurement data, this condition might
not be always fulfilled.

FIGURE 6. Simple beam scan scenario with one TX, one RX and two
reflections.

The ’find maximum’ approach and its main issue can be
visualized using a 1D beam scanning approach, i.e. just
a beam scan in azimuth, and a simple scenario with one
direct path and two reflections as shown in Fig. 6. In this
example, the angles of departure and arrival of the reflected
rays are roughly ±35◦. We use a 4 patch antenna array
with a relatively wide beam and the beam scan settings
described above. For the sake of simplicity, we omit the
temporal component and accumulate the received power. The
accumulated received power for every beam combination
is shown in Fig. 7. While the line of sight path would be
correctly identified with the ’find maximum’ approach, the
next peaks will be identified at the AoD/AoA combinations
of 0◦/±20◦ and ±20◦/0◦. The power of the expected peaks at
beam combinations ±40◦/±40◦ is much lower. This results
from the antenna beam pattern with a wide main lobe and the
coarse beam scanning granularity.

In our second approach, the ’compare patterns’ approach,
we make use of additional information to improve the
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detection of the reflected peaks. First of all, we include the
antenna patterns, sampled with a higher resolution compared
to the beam scan resolution. Second, we include the Gaussian
temporal shape of the CIR peaks, by using an increased
temporal resolution. This finally gives the ten-dimensional
array APat,TxRx,t of (6).
The five-dimensional CIR structure ACIR resulting from a

two-dimensional beam scanning is compared with the ten-
dimensional array APat,TxRx,t , finding the best pattern fit. This
comparison is realized by a correlation of ACIR with the array
APat,TxRx,t . Since the size of a ten-dimensional array easily
exceeds the capabilities of processing hardware, we limited
the structure to a region of interest in the surrounding of
peaks identified with the ’find maximum’ approach. Thus, the
algorithm consists of the following steps:

FIGURE 7. Received power for one-dimensional beam scan at TX and RX.

1) Find the maximum peak in the five-dimensional CIR
array ACIR

2) Extract a cutout region of interest
3) Generate a ten-dimensional comparison matrix of the

antenna patterns and temporal pulse shapes in the
cutout region

4) Correlate the cutout region of interest with the compar-
ison structure.

5) Identify the correlation peak and extract AoD, AoA and
ToF

6) Remove the maximum peak from the five-dimensional
CIR array and repeat the algorithm until a pre-defined
peak limit is reached.

Further details of the processing steps are presented in
subsection C - Computational Complexity Analysis.

To explain the approach more intuitively, we use again
the one-dimensional example from Fig. 7. Including the
information about the antenna patterns in a comparison
structure, we do not just search for the maximum peak.
Instead, we find the point were the multiplied gains of the
TX and RX antenna fits best to the received power. Fig. 8
shows a graphical comparison of both approaches. The black
ball shows the real point target, and the grey one the target
reconstruction using the ’find maximum’ approach. The latter

one maps all targets within the current beam (indicated by the
dark grey shaded array) to the same reconstructed angle, i.e.
the current beam angle. The width of this sector is determined
by the beam scanning step size. In contrast, only angles within
the red shaded range are mapped onto the same reconstructed
anglewhen using the ’compare patterns’ approach. Thewidth
of this sector is determined by the accuracy of the initial
pattern measurement.

FIGURE 8. Reconstruction of a point target using the ‘‘find maximum’’
and the ‘‘compare pattern’’ method for comparison.

During the comparison of the CIR structure with
APat,TxRx,t , all dimensions are treated simultaneously, since a
separate treatment would consider less information and hence
result in worse results. Handling all dimensions separately
could mean adding over the respective other dimensions, thus
losing accuracy especially for noisy measurements and the
ability to detect multiple peaks at the same time unambigu-
ously. This is the main difference to an interpolation, which
would also result in a higher resolution in time and space,
but might lead to results deviating from the true shapes of the
structures.

The ’compare patterns’ method avoids the noise enhance-
ment of zero-forcing methods and allows for ‘‘super-
resolution’’ detection of the angles and the delay, i.e.,
a resolution, which is higher than the step size of the beam
search process and higher than the main lobe of the antenna
array pattern. This capability is due to the assumption of point
targets and it requires linearly independent antenna pattern for
each possible angle. Without prior knowledge of the target’s
characteristics, the resolution is limited by the step size of the
angular scan.

This step of the algorithm is the only part of the simulation
that cannot be transferred to arbitrary measurements because
it is based on the assumption of point targets, which is
certainly true for our simulated CIRs and maybe also for
small targets in a sufficiently large distance from the Tx and
Rx, but not for objects that extend over a range of angles,
either AoD, AoA, or both.

Table 1 summarizes the advantages and disadvantages of
both presented methods.

b: COMPUTATION OF THE REFLECTION POINTS
The reflection points within the room are computed from the
angular information within the CIRs. The position and the
orientation of the Tx and Rx in the room are presumed to
be known. In order to compute the reflection points from the
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TABLE 1. Comparison of advantages (green) and disadvantages (red) for the ’find maximum’ and the ’compare patterns’ approach.

AoD and AoA, rays with only one reflection are assumed.
This assumption is reassessed afterwards in the classification
step. However, in order to reconstruct reflection points
analytically, first order reflections are assumed because
reflection paths with more than one reflection cannot be
assessed analytically in an unambiguous way. For two or
more reflections, different paths and reflection points are
possible with one and the same set of AoD, AoA, and delay.
This can be illustrated by creating an arbitrary path with two
reflection points and mirroring it at an axis between Tx and
Rx as depicted in Fig. 9. This figure shows just two exemplary
solutions (path a and path b) with the same set of AoD, AoA,
and delay.

FIGURE 9. Two paths (a and b) with two reflection points and the same
set of AoD, AoA and path length. P1a and P2a are the reflection points for
path a and P1b and P2b for path b.

The rays from transmitter and receiver can be described as
lines in a 3D vector space. The support vector of the line is
given by the position vectors (S⃗Tx and S⃗Rx) of the respective
Tx and Rx:

S⃗Tx =

Tx(1)Tx(2)
Tx(3)

 (9)

S⃗Rx =

Rx(1)Rx(2)
Rx(3)

 . (10)

The direction vectors are determined by the AoD and AoA
in global coordinates:

D⃗Tx =

cos(φAoD) · cos(θAoD)
sin(φAoD) · cos(θAoD)

sin(θAoD)

 (11)

D⃗Rx =

cos(φAoA) · cos(θAoA)
sin(φAoA) · cos(θAoA)

sin(θAoA)

 . (12)

zTx/Rx is the scalar variable that goes through all
points of the line. Without any error, these two lines

x⃗Tx/Rx = S⃗Tx/Rx + zTx/Rx · D⃗Tx/Rx would intersect and the
intersection is at the reflection point. Unfortunately, there are
measurement errors, noise, and the detection of the angles
comes with deviations due to the step size of the angles and
with errors. If the Tx and Rx line do not intersect, we assume
that the most likely reflection point can be found in the
following way, as illustrated in Fig. 10: We search for the
center of the shortest connecting line between the Tx and
the Rx line. This line has a direction vector that has to be
orthogonal to the Tx and Rx direction vectors:

cD⃗con = D⃗Tx × D⃗Rx . (13)

To compute the two intersection points of the connecting
line with the Tx and the Rx line, we create a plane with the
Tx support vector S⃗Tx as support vector and the Tx directional
vector D⃗Tx and the directional vector of the connecting line
D⃗con as directional vectors of the plane xplane:

cx⃗plane = S⃗Tx + z1 · D⃗Tx + z2 · D⃗con, (14)

z1 and z2 are the running variables of the plane. The
intersection of this plane with the Rx line is the first
intersection point, where the Rx connecting line intersects the
Rx line. The equation system to be solved to get the first (Rx)
intersection point is:

x⃗plane = x⃗Rx , (15)

S⃗Tx + z1 · D⃗Tx + z2 · D⃗con = S⃗Rx + zRx · D⃗Rx . (16)

The first (Rx) intersection point S⃗Rx,con can serve as a
support vector for the connecting line x⃗con = S⃗Rx,con + zcon ·

D⃗con. Now, the second (Tx) intersection point S⃗Tx,con can be
computed as the intersection between the Tx line and the
connectng line:

x⃗Tx = x⃗con, (17)

S⃗Tx + zTx · D⃗Tx = S⃗Rx,con + zcon · D⃗con. (18)

In the middle of the two points S⃗Rx,con and S⃗Tx,con is our
most likely reflection point S⃗R:

S⃗R =
S⃗Rx,con + S⃗Tx,con

2
. (19)

The presented algorithm cannot resolve two parallel lines.
This can only occur in the case of a path with more than one
reflection. Since these rays are not accessible anyway, this
issue is not important.

The algorithm is transferable to extended objects with
scattering. After a deconvolution algorithm without noise
enhancement, the received amplitudes for each beam steering
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FIGURE 10. Sketch of the Tx, Rx, and the scattering center including all
vectors employed to compute the reflection points. The green shaded
area is created by the directional vectors D⃗Tx and D⃗con and indicates a
part of x⃗plane.

FIGURE 11. Classification of the reflection points. a: In spatial domain,
the delay of the peaks determines an ellipsoidal solution space, where
reconstructed reflection points of rays with one reflection can be found.
Peaks with a distance to the ellipsoid that exceeds the threshold are
classified as ‘‘class 3: >1 reflection’’. The green area shows the accepted
distance below the threshold. b: In temporal domain, the delay tR of the
assumed propagation paths is compared to the detected delay. For small
differences in delay below the threshold (red shaded area), reflection
points are still classified as ‘‘class 2: 1 reflection’’. Note that the threshold
condition is different for the spatial and the temporal domain as
indicated by the different colors.

angle, i.e., the AoD and AoA are connected to a receive
amplitude. From this, the reflection points can be computed
exactly in the same way as described above. Extended objects
would appear then as a cloud of points with an amplitude
in 3D space. The amplitudes could be corrected by the
free-space path loss, thus providing information about the
reflection characteristics of the objects. Connecting the dots
to an extended object via interpolation requires a rescaling of
the amplitudes since they are mapped from equidistant angles
to an elliptical coordinate system.

c: CLASSIFICATION OF THE RAYS
In this step, the individual components of the CIR are
classified in LoS, one reflection, and more than one
reflection. In addition, since this clear classification is not

always possible, two more classes were implemented: A
class for invalid reflection points containing, e.g., ‘‘NaN’’s
and a class for reflection points that are not classifiable.
For the classification of reflection peaks, we use the delay
as additional information as depicted in Fig. 11. Since in
measurements, the absolute path delay is unknown, we also
do not take it for granted in our simulation that should be
finally able to handle measurements as an input after the
verification employing the raytracing simulation.

For a calibration of the time axis, the LoS component of the
CIR can be used. So for each combination of Tx and Rx, the
global angles of the first peak are checked, if they are similar
(deviation < 10◦). If they are, we assume that this peak is a
LoS component, i.e., ‘‘class 1’’. Since the distance between
Tx and Rx is known, the time axis can be calibrated.

Using this calibrated time axis, we compare the delays
detected in the first step of the algorithm with the delays
obtained from the path from the Tx to the reflection point
to the Rx (s. Fig.: 11b). If the difference between these
two delays is below a certain threshold, in our case 936 ps
(≈ 28 cm), given by the pulse duration and 3dB bandwidth,
then we assume that the peak can be associated to a ray of
the first reflection order (‘‘class 2’’). If the time difference
between the two delays exceeds the threshold, we assume that
the ray had more than one reflection on its path (‘‘class 3’’).

Reflection points with ‘‘NaN’’s in their coordinates cannot
be associated to reflection orders (‘‘class 4’’), although
the issues most likely results from parallel beams with
two reflections, which have the same distance from each
other in all points of the line and thus don’t have an
unambiguous solution for the equation systems presented
above in Par. III-B0b.
In case the first peak is not an LoS component, we imple-

mented a kind of majority decision, starting with the given,
presumably arbitrary time axis. If the CIR contains two
peaks of the first reflection order, those two have the same
time difference (deviation < threshold) between the detected
delay and the delay resulting from the path length and this
information can be utilized for time calibration. For only
one peak of first reflection order, the time axis cannot be
calibrated and all peaks within the CIR cannot be classified
(‘‘class 5’’).

In an intermediate state of the code, we evaluated the
spatial distance between the reflection point and the ellipsoid
of solutions given by the detected delay (s. Fig.: 11a).
This condition is a little bit different from comparing the
delays. Although we employed the same threshold condition
translated into a distance, the recognition of first order
reflections was less reliable.

C. COMPUTATIONAL COMPLEXITY ANALYSIS
As already mentioned, our algorithm for estimating the
position of reflectors based on CIRmeasurements has a lower
computational effort than state-of-the-art methods like the
MUSIC algorithm. This can be proven by an analysis of the
computational complexity resp. effort.
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In [32], the computational complexity costs for ESPRIT,
2D-MUSIC and RD-MUSIC algorithms are found to be

O(LM2P2 +M3P3 + K 3), (20)

O(LM2P2 +M3P3 + n2M2P2) (21)

respectively

O(LM2N 2
+M3N 3

+ n[(M2N +M2)(MN − K ) +M2]). (22)

M denotes the number of elements of the transmit phased
array, N the number of elements of the receive phased array,
K the number of targets (i.e. reflectors), L the number of
signal samples, P the interpolation factor and n the number
of iterations. In general, the iteration number n should be
much larger than L, M and P. It can be seen that the costs
for ESPRIT and 2D-MUSIC are only derived for one phased
array (either TX or RX) and, therefore, just for detection of
the AoA (or AoD), whereas the RD-MUSIC analysis includes
phased arrays for TX and RX, but does not incorporate an
interpolation factor of the signal samples. Nevertheless, the
computational effort of those algorithms can be approximated
to be of cubic polynomial order with respect to both, the
number of antenna elements and the interpolation factor.
It is important to mention that MUSIC and ESPRIT are

designed for digital beamforming systems. Nevertheless,
these algorithms can also be used for analog beamforming
systems. In such a case, orthogonal beams are used to gen-
erate the input matrix (beam-space MUSIC resp. beam-space
ESPRIT). The number of orthogonal beams is equivalent to
the number of elements in the phased array. Thus, M and N in
the complexity costs given above correspond to the number
of TX resp. RX beams.
In our ’compare pattern’ algorithm, the AoD, AoA and

ToF are jointly estimated. To be able to compare the results
of the computational complexity analysis with the previously
shown results of the state-of-the-art algorithms, we defineMb
as the number of TX beams, Nb as the number of RX beams,
and Ls as the number of CIR samples. We furthermore define
Mc, Nc resp. Lc as the number of beams resp. CIR samples
in a local surrounding of the identified peak (i.e. the cutout
region). Finally, we define Pb as the oversampling factor of
the antenna pattern and Pt as the interpolation factor of the
CIR pulses. Please note, that for this analysis, we just use
the total number of beams instead of separating them into the
elevation and azimuth angles. The results are the same, but
the equations are easier to read.

The proposed algorithm consists of four major steps:

1) Finding the maximum peak in a Mb x Nb x Ls
matrix and extract a cutout region of interest of size
Mc x Nc x Lc

2) Generate a multi-dimensional comparison matrix of
the super-resolution angular antenna patterns and all
possible high-resolution pulses in the cutout region of
size Mc x Nc x Lc x McPb x NcPb x LcPt

3) Correlate the cutout region of the received signal with
the comparison structure.

4) Identify the correlation peak and extract AoD, AoA and
ToF

The computational effort for the first two steps is linear
with the size of the appropriate matrix. In the worst case,
we need to access each element once. For the third step,
we need to iterate the cutout region over the whole multi-
dimensional comparisonmatrix and perform an element-wise
multiplication of Mc x Nc x Lc elements. Such element-
wise operation is of linear effort with respect to the number
of elements, O(McNcLc). The element-wise multiplication is
repeated in PbMc x PbNc x PtLc iterations with a shifted
cutout region. Thus, the complexity for the third step is
given by O(M3

cN
3
c P

2
bL

2
cPt ) The final identification of the

correlation peak is again a linear search over McPb x
NcPb x LcPt elements with effort O(McNcP2bLcPt ). Thus,
the total computational complexity costs of our algorithm is
given by

O(MbNbLs +M2
cN

2
c P

2
bL

2
cPt

+M3
cN

3
c P

2
bL

2
cPt +McNcP2bLcPt ). (23)

On first sight, the effort of the proposed algorithm is also of
cubic polynominal order. But it is of cubic polynominal order
with respect to the number of beams in the cutout region.
This number is usually a fixed parameter and not changed
when increasing the number of beams resp. the number
of phased array elements. For our simulation presented in
Section IV, we used the two adjacent beams to define the
cutout region, i.e. Mc = Nc = 3. To compare with the state-
of-the-art algorithms, the dependencies on the number of
beams, signal samples resp. the interpolation factor have to
be considered. They are of linear resp. quadratic order. Taking
just the relevant dependencies into account and removing the
constants, equation (23) can be shortened to

O(MbNbLs + P2bL
2
cPt + P2bLcPt ). (24)

Thus, it is shown that the proposed algorithm has lower
computational complexity compared to state-of-the-art algo-
rithms like MUSIC and ESPRIT.

IV. SIMULATION RESULTS
In this section, the simulation results for a reconstruction of
the reflection points are presented.We start with an evaluation
of the angle detection, coming to the computation of the
3D reflection points and continue with the classification
algorithm.

A. DETECTION ACCURACY OF THE ANGULAR AND
TEMPORAL INFORMATION
From the structure ACIR, (cf. (3)), the azimuth and elevation
components of the AoD and AoA are extracted for each peak
above the detection threshold, together with the path delay.
To evaluate the results of the angular analysis systematically,
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we skip the specific room geometry and use the data set BCIR
(cf. (7)) without the temporal component.

We decided for a step size of 5◦ between different ray
angles, since it offers a good compromise between compu-
tation time and meaningful results: An optimal performance
of the ’find maximum’ algorithm would result in an average
deviation of 2.5◦, which is same as for an infinitely small step
size. The maxima of the azimuth and elevation angle, ±60◦

and ±20◦ are as large as the range of beam steering angles in
order to evaluate the limits of the algorithm for different array
sizes.

FIGURE 12. Average deviation between detected and simulated AoD.
Comparison between the two methods, which are the detection of the
maximum (‘‘max’’) and the comparison of the antenna patterns. For a
subset of angles (|az| < 40◦, ‘‘ss’’), the deviation is substantially smaller.
a: Azimuth angle φ. b: Elevation angle θ .

Figure 12 shows the difference between the detected
angle and the simulated (‘‘true’’) AoD. We compared four
different types of evaluation: the simple ’find maximum’
algorithm (index ‘‘max’’) and the more complex algorithm of
comparing different antenna patterns in a region of interest
(index ‘‘pat’’), both for either the complete range of angles
or for a specific subset of angles (|φ| < 40◦, |θ | < 20◦).
The more complex method of comparing the antenna patterns
is about 2.5◦ better than the ’find maximum’ algorithm. For
larger antenna arrays, i.e. smaller beam width, the difference
between the detected and the simulated beam decreases,
approaching for the subset and the maximum method the
theoretical limit of 2.5◦.

For the elevation angle, depicted in Fig. 12b, the average
deviation between the detected and the simulated angle is way
smaller with maximally around 3◦. Here, the largest differ-
ence can be found between both methods of analysis, with
the comparison of patterns showing the better results. The
performance of the algorithm does not depend significantly

on the number of antennas in horizontal direction, since this
does not change much of the beam width in vertical/elevation
direction.

The structure of the data set is fully symmetric. Thus, the
results for the AoA are the same as for the AoD and do not
need to be shown in a separate figure. In general, we can
conclude from Fig 12, that the ’compare patterns’ method
works always better than the ’find maximum’ algorithm and
that the results are better for the subset of rays. In addition,
larger antenna arrays with a small beam width facilitate a
more accurate detection of angles.

FIGURE 13. Detection error of the azimuth angle as a function of the local
angle. Comparison of two different detection methods for four different
array sizes. Left column: Comparison of the antenna patterns, right
column: Find maximum. The array size is varied in horizontal direction
from 4 in the upper line to 16 antennas in the lower line.

The error of the angle extraction from BCIR is depicted
in Figs. 13 and 14 as a function of the local angle for the
azimuth and the elevation direction, respectively. The left
column in both figures shows the results for the comparison
of antenna patterns, and the right side the results for the
maximum detection algorithm. Each ray is counted twice in
this diagram, once for the Tx azimuth and elevation angle and
once for the Rx angles.

The azimuth error (Fig. 13) is increasing for large local
azimuth angles |φ| > 40◦, where the sidelobes are growing.
For azimuth angles |φ| < 40◦, the angular deviation is close
to zero for the comparison of patterns and about 2.5◦ for the
’findmaximum’ algorithm. The results do not depend strongly
on the elevation angle.

The error of the elevation angle, shown in Fig. 14, shows
a different behavior. The error in elevation does not depend
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FIGURE 14. Detection error of the elevation angle as a function of the
local angle. Comparison of two different detection methods for four
different array sizes. Left column: Comparison of the antenna patterns,
right column: Find maximum. The array size is varied in horizontal
direction from 4 in the upper line to 16 antennas in the lower line.

significantly on the array size, since the beam width in
elevation direction does not change much. However, the
accuracy of the elevation angle extraction relies on the local
azimuth angle: For azimuth angles > |40◦

|, the detection
accuracy decreases a little. This indicates that the detection of
azimuth and elevation angles is not completely independent
from each other. The slight asymmetry of the figures in
azimuth and elevation direction is due to the rounding of the
rays in 5◦ steps.

The detection of the delay of the individual peaks as a
function of the number of antennas in horizontal direction
is plotted in Fig. 15. 73 peaks were detected in total, for
all combinations of Tx and Rx. The dashed line shows the
result that we would expect for randomly distributed path
delays. For the maximum search algorithm this would be a
quarter of the sampling period (41.7 ps) and for the pattern
comparison method one tenth of it since mt,peak was set to
10. All the results are a little above that theoretical value,
indicating some small detection errors. The results do not rely
on the number of antennas in horizontal direction, since the
number of antennas does not affect the shape of the pulse in
the temporal direction.

B. RECONSTRUCTION OF 3D REFLECTION POINTS
The raytracing model for the scenario from Fig. 2 consists of
73 rays in total. Some are out of the beam steering range, and
some contain multiple reflections which cannot be handled

FIGURE 15. Accuracy of the peak time detection for the ’Find maximum’
and the ’Compare patterns’ method. The dashed line indicates the
expectation for equally distributed peak times.

as shown in Section III-Bb. We, furthermore, limit the room
reconstruction to azimuth angles |φ| < 40◦, where the best
performance of the angular detection is given. Thus, a subset
of 6 rays is used for the evaluation, as shown in Fig. 17.

FIGURE 16. CIRs for the reconstructed rays as a function of time, averaged
over all beam steering angles for all array sizes. a: For Tx1 and Rx1. b: For
Tx1 and Rx2. c: For Tx7 and Rx2. d: For Tx8 and Rx1. e: For Tx8 and Rx2.

The reconstruction of the reflection points, including the
AoA, AoD, and the path delay as well as the deviation
between the reconstructed reflection points and the simulated
ones are listed in Tab 2 for different array sizes between
4 and 16 antennas in horizontal direction. The angle-averaged
CIRs in which the respective multipath components appear
are depicted in Fig. 16 for all array sizes.
The first reflection point is reconstructedwith the relatively

high accuracy of 7 cm for array sizes of 8 and 12 antennas.
For 16 antennas, the reconstruction is not performing well
due to deviations in the detection of angles. Figure 16a shows
two partially overlapping peaks at 52-53 ns, which could
make it difficult at least for some array sizes to identify the
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TABLE 2. Reconstruction of the reflection points. ‘‘sim’’ stands for the simulated, ‘‘true’’ information of the ray. ‘‘rec’’ stands for the reconstructed
reflection points and beam parameter values. n × m gives the array size. The coordinate system of the Reflection points is designed in a way that the x-
and y-axis are in horizontal plane and the z axis points in vertical direction.

FIGURE 17. Simulated rays 1-6 in the office room scenario.

angles correctly and thus, to compute the correct reflection
point. In our angle detection algorithm, we have an angular
resolution of one degree. Although the angles were perfectly
detected with the given resolution for 8 and 12 antennas,
7 cm of deviation remain. The reconstructed ray has a small
angle at the reflection point (s. Fig.: 17) which means that
even sub-degree angular deviations significantly influence

the position of the reflection point. This can be also seen
for ray 4 (s. Fig.: 16c) and for ray 6 (s. Fig.: 16e), with an
especially large effect.

Considering now the average angular deviation of 2.5◦

degree for the detection of maxima with 10◦ steps, the
advantage of the method of comparing the antenna patterns
becomes clear. For the rays 2, 3, and 5 (s. Fig.: 16b,d), the
angle at the reflection point is large and the reflection point is
computedwith 0.6, 1.8, and 3.1 cm difference to the reflection
point in the raytracing model.

C. CLASSIFICATION ALGORITHM
The correct classification of rays depends on the features of
the complete CIR for the respective Tx-Rx pair. From the
six rays with one reflection in the angular range of |φ| <

40◦ and |θ | < 20◦, only three are correctly identified as
first reflection order. Those are ray 2, 3, and 5. Rays 1, 4,
and 6 cannot be identified as first reflection order without
additional information for the calibration of the time axis,
since they are the only rays in their CIR with only one
reflection.

V. DISCUSSION
In the presented room reconstruction procedure, the extrac-
tion of the AoD, AoA, and delay from the received CIRs
of a full beam scan are the most complex operations. The

VOLUME 12, 2024 109771



L. Wimmer et al.: Room Reconstruction Based on Bi-Static mmWave RADAR

following steps of determining the 3D scattering points based
on the extracted information and the classification of the
reflections are relatively straight forward. The simulation
results show, how sensitive the position of the scattering
points depends on the correct detection of the angles.
Therefore, the first step of the signal processing, the
extraction of the relevant parameter values, is of utmost
importance and has to provide a high angular resolution.

The simulation results presented in the previous Section IV
show that the performance of the room reconstruction is
strongly improved by using the ’compare pattern’ approach.
The angle detection is improved by 2.5◦ compared the ’find
maximum’ method, independent of the number of antenna
patches and, therefore, the beam width. For azimuth angles
|φ| < 40◦, the angular deviation of ’compare pattern’ is close
to zero.

While the results in Fig. 12a show the expected behaviour
that an increasing number of antenna patch elements - and,
therefore, a decreased beam with - decreases the average
angular deviation, another effect can also be notified: For a
subset of beams with azimuth angle of |φ| < 40◦, the average
deviation is much smaller. This indicates that the overall
angular deviation is mainly determined by large azimuth
angles, and not the beam width itself. This conclusion is
supported by the results from Fig. 12b. In elevation direction,
the beam is less focused than in azimuth direction, since only
two rows of antenna elements are used in vertical direction.
While worse results than for the azimuth angle would be
expected, the performance is comparable. The reason is that
the elevation angle evaluation was limited to ±20◦.
The explanation for the described effect are the side lobes

of the antenna pattern, which are increasing for large beam
steering angles, i.e. azimuth angles |φ| > 40◦. For these
angles, the maximum peak in the structure ACIR is identified
in a side lobe far away from the real beam by the ’find
maximum’ method, as shown in Fig. 13. Since the ’compare
patterns’ method is only applied to a region of interest in a
±10◦ surrounding of a peak identified by ’find maximum’, its
performance is drastically reduced. In contrast, the detection
error for the elevation angle shows a different behaviour
(Fig. 14). Since the beam scanning range is limited to |θ | <

20◦, the peak identified by ’find maximum’ will always be
withing the main lobe. Therefore, ’compare patterns’ can
correct the detection error and improve the results.

The rays in Fig. 17 show that only a small area between
the two screens is scanned in our scenario. The screens block
horizontal beams effectively, and apparently, there were no
reflections at the ceiling that matched the criterion of angles
(|φ| < 40◦ and |θ | < 20◦). A different room geometry and
a different distribution of Tx and Rx within the room would
increase the number of beams that could be utilized for room
reconstruction.

In summary, the proposed ’compares pattern’ method
always improves the results from ’find maximum’. Since
its current implementation relies on the peak identified by
’find maximum’, its improvements are especially shown in

scenarios with a limited beam scanning range. Even wide
beams (small patch array antennas) can be used, leading to
fast scanning times. Using another method for the first step
of peak identification would improve the performance for
large scanning angles. This could be either an extension of the
pattern matching to the whole structure (and not only a region
of interest) or the use of a different method like a maximum
likelihood method.

When using the current implementation of the proposed
room reconstruction method, the following conditions need
to be fulfilled for a successful reconstruction:

• The ray has to be of first reflection order.
• The ray has to be within the field of view (here φ <

|60◦
|, θ < |20◦

|) for both, AoD and AoA.
• The ray must be within the angular range, were the beam
pattern allows for unambiguous angle detection (here
φ < |60◦

|) for both, AoD and AoA.
• In addition, the correct classification (i.e. first order
reflection) of the ray must be possible. I.e., either
the CIR contains a LoS component or at least two
rays of first reflection order that fulfill the preceeding
requirements.

• In addition, the results are more reliable, if the peak
of the ray is not overlapping with another multipath
component.

The proposed room reconstruction method only uses
the angular information for the reconstruction of reflection
points. The path delay is used for the classification of
the peaks. The reflection points could be reconstructed
with potentially higher accuracy by also computing the
intersections of the Tx and Rx lines with the ellipsoid given
by the path delays and computing the mean of these three
possible reflection points.

A. IMPACT OF ADDITIONAL PHYSICAL EFFECTS
The used raytracing simulation model to construct the
CIRs is essentially a representation of geometrical optics
applied for radio waves. Thus, it is a good approximation
for large distances and objects that are by far larger than
the wavelength. We do not consider effects based on the
wave characteristics of electromagnetic radiation such as
scattering, diffraction, (semi-) transmission through objects,
or the polarization of waves. The impact of these effects
depends highly on the geometry of the room, the material
of the objects inside the room, and the wavelength of the
radiation.
Scattering would lead to the visibility of extended objects

as a convolution of the object with APat,TxRx,t (cf. (6)), i.e.,
the multipath components in the CIR would be broader peaks
in time and angle. Thus, a different deconvolution algorithm
has to be employed. Besides this, the subsequent steps in the
room reconstruction algorithm can remain the same.
Diffraction requires a completely different approach for

room reconstruction, depending on the wavelength and the
distance of the object causing the diffraction. Typical objects
that lead to diffraction are sharp edges or a small slid with a
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TABLE 3. Physical effects, impact on CIRs and room reconstruction algorithms, countermeasures and potential benefits.

size in the order of the wavelength. As long as there are no
objects in the room that resemble diffraction grids or other
kind of meta-surfaces, the diffraction component in a channel
impulse response can be considered to be small compared to
other components of the channel impulse response. Signal
components that stem from single sources of diffraction
would appear similar to point targets, i.e., the end of a wall
would appear especially pronounced in a reconstructed image
of a room.

Taking into account polarization does not provide prin-
cipally different results, it just adds an additional degree of
complexity to the CIR and could be potentially used for
material characterization.

The additional effects expected for real measurements,
their impact on room reconstruction and suggested coun-
termeasures as well as possible benefits are summarized in
Tab. 3.

VI. CONCLUSION AND OUTLOOK
We evaluated the performance of a three-step method for
room reconstruction employing simulated channel impulse
responses in an exemplary office room. The method consists
of the extraction of AoD and AoA, the computation of
possible reflection points and the classification of rays
within the CIR into direct path, first order reflection path
and paths with more than one reflection. We compared
two algorithms for the extraction of AoD and AoA in a
raytracing simulation environment. The evaluation shows that
the ’compare pattern’ algorithm outperforms the simple ’find
maximum’ approach.
The presented theoretical study serves as a foundation for

our future experimental work. Our results provide an estima-
tion of the performance of a room reconstruction algorithm
that can be expected from a certain accuracy in angle

estimation. It also indicates some of the potential pitfalls of
room reconstruction, e.g., using triangles to detect targets
with a small angle relative to the transceivers, ambiguities in
antenna patterns, or a non-optimal distribution of transceivers
within the room. Optimizing the transceiver position in the
room for communication is not the same as optimizing
for room reconstruction, since RADAR requires reflections
and communication works well with the minimization of
reflections. Note that side lobes in antenna patterns can be
handled relatively easily if the antenna patterns are accurately
known.

These constraints should be considered in the planning of
a JCAS system. Our simulations facilitate finding the optimal
settings for the respective experimental systems. Future
topics in the context of room reconstruction could be the
reconstruction of extended, scattering objects instead of point
targets and the inclusion of dynamics including the Doppler
effects. The minimization of the overall reconstruction
error in a multi-static sensing system could, e.g., utilize
historic information about the local environment. For real-
time implementations, an optimal combination of methods,
including analytical and numerical approaches as well as
tools from artificial intelligence, must be found in a trade-
off between performance and simplicity of realization. In the
future, we aim for an implementation of our sensing methods
in a real-time JCAS system.
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