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Abstract: Energy management in power systems is influenced by such factors as economic and
ecological aspects. Increasing the use of electricity produced at a given time from renewable energy
sources (RES) by employing the elastic energy management algorithm will allow for an increase
in “green energy“ in the energy sector. At the same time, it can reduce the production of electricity
from fossil fuels, which is a positive economic aspect. In addition, it will reduce the volume of
energy from RES that have to be stored using expensive energy storage or sent to other parts of the
grid. The model parameters proposed in the elastic energy management algorithm are discussed.
In particular, attention is paid to the time shift, which allows for the acceleration or the delay in
the start-up of smart appliances. The actions taken by the algorithm are aimed at maintaining a
compromise between the user’s comfort and the requirements of distribution network operators.
Establishing the value of the time shift parameter is based on GMDH neural networks and the
regression method. In the simulation studies, the extension of selected activities related to the tasks
performed in households and its impact on the user’s comfort as well as the response to the increased
generation of energy from renewable energy sources have been verified by the simulation research
presented in this article. The widespread use of the new functionalities of smart appliance devices
together with the elastic energy management algorithm is planned for the future. Such a combination
of hardware and software will enable more effective energy management in smart grids, which will
be part of national power systems.

Keywords: renewable energy sources; energy demand control; smart appliances; elastic energy
management algorithm; GRASP algorithm; GMDH neural networks; regression method

1. Introduction

The first-ever universal and legally binding global agreement on climate change was
ratified at the Paris Climate Conference (COP21) in December 2015, and it is called the
Paris Agreement [1]. The Paris Agreement laid out a global framework in order to prevent
dangerous climate change by limiting global warming to a maximum temperature increase
of 1.5 ◦C. The Agreement also aimed to strengthen the capacity of countries to cope with the
effects of climate change and to support them in their own efforts to prevent global warming.
The most developed plans and strategies in the area of counteracting global warming concern
the countries in the European Union (EU). The European Commission has committed to
achieving carbon neutrality in the EU by 2050. Details of these commitments have been
formulated in the document “European Green Deal” [2]. One of the solutions offered by
the European Green Deal is the “fit for 55” package, which provides for the revision of the
Renewable Energy Directive (RED II) [3]. The EU expects this shift to help in achieving
its new greenhouse gas emissions target of 55%. The revised RED II directive indicates a
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renewable energy share of at least 40% of the final energy consumption by 2030. This is a
very ambitious target, and its fulfillment will require the connection of a significant number
of renewable energy sources (RES) to the distribution network and a reduction in the number
of conventional fossil fuel power plants.

Energy from RES is ecologically clean energy; however, its major disadvantage is the
instability of its generation, which depends on weather conditions. Hence, there may be
very high energy production from renewable sources in favorable weather conditions, e.g.,
from photovoltaic systems (PV) on a sunny day. It is obvious that such production can
exceed the energy demand of the consumers. On the other hand, during unfavorable weather
conditions, the system will have a shortage of energy because RES will not be able to generate
it. Additionally, energy from PV systems will be available only during daylight hours; it
will be at a very low level in the mornings and afternoons and will not be available at night.
Complementarity between PV power generation and wind turbines may also not meet the
energy demand. In order to take full advantage of the energy from RES, the following
approaches should be applied: (i) use very expensive energy storage systems (ESS) [4,5],
(ii) increase energy consumption during high generation and reduce in the period of non-
generation of RES energy [6]. The overproduced energy from PV and other RES systems
should be stored [5], used, or sent to places where there is a demand [6].

The energy generated by PV is unstable over time, and within a single week, there may
be days with very small or very large but extremely variable energy production throughout
the day, continuous production throughout the day, or only instantaneous power generation
moments. Such variability in production requires actions that will allow it to stabilize.
Therefore, in the local balancing of the power system, it is necessary to use or store as much
energy as possible. Balancing energy generation with energy demand is of great importance
both in systems with low voltage prosumer installations and in the case of large photovoltaic
power plants. One of the conceptual approaches to harnessing energy overproduction is,
as previously mentioned, to increase energy consumption during the period when a lot is
produced. This approach requires appropriate energy demand management systems with
the use of different loads. In a home environment, these may be home smart devices. The
consumption of households should be increased during the large production of energy from
RES, and their energy consumption should be reduced when there is a shortage of energy in
the system or a lack of generation from RES [7].

The scientific literature describes a large number of concepts for managing electricity
demand with home smart appliances (SA). Smart appliances are defined in this article as
devices that respond to signals from the environment and working conditions in order
to reduce the energy consumption of the tasks performed in relation to both electricity
generation and demand. The concept of SA suggests that they perform not only their
main functionality in a user-defined manner, but they also autonomously react to the
environmental conditions in which they operate, e.g., for the supply of cheap, clean energy.

This article will present the use and integration of new functionalities into the energy
demand management of smart home devices. These new functionalities will enable their
operation to react to an external signal that carries information about energy production
from local RES systems. In addition, for some smart devices, the functionality of the phased
implementation of their standard functional programs will be defined. For example, a
program in a dishwasher may be carried out in several stages, depending on the production
of electricity. In the first stage, the process of heating the water and proper washing will be
executed; in the second phase, pumping out the water and rinsing the dishes as well as the
polishing process; and in the third phase, heating the water again and drying the dishes
with hot steam.

To achieve good results from such a smart appliance, this device should receive informa-
tion about the generation prediction from RES. Therefore, this article will present one of the
concepts for predicting renewable energy generation using a neural network. The modeling
of RES using statistical methods and artificial intelligence tools was presented in [8,9]. The
operation of the proposed smart appliances with new functionalities will be tested using the
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Elastic Energy Management (EEM) algorithm proposed in previous publications [7,10,11].
Then, on the basis of prediction, it will be possible to optimally manage the SA so as to
optimally use the power generated by RES at a given time.

2. Elastic Energy Management

The main purpose of using EEM is to respond to an increase or decrease in energy
availability in smart grid (SG) networks. If such a situation occurs, the central management
unit sends a signal to distributed control devices (DCD) located at a given building or
location. In order to better adapt to the requirements of end users or the Distribution System
Operator (DSO) and the situations that may occur in SG networks, three variants of the
EEM algorithm have been defined [7,10,11]: EEM1, EEM2, and EEM3. The EEM1 variant is
applied to ensure user comfort when using SA devices. Electricity costs are also taken into
account. EEM2 is used during emergencies resulting from natural phenomena that damage
the national power system (NPS) infrastructure. EEM2 can also be used as a response to the
peak demand phenomenon [12]. In the case of EEM3, the overvoltage situation in the DCD
is taken into account. This state occurs, for example, when connecting or disconnecting a
large number of energy consumers. Figure 1 shows the structure of the power grid in which
the EEM algorithm is used.

multi-family buildings - 
prosumers

RES PV

individual household with 
energy storage

RES - wind turbines

individual household

TSO

DSO

10€ 10€ 

EEM algorithm

Figure 1. Structure of the power system with the EEM algorithm.

The implementation of individual EEM variants is based on the developed fitness
function (FEEM) [7,10,11]. FEEM applies to the selection of new power settings for indi-
vidual SAs during the operation of the Greedy Randomized Adaptive Search Procedure
(GRASP) [13].
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According to the EEM assumptions, each SA device requires that its properties be
described with parameters. The set of defined parameters thus made it possible to define
the model:

(PNOM, P, pr, ts) (1)

Earlier works [7,10,11] commonly considered parameters that were related to the basic
properties of SAs. These included the definition of the nominal value of the power with
which SA works (PNOM) and the list of possibilities for selecting a different power value
from the vector P. Priorities of the SAs (pr) were also taken into account when modi-
fying power settings. Priorities were set on a three-point scale: EEM_PRIORITY_LOW,
EEM_PRIORITY_MEDIUM, and EEM_PRIORITY_HIGH. Such approaches have made
it possible to determine which SAs should modify their power settings at the very end.
In this way, user comfort or the technical requirements of a given device are taken into
account. In previous works, the value of 0 was assumed for the ts parameter. Such an
assumption meant that the operation of a given SA could not be postponed in time. The
novelty presented in this article is the definition of the value of the ts parameter on the
basis of the results obtained from the neural predicting model of PV RES.

3. Neural Predicting Model of PV RES

The Group Method of Data Handling (GMDH) neural networks and the regression
method were used to build a neural predicting model for a PV system. The GMDH neural
networks belong to the group of self-organizing networks [14]. Their greatest advantage in
comparison to traditional neural networks is their ability to automatically create a network
structure, which significantly shortens the time needed to obtain the final prediction result
as well as enables the creation of an optimal network structure. The structure of the GMDH
network is created automatically on the basis of prepared training and testing data sets.
During the training process, the network grows and evolves as long as it leads to an
improvement in its effectiveness [15]. Before the next layer of neurons is attached to the
current network structure, the components of the new layer are selected for processing
accuracy. Neurons that do not meet the condition imposed by the evaluation criterion
(a processing error associated with neurons that are too large) are eliminated from the
network structure. In addition to the above-mentioned advantages of the GMDH neural
networks, they are also characterized by very good predicting properties, which have been
presented, for example, in several papers [16–19].

A neural predicting model based on the GMDH neural networks was prepared for the
purpose of predicting the power generated by a PV system. Initial research was carried out
on the basis of a modified predicting algorithm developed by the author and presented
in [20]. The input data for the GMDH neural network were created based on the methods
presented in [21]. The basis for the preparation of input data for the GMDH neural network
using the regression method was exemplary meteorological data showing the value of the
irradiation of a photovoltaic panel within a given hour as well as the corresponding value
of the power generated by RES. The authors assumed that in order to model RES, weather
data collected at 15 min intervals would have to be used. The value of the time interval
resulted from the need of the adopted neural predicting model for initial verification.
Training data for the neural network were prepared for the entire month based on 15 min
intervals. On the basis of such input data prepared for the neural network, the process of
training and predicting the power value generated by the RES takes place. It was assumed
that the predictions of the generated power would be made for the entire next day, that is,
for 96 intervals of 15 min.

Figure 2 presents the obtained preliminary research results. The actual power gen-
erated by PV was compared with the power value (PVNN_GMDH) predicted by a neural
predicting model based on GMDH neural networks.

Good quality predictions were then obtained, which only differ slightly from the
actual values of the power generated by RES. In order to better illustrate the obtained
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results, Figure 3 presents the residual values
(

r
(

tpred

))
, which are the differences between

the predicted value of the power generated by RES PVNN_GMDH

(
tpred

)
and the value of

PV
(

tpred

)
power generated by RES for the same moment (hour) of prediction, calculated

using the following relation:

r
(

tpred

)
= PV

(
tpred

)
− PVNN_GMDH

(
tpred

)
(2)

On the basis of the calculated residuals (r), the values of selected prediction quality
measures were determined: minimum and maximum values from the r residual, mean
error (ME), absolute mean error (MAE), mean square error (MSE) with its components
(MSE1, MSE2, MSE3), and the root of mean square error (RMSE); these are presented
in Table 1. The determined values of the residuals and the prediction quality measures
constitute the basis for the evaluation of the obtained results.
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Figure 2. Power values generated by photovoltaic panels (PV) compared with the power value
predicted by the neural predicting model (PVNN_GMDH).



Energies 2022, 15, 8632 6 of 17

Table 1. The obtained values of the prediction quality measures for PV
(

tpred

)
and PVNN_GMDH

(
tpred

)
.

Measure of Quality of Prediction PV
(

tpred

)
and PVNN_GMDH

(
tpred

)
min[W] −237.3
max[W] 105.1
ME[W] −33.8

MAE[W] 53.9
MSE

[
W2
]

5651.1

MSE1

[
W2
]

1141.8

MSE2

[
W2
]

81.2

MSE3

[
W2
]

4428.1

RMSE[W] 75.2
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Figure 3. The obtained values of r residuals for predicting the power generated by RES in the form of
photovoltaic panels.

The following conclusions were drawn from the presented research results (Figure 3)
and Table 1:

1. All the obtained residual values are within the limit of ±237.3 W, which is a very
good result. This is also confirmed by the obtained low values of prediction quality
measures, for example, for MAE and RMSE.

2. The comparison of the ME, MAE, and MSE1 value errors shows that the obtained
predictions are loaded. The obtained predictions are underestimated (ME error values
are negative).
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3. There is a relatively small MSE2 error for the obtained predictions of RES generated
power. This implies a good prediction of the variability of the predicted values in
relation to the variability of the observed values.

4. In the obtained results of predicted power generated by RES, there are cases of large
residual values. These are caused by a poor fit of the model to the data of the power
generated by RES. Hence, in the results of the prediction quality measures, there is a
relatively high value of the MSE3 error component.

The obtained results of the preliminary research show the good quality of the obtained
predictions of the power generated by RES as well as the correct operation of the neural
prediction model. The results of the predictions can be used for the effective management
of the SA. Taking into account the small residual values obtained, it is then possible to
control household appliances. This approach makes it possible to increase the use of the
level of power generated by RES.

4. Simulation Research

On the basis of the values obtained for PVNN_GMDH

(
tpred

)
(Figure 2) with the use of

the GMDH neural networks and the regression method, it then became possible to deter-
mine the scope of potentialities for when a given SA could be shifted in time (parameter
ts from Formula (1)). By analyzing the PVNN_GMDH

(
tpred

)
values (Figure 2), assump-

tions were made for the ts parameter. Due to the PV generation, the activation times of
individual SAs were selected so that the implementation of a particular activity by an SA
would start and end at tPVNN_GMDH1

= 10:00 and tPVNN_GMDH2
= 17:00, respectively. An

assumption also concerned the concentration of individual SA launches at: tPVNN_GMDH3
=

12:00, tPVNN_GMDH4
= 14:30, and tPVNN_GMDH5

= 16:00. This assumption results from the fact
that the PV system generates a large amount of power exceeding 3 kW.

For the purpose of simulation research, 15 SA devices were defined for an exemplary
household. Figure 4 shows the start-up schedule of individual SAs in a single household
and the value of the nominal power that is charged PNOM.

Figure 4. Schedule of the launch of individual SAs.
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Among the defined SA devices, there are devices that are started periodically and
aperiodically. An example of an SA that is run periodically is the refrigerator, and an
aperiodic one is the coffee machine. The times of SA start-ups selected correspond to the
daily activities carried out in an exemplary household during one day.

Figure 5 shows the sum of the SA power (∑ PSA) that is needed to perform individual
activities during the day.

Based on the analysis of the value ∑ PSA from Figure 5, it can be concluded that
the user carries out his/her activities throughout the day. In this case, there are only a
few actions, and thus the starting SA devices are triggered within the time range from
tPVNN_GMDH1

to tPVNN_GMDH2
.

For a further part of the simulation research, we decided to modify the launch times
of selected SAs using the ts parameter defined in Formula (1). In this case, a situation was
considered in which the modification by the EEM algorithm would only affect the SAs and
additionally, the user behavior. The change in the user’s behavior is understood in this case
as a shift in the time of performing an activity, e.g., vacuuming. Therefore, for the analysis,
three simulation research scenarios (sc) were considered: the results without using the EEM
algorithm (sc1), the results using the EEM algorithm (sc2), and the results using EEM with
user behavior modification (sc3). Figure 6 shows the ∑ PSA values for all three sc.

00:00 05:00 10:00 15:00 20:00
0

1000

2000

3000

4000

5000

6000

7000

Figure 5. Total values of power consumption (∑ PSA) by all devices.

Based on the value of ∑ PSA from Figure 6, it can be concluded that the sc2 variant in
relation to sc1 resulted in an increase in energy consumption in the range from tPVNN_GMDH1
to tPVNN_GMDH2

. The biggest modification of activations of the selected SAs took place for sc3.
A detailed list of modifications performed by the EEM algorithm is presented in Table 2.

The top half of Table 2 lists the devices with the launch offset applied. The shift in time
represents the earlier or later activation of a given SA. The washing machine start-up was
brought forward by 5 h and 35 min. In contrast, the operation of the air conditioner was
delayed by 3 h. In the case of the dishwasher, there was both a delay (postponing from 08:00
to 10:00) and a preparation of the activation (from 21:00 to 12:00). Modifications introduced
by the EEM algorithm are comparable to a situation when the user sets a given device in
automatic operation mode with a selectable and programmable start time. In this situation,
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the user’s comfort of life does not deteriorate. The bottom half of Table 2 presents options
for modifying the SA start time with the use of the EEM algorithm, which may already
have a greater impact on user comfort. In this case, these SAs will have the highest priority
pr = EEM_PRIORITY_HIGH (Formula (1)), which will ensure that modifications are
made only in the EEM2 or EEM3 variant. In the EEM1 variant, such an action could only
be imagined if the user, due to an incentive from the DSO (e.g., lower cost of electricity),
changed his/her behavior. In this case, such a modification could consist in changing the
time of meal preparation or changing household activities.

00:00 05:00 10:00 15:00 20:00
0

1000

2000

3000

4000

5000

6000

7000

Figure 6. Compared power consumption (∑ PSA) for three scenarios: without EEM (sc1), with EEM
(sc2), and with EEM along with user behavior modification (sc3).

Table 2. List of activation modifications for selected SAs by the EEM algorithm.

SA Name Value of the ts Parameter for: EEM Variantssc1 sc2 sc3

washing machine 17:35 12:00

EEM1dishwasher 08:00 10:00
21:00 16:00

air conditioner 09:00 12:00

kettle 08:00 10:00

EEM1
1, EEM2

and EEM3

coffee machine 06:00 11:00
17:15 16:30

microwave oven 08:00 10:30
vacuum cleaner 08:30 13:00

oven 09:05 13:30
cooker hood 09:05 13:30

iron 18:00 14:45
1 EEM1 only with user consent.

5. Correlation of SA Operation Modification on the ts Parameter

In addition to preparing or postponing the SA startup, it is also possible to pause the
execution in the EEM algorithm. It is not always possible or cost-effective to temporarily
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stop the device for design reasons. A pause could entail an increase in the cost of heating the
water in devices such as the washing machine or the dishwasher. Sequentially, in Figure 7
and 8, the times when such a pause could occur are marked. The profiles were obtained
based on the measurement of the device [22].

For the washing machine (Figure 8), there is a gap labeled gap # 1 between t1 and t2.
Gap # 1 means the washing machine can be paused freely during this interval. There will
be no additional energy costs for restoring the appliance to its pre-paused condition. In the
case of the dishwasher (Figure 8), it is possible to pause the device only at certain times: t1,
t2, and t3. The individual times represent the end of the specified dishwashing cycle.

00:00 00:10 00:20 00:30 00:40 00:50 01:00 01:10
0

500

1000

1500

2000

2500

Figure 7. Profile of an exemplary washing machine.

00:00 00:05 00:10 00:15 00:20 00:25 00:30
0

500

1000

1500

2000

2500

Figure 8. Profile of an exemplary dishwasher.
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6. Simulations of SAs with Novel Functionality

The scenario for the operation of the EEM algorithm is as follows. The central unit
with the EEM algorithm implemented collects information from the SG about readiness
for operation and the provision of demand management services. For a selected group
of SAs, the algorithm realizes their activation during a given time period. For example,
for dishwashers, this will be for two hours in the morning, e.g., from 10:00 to 12:00. The
simultaneous activation of all devices would put a significant load on the power grid.
Therefore, the EEM algorithm randomizes the number of devices to be activated every
minute without exceeding five devices. Then, the activation of a given number of devices
will be quasi-evenly distributed over the given service period. If the status of readiness or
non-readiness was sent by any of the devices during the period designated for the operation
of the service, the algorithm would appropriately modify the number of randomly selected
devices to be activated each minute.

The modification of the EEM algorithm operation presented in this article concerns the
operation of SAs. These devices will have the ability to delay the activation and add a de-
fined break in the operation (program pause), which will not affect the quality of the activity
performed. To meet such requirements, the algorithm needs status information about the
level of energy generated from RES systems, e.g., a PV system. It is the “PVgeneration status”
signal that reaches the value of “1” for high PV energy generation and is “0” for low or no
PV generation. The level of the status signal should be selected individually for a given
network. Generation of energy above the average load energy of a given line should set
the status signal to the value “1”. This procedure may be based on the measurements of
both the generation power and the load power, as well as on the prediction of these signals.
For the purpose of this article, this value is determined on the basis of measurements. The
change of the status word is immediately sent by the central unit to the selected SAs that
have not yet finished their work.

An example of the operation of the EEM algorithm for SA in the form of a dishwasher
with new features (a pause in operation and a delay in switching on) will be presented in this
section. In the numerical experiment, the operating profile of a dishwasher was adopted, as
shown in Figure 8. The operation of the dishwasher is characterized by a multiple impulse
consumption of high energy (about 2 kW) during the work cycle. For the purpose of this
article, a simulation of a dishwasher with the load profile shown in Figure 8 was performed,
with a break in operation after the first cycle of work (time t1), resulting from the completion
of pre-washing. The operation of the dishwasher is divided into two stages. These stages
can be consecutive without delay or separated by a break. The mode of operation will
depend on the level of power generated by the PV system.

The following operating scenarios may occur for a dishwasher, as shown in Figure 9.
Figure 9a shows that the dishwasher is activated when the “PVgeneration status” signal is
equal to “1”. Then, the first stage of the dishwasher’s operation (period ton 1 − to f f 1) starts.
The first stage of operation also ends when the “PVgeneration status” signal is “1”, although
it turns to zero while the dishwasher is running. Therefore, upon completion of the first
stage, the dishwasher is immediately started for stage 2 (period ton 2 − to f f 2).

In the second operating scenario for the dishwasher, Figure 9b, the dishwasher is
activated when the signal “PVstatus generation” is equal to “1”, and the first step of operation
ends when the signal “PVstatus generation” is equal to “0”. However, the device does not
continue its program operation until a “1” signal is encountered (period ton 2 − to f f 2). There
is a pause in the operation of the dishwasher due to the lack of solar power generation. This
will cause the consumption of energy from renewable sources to increase.
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The third operating scenario (Figure 9c) is similar to the second operating scenario. The
difference is that dishwasher is activated when the signal “PVstatus generation” is “0”. Thus,
the actual activation of the dishwasher operation occurs when the signal “PVstatus generation”
changes its state to “1”. There is a delay (tdelay) in turning on the device due to the device
activation signal. Then, the operation of the device is determined by the completion of step
1 and the value of the PVstatus generation signal. In the example in Figure 9c, the operation of
the device is paused, as in scenario 2.

Basing the operation of the SA on the status signal of the operation of energy gen-
eration systems has some disadvantages. These disadvantages result from the fact that
the generation of energy by RES systems is not predicted. Such an approach may lead
to a given SA being turned on just before the end of high generation from RES, while its
operation might occur when there is no energy generation. An example of such a scenario
is shown in Figure 9d. Therefore, a more complete and improved function of the proposed
EEM algorithm executed together with a new SA functionality can be achieved by using
RES generation prediction algorithms. However, the prediction of RES generation is not
the main topic of this article. We thus indicate here the necessity to apply and present one
of the possible algorithms for predicting energy generation from RES.

The operation of the EEM algorithm increasing the consumption of electricity during
the generation of energy by the photovoltaic system is shown in Figure 10. This algorithm
has been designed to maximize the consumption of electricity generated by PV with the
use of smart home appliances. In the analyzed verification example, only the dishwashers
were used. The algorithm had 100 permanently defined devices that participated in the
provision of the demand response service. The load profile was the same for each of the
dishwashers. The results shown in Figure 10 are for two variants; one made use of the
classic dishwasher profile (in the EEM algorithm ts = 0, for all SAs − EEMts_const) [7,11]
and the other, the modified dishwasher profile described in Figure 9 (EEM algorithm with
variable values for the parameter ts, for all SAs − EEMts_variables). The obtained results
for a PV system with a profile of energy generation that is highly variable in time are
shown so as to highlight the advantages of the proposed approach. The power grid load
profile (green curve at the bottom of Figure 10) was increased by the operation of 100
dishwashers. The proposed EEM algorithm randomly selected the number of devices to be
activated every minute. For this example, a maximum of three dishwashers were turned
on at any given minute. By using EEMts_const, a more even distribution of the generated
load was obtained as additional dishwashers were turned on. On the other hand, the use of
EEMts_variables resulted in a more variable load profile, with the energy consumption being
higher during the state when a large amount of energy was being generated by the PV
system (signal “PVstatus generation”). The analysis showed that 10,614.00 W less energy was
taken from the grid for EEMts_variables as compared to EEMts_const. Since one dishwasher
consumes 564.7 Wh of energy in a single work cycle, the saved energy would be enough
for about 19 (exactly 18.79) cycles of the dishwasher with the tested profile. This means
that the consumption of energy generated by the PV is increased by 19%. The dishwasher
has a fairly extensive washing program sequence (Figure 8). There are four peaks in energy
consumption. If its program of operation was divided into four stages, then even more
satisfactory results from the EEM algorithm could be achieved.
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Figure 9. Examples of dishwasher operation with a pause in its operation due to the EEM algorithm:
(a) without a pause in operation, (b) without a delay in switching on and with a pause in operation,
(c) with a delay in switching on and with a pause in operation, (d) without a delay in switching
on and with a pause in operation. The moment of switching on occurs just before the end of the
PV generation.
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Figure 10. Numerical experiment of electric power systems with PV installation and the elastic
energy management algorithm for 100 dishwashers.

An operation similar to that of the dishwasher was performed for the washing machine,
with its energy consumption profile shown in Figure 7. The washing machine operation
was also split into two stages, with an operation pause at t1. Since the washing machine has
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one power consumption peak associated with heating the main wash water, it should be
expected that the increase in energy consumption from PV systems will be less than in the
case of using dishwashers. The main operation is when the washing machine is delayed as
there is no high PV generation during this period. The obtained results from the numerical
experiment of the EEM algorithm operation with the use of 100 washing machines are shown
in Figure 11. Since one washing machine consumes 444.7 Wh of energy in one work cycle,
the saved energy would be enough for about 4 (exactly 3.97) operations of the washing
machine with the tested profile.
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Figure 11. Numerical experiment of electric power systems with PV installation and the elastic
energy management algorithm for 100 washing machines.

In order to illustrate the possible increase in electricity consumption from PV, a histogram
was determined for 10,000 repetitions of the algorithm operation for the same generation
profile (Figure 12). This histogram shows how many more dishwashers or washing machines
were powered by PV energy with the use of the novel EEM algorithm as compared to the
classic EEM. As can be seen, it is usually 14–16 dishwashers and 3–5 washing machines.
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Figure 12. Histogram showing the comparison of EEMts_const with EEMts_variables at 10,000 repeti-
tions of the algorithm for: (a) dishwasher, (b) washing machine.

The presented research results show that in order to maximize the consumption of
energy generated from RES, not only should the functioning of SAs be changed, but also
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the behavior of energy users. Research on changes in the behavior of energy users in this
context has been the subject of many studies, including [23]. There are also many articles
that propose solutions similar to those proposed in the present work. This article was not
intended to review or compare the different energy management methods. As a work on a
similar subject, the article [24] can be cited. It proposes an energy management system that
automatically manages a smart home’s energy demand according to network constraints and
user priorities. The proposed system as well as the one proposed in this article are based on a
heuristic technique. The energy management method takes into account the user’s priorities
and the power available from the power system and RES. The limitation of this approach
is its complication related to the need to obtain information regarding the power available
from the grid and the power generated from RES. Acquiring information about renewable
energy generation is also a problem in the approach proposed in this article. Therefore,
the prediction of energy production from renewable energy sources is an essential issue for
further research.

7. Conclusions

Energy management is an important issue in national power systems. In particular, it
is about the volatility of supply and demand for electricity. Earlier works have confirmed
that the EEM algorithm makes it possible to achieve equilibrium under variable conditions
of energy demand, which occur, among others, for renewable energy sources. It is also
possible to react to the appearance of the peak demand phenomenon.

The article presents the results of our research, which constitute an extension to the
previous work on the EEM algorithm. The results concerned the impact of the ts parameter
on the possibility of modifying the operation of smart appliance devices. In this case, the
shift in the operation or the acceleration of SA devices was considered. This article analyzed
the separation of the work profile of intelligent devices into two stages. This approach
resulted in an additional increase in SA’s use of energy produced by PV generation.

The new SA functionality proposed in this article concerns postponing the activation of
a given SA and dividing the work profile into stages, if this is possible. Such SA functionality
requires the EEM management algorithm to deliver to the SA not only commands to operate,
but also status information on the presence of high energy generation from RES installations.
This complicates the operation of the proposed algorithm as well as significantly increases
the amount of data transferred.

Furthermore, obtaining satisfactory results must be related to the prediction of elec-
tricity generation from RES installations. Therefore, this article indicated this problem and
discussed one of the possible prediction methods based on the GMDH neural networks and
the regression method. However, the prediction of energy generation is not the main topic
of the article. In being able to approximate the the level of potential energy generation, it
will then be possible to delay the operation of an SA if the short-term forecast of 5–10 min
indicates a lack of energy generation.

The operation of energy demand management algorithms will also affect the user’s
comfort. These algorithms can extend the implementation of certain tasks, such as washing
clothes, washing dishes, etc. In the case of no energy generation from RES systems, the
execution of the task should be limited to a satisfactory time period—for example, extend
the washing of clothes by a maximum of one hour compared to the standard program. The
deterioration of the comfort of use will also be associated with the need to prepare SAs in
advance and for tasks to be performed either in the evening or in the morning. However, the
benefits of energy independence and the reduction of electricity costs will compensate for the
inconvenience. This is even more important as energy prices have risen significantly recently
as a result of geopolitical turmoil. The ecological aspects that contribute to increasing the use
of energy coming from renewable sources are also important. Additionally, the operating
parameters of the power system are improving; this reduces the level of generation and load
mismatch, which directly translates into a reduction in network voltage fluctuations.
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Abbreviations
The following abbreviations are used in this manuscript:

∑ PSA Sum of the SAs power
COP21 Paris Climate Conference
DCD Distributed control devices
DSO Distribution System Operator
EEM Elastic Energy Management
EEM1, EEM2, EEM3 Three variants of the EEM algorithm
EEMts_const Designation in the EEM algorithm ts = 0, for all SAs

EEMts_variables
Designation in EEM algorithm with variable values for the parameter ts,
for all SAs

ESS Energy storage systems
EU The European Union
GMDH Group Method of Data Handling
GRASP Greedy Randomized Adaptive Search Procedure
MAE Absolute mean error
MSE Mean square error with its components (MSE1, MSE2, MSE3)
NPS National Power System
PNOM A list of possibilities for selecting a different power value from the vector P
pr Priorities of SAs
PV Photovoltaic systems
PVgenerationstatus Activation tags
PVNN_GMDH Predicted power value

r
(

tpred

)
Residual values

RED II Renewable Energy Directive
RES Renewable energy sources
RMSE The root of mean square error
SA Smart appliance
sc Simulation research scenarios
SG Smart Grid
t Time stamps
TSO Transmission system operators
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