
PEAKTOP Instruction Set
Architecture Manual

PEAKTOP ISA v1.3.10.4

Rev. 190814

IHP - Innovations for High Performance Microelectronics

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Copyright notice
c© IHP GmbH 2019. Verbatim copying and distribution of this document (or parts of it) is
granted provided that this copyright notice is preserved on all copies.

2

https://www.ihp-microelectronics.com

Preface

This document is a detailed specification of the PEAKTOP Instruction Set Architecture (ISA).

Audience

The document is to be used by architects, system designers, hardware developers, compiler
and operating system developers, software writers (especially in assembly) for systems based
on the PEAKTOP ISA.

Version

The version of the PEAKTOP ISA is given by four numbers. The first number specifies the
version regarding the general PEAKTOP philosophy and foundations such as basic archi-
tectural properties, view of registers, memory, exception and interrupt handling mechanism,
etc. The second, third and fourth number specify the versions of the data transfer, arith-
metic/logic and control instructions, respectively. The initial version was v1.0.0.0, and up
to v1.3.10.4, the PEAKTOP ISA was in the development phase. The first public document
describing the PEAKTOP ISA is for version v1.3.10.4.

History

The PEAKTOP ISA has it origins at the Faculty of Electrical Engineering and Information
Technologies (FEEIT) – Skopje, Macedonia (www.feit.ukim.edu.mk), in the magister work
of Aleksandar Simevski under the mentorship of Prof. Dr. Aristotel Tentov which started
in 2007. In January 2010, the defense of the magister thesis took place in Skopje, with
co-mentoring from Prof. Dr. Rolf Kraemer, also a member of the thesis committee (to-
gether with Prof. Tentov and the Dean of FEEIT at that time Prof. Dr. Mile Stankovski).
Prof. Kraemer is a professor at the Brandenburgische Technische Universität (BTU) Cottbus-
Senftenberg, Germany (www.b-tu.de), and a head of the System Design Department in the
state research institute IHP Microelectronics (www.ihp-microelectronics.com). The cooper-
ation between IHP and FEEIT was initiated in a project funded by Deutscher Akademischer
Austauschdienst (DAAD). At that time, the PEAKTOP ISA was designed, but an implemen-
tation was lacking. Aleksandar Simevski after the defense of the magister thesis moved to
Germany for obtaining the PhD degree at BTU under the mentorship of Prof. Kraemer, with
a scholarship provided by the German state of Brandenburg. An 8-core multiprocessor based
on the PEAKTOP ISA v1.2.5.2 was then implemented, produced and tested successfully in
IHP 130 nm technology. This chip was used as a demonstrator for a dynamically-adaptable
multiprocessor framework, named Waterbear which was developed in the PhD thesis.

Name

If one assumes that the word PEAKTOP is written in Cyrillic, he will read it as “REACTOR”,
which is actually the original name of the architecture, inspired from the nuclear reactor.
However, virtually all of the people whose native language is written in Cyrillic assume that
the word is written in English, and they like the name because it represents the “top of the
peak”, or “the highest peak of all”. Thus, the name remained, and it can be read in both
ways. Therefore, in this document it is always written with upper case letters because of the
“double” meaning.

Style convention

CODE font is used to display code in assembly or high-level program languages, as well as
names of variables, bit-fields, constants, binary values, etc.

3

https://feit.ukim.edu.mk
https://feit.ukim.edu.mk
https://feit.ukim.edu.mk
https://www.b-tu.de
https://www.b-tu.de
https://www.ihp-microelectronics.com
https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

ADD reg0, reg1 is an example of a valid assembly line. However, listings of program
parts or code blocks in assembly or higher-level languages (incl. pseudo-languages) are given
in special figure-like environment.

<replace here> denotes a placeholder which should be replaced with one of at least two
optional terms.

Warning blocks are used to stress specific or exceptional situations.

Information blocks are used used to display important information or additional explanation.

Supplementary materials

PEAKTOP-related literature:

• PEAKTOP Assembler (PAS v4.3.2.0)

• PEAKTOP Multiprocessor Debugger (PMD v2.3.0.0)

• PEAKTOP DW Execution Pipeline

Thank you!

Thank you for using the PEAKTOP ISA and the products based on it. You are highly
encouraged to send us feedback, suggestions, error reports, etc. to:

simevski@ihp-microelectronics.com

IHP - Innovations for High Performance Microelectronics

4

https://www.ihp-microelectronics.com
mailto:simevski@ihp-microelectronics.com

Contents

Preface 3

Contents 5

1 INTRODUCTION 11

2 ARCHITECTURAL PROPERTIES 12

2.1 Machine modes . 12

2.1.1 Natural machine mode . 12

2.1.2 FP machine mode . 12

2.1.3 Regularity . 13

2.2 Register files . 13

2.2.1 Enumeration, labeling and representation 13

2.2.2 Registers operating in lower machine modes 14

2.2.3 Circularity . 14

2.2.4 GPR file . 15

2.2.5 Special register file . 16

2.2.6 DSP, FPR and implementation-specific register files 16

2.3 Memory addressing . 16

2.3.1 Address space . 16

2.3.2 Data addressing modes . 17

2.3.3 Instruction addressing . 17

2.3.4 Address alignment . 17

2.3.5 Endianness . 18

2.3.6 Orthogonality . 18

2.4 Program flow . 18

2.4.1 INSTRUCTION COUNTER . 18

2.4.2 Data and control inter-dependencies 18

2.4.3 Pausing execution . 19

2.5 Operating system support . 19

2.6 Multiprocessing support . 19

5

PEAKTOP Instruction Set Architecture Manual

3 BINARY LAYOUT 21

3.1 Data transfer instructions . 21

3.1.1 Memory transfer . 22

3.1.2 Inter-register transfer . 23

3.1.3 Load immediate . 24

3.2 Arithmetic/logic instructions . 24

3.2.1 Integer unit . 25

3.2.2 Floating point unit . 26

3.2.3 DSP unit . 26

3.3 Control instructions . 27

3.3.1 Program transfer . 27

3.3.2 Return from routine . 28

3.3.3 Pause instruction execution . 29

3.4 Summary . 29

4 EXCEPTIONS AND INTERRUPTS 33

4.1 Non-Maskable Interrupt (NMI) . 33

4.2 Exceptions . 34

4.2.1 DEBUG MODE EXCEPTION . 36

4.2.2 INVALID INSTRUCTION . 37

4.2.3 SYSTEM INSTRUCTION . 37

4.2.4 UNIMPLEMENTED GPR BANK . 37

4.2.5 UNIMPLEMENTED INSTRUCTION . 37

4.2.6 UNIMPLEMENTED REGISTER . 38

4.2.7 INVALID OPERATION . 38

4.2.8 DIVISION BY ZERO . 38

4.2.9 OVERFLOW . 39

4.2.10 FP INVALID OPERATION . 39

4.2.11 FP DENORMALIZED OPERAND . 40

4.2.12 FP DIVISION BY ZERO . 40

4.2.13 FP OVERFLOW . 40

4.2.14 FP UNDERFLOW . 41

4.2.15 FP INEXACT RESULT . 41

4.2.16 DSP EXCEPTION 0 . 41

4.2.17 DSP EXCEPTION 1 . 41

4.2.18 DSP EXCEPTION 2 . 42

4.2.19 DSP EXCEPTION 3 . 42

4.2.20 I SYSTEM BUS ERROR . 42

4.2.21 D SYSTEM BUS ERROR . 42

6

https://www.ihp-microelectronics.com

Contents

4.3 Interrupts . 43

4.4 Handling mechanism . 44

4.4.1 Hierarchy and priority . 44

4.4.2 Postponed handling . 45

4.4.3 Nesting . 46

5 SPECIAL REGISTERS 48

5.1 IMPLEMENTATION REGISTER . 49

5.2 EXECUTION STATUS . 50

5.3 EXCEPTION INSTRUCTION . 51

5.4 EXCEPTION REGISTER . 51

5.5 EXCEPTION MASKS . 52

5.6 EXCEPTION TABLE BASE ADDRESS . 52

5.7 INTERRUPT TABLE BASE ADDRESS . 52

5.8 CORE ID . 53

5.9 PROCESS ID . 53

5.10 SYSTEM CONTROL REGISTER . 53

5.11 NMI RETURN POINTER . 54

5.12 EXCEPTION RETURN POINTER . 54

5.13 USER CONTROL REGISTER . 54

5.14 CALL RETURN POINTER . 55

5.15 INTERRUPT RETURN POINTER . 56

5.16 DSP CONFIGURATION REGISTER . 56

6 INSTRUCTION SET 57

6.1 Detailed instruction specification . 57

6.1.1 MOV – Move data . 58

6.1.2 ADD – Add . 64

6.1.3 SUB – Subtract . 67

6.1.4 MUL – Multiply . 70

6.1.5 DIV – Divide . 73

6.1.6 SL – Shift left . 77

6.1.7 SR – Shift right . 80

6.1.8 RL – Rotate left . 83

6.1.9 RR – Rotate right . 86

6.1.10 AND – AND bitwise . 89

6.1.11 NAND – Negated AND bitwise . 92

6.1.12 OR – OR bitwise . 95

6.1.13 XOR – Exclusive OR bitwise . 98

7

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.14 SB – Set bit . 101

6.1.15 RB – Reset bit . 104

6.1.16 TB – Test bit . 107

6.1.17 RVB – Reverse bits . 110

6.1.18 FADD – FP Add . 113

6.1.19 FSUB – FP Subtract . 115

6.1.20 FMUL – FP Multiply . 117

6.1.21 FDIV – FP Divide . 119

6.1.22 FREM – FP Remainder . 121

6.1.23 FCMP – FP Compare . 123

6.1.24 FSQR – FP Square root . 125

6.1.25 FABS – FP Absolute . 127

6.1.26 FNEG – FP Negate . 129

6.1.27 FRND – FP Round to integer . 131

6.1.28 FF2I – FP to integer . 133

6.1.29 FI2F – Integer to FP . 135

6.1.30 FEXT – Extend FP format . 137

6.1.31 FSQZ – Squeeze FP format . 139

6.1.32 MAD – Multiply-add . 141

6.1.33 MSU – Multiply-subtract . 144

6.1.34 FMAD – FP Multiply-add . 147

6.1.35 FMSU – FP Multiply-subtract . 149

6.1.36 JMP – Jump . 151

6.1.37 BZ – Branch if Zero . 154

6.1.38 BNZ – Branch if Not Zero . 157

6.1.39 BM – Branch if MSB . 160

6.1.40 BMZ – Branch if MSB or Zero . 163

6.1.41 BNM – Branch if Not MSB . 166

6.1.42 BNMO – Branch if Not MSB or all Ones 169

6.1.43 BL – Branch if LSB . 172

6.1.44 BLZ – Branch if LSB or Zero . 175

6.1.45 BNL – Branch if Not LSB . 178

6.1.46 BNLO – Branch if Not LSB or all Ones 181

6.1.47 BO – Branch if all Ones . 184

6.1.48 BNO – Branch if Not all Ones . 187

6.1.49 RET – Return from procedure . 190

6.1.50 RETI – Return from interrupt handler 192

6.1.51 RETE – Return from exception handler 194

8

https://www.ihp-microelectronics.com

Contents

6.1.52 RETN – Return from Non-Maskable Interrupt (NMI) handler 196

6.1.53 WAIT – Wait . 198

6.2 System instructions . 200

6.3 Assembly conventions . 200

6.3.1 Instruction options . 200

6.3.2 Instruction arguments . 202

6.3.3 Summary . 203

6.4 Pseudo-instructions . 207

6.4.1 Single pseudo-instructions . 207

6.4.2 Multiple pseudo-instructions . 208

6.5 Examples . 211

List of Acronyms 216

List of Figures 217

List of Tables 220

List of Examples 222

List of Listings 225

References 226

Index 227

9

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

10

https://www.ihp-microelectronics.com

1. INTRODUCTION

The PEAKTOP ISA is a general-purpose Load/Store Reduced Instruction Set Computer
(RISC) architecture, suitable for real-time embedded processing as well as for general data
processing. It is designed primarily for 32-bit and 64-bit implementations. However, this
is not a limitation for shorter or wider implementations. It provides operating system and
multiprocessing support.

The following points briefly describe the PEAKTOP ISA.

Simple The design of the ISA is driven by simplicity. It can be seen by the fact that
in total only 53 mnemonics are used for all native (non-pseudo) instructions.
Simplicity is further promoted by the principles of regularity, circularity and
orthogonality.

Flexible Another motivation behind the PEAKTOP ISA besides simplicity is flexibility
in tailoring the implementations according to their purpose and functionality.
That is, they can choose which of the arithmetic/logic instructions to imple-
ment provided that an exception is raised on each unimplemented instruction,
thus enabling simulation of the instruction by software. The Floating Point
Unit (FPU) and the Digital Signal Processing (DSP) unit are also optional.
Up to eight register files (2 mandatory and 6 optional) may be used.

Complete Although simple, the PEAKTOP ISA is complete and provides all the func-
tionality as any other RISC architecture. It has a full operating system and
multiprocessing support.

Regular Machine modes of 20, 21, 22, . . . , 27 bytes are possible. Each implementation
defines its natural machine mode. However, the PEAKTOP ISA demands
that all modes up to and including the defined natural machine mode must
be implemented. For example, if the natural machine mode is 32-bit (4
bytes), the machine modes of 8- and 16-bits must also be fully implemented.

Circular The last register in the register file sees the first register as its subsequent
neighbor, in the same manner that the first register sees the second. This
applies for all register files.

Orthogonal All addressing modes consider equal all General-Purpose Register (GPR)s.
Not only that, all instructions also consider equal all GPRs regarding width
and functionality. That is, there are no “special” GPRs (which is even con-
tradictory by definition).

The PEAKTOP ISA is scientific: regularity, orthogonality and circularity make the architecture a
natural platform for scientific problems.

These “scientific” properties of the ISA further enable regularity, completeness, simplicity
and flexibility during compiler and program construction as well as during their (formal)
verification.

The properties of the PEAKTOP ISA are described in Section 2. The binary representation,
instruction layout and description is given in Section 3. The exceptions, interrupts, their
priorities and handling are defined and described in Section 4. The special registers are
thoroughly described in Section 5. Finally, Section 6 gives the details of each instruction in
the architecture, as well as the assembly conventions.

11

2. ARCHITECTURAL PROPERTIES

All instructions in the PEAKTOP ISA are 32-bit wide with 0,1,2 or 3 operands. In the arith-
metic/logic operations one register is used both as an operand source and as a destination for
the result of the operation. This type of machines are usually called two-address machines.

The binary representation of signed integers is in second complement. Common implemen-
tations usually choose 32-bit or 64-bit GPR width as well as 32-bit or 64-bit Arithmetic/Logic
Unit (ALU) width, although both wider and shorter widths are also possible. The ISA defines
8, 16, 32, . . . , 1024-bit wide machine modes.

2.1 Machine modes

Each instruction has a 3-bit field MMODE specifying the machine mode in which the instruc-
tion is executed (see Table 1).

Table 1: Machine modes

MMODE Nr. bits Nr. bytes Option Description
000 8 1 B Byte
001 16 2 H Halfword
010 32 4 W Word
011 64 8 D Doubleword
100 128 16 Q Quadword
101 256 32 1 Sentence
110 512 64 2 Doublesentence
111 1024 128 4 Quadsentence

For example, a data transfer instruction in word mode transfers 32 bits (4 bytes) of data; an
arithmetic/logic instruction in halfword mode performs an operation on 16-bit wide (2 byte)
operands; a branch instruction in byte mode examines an 8-bit (1 byte) argument, etc.

2.1.1 Natural machine mode

Implementations define the natural machine mode. It is determined by the GPR width and
the ALU width. If both of them are, e.g., 32-bit, then the natural mode is word (W). However,
if the widths differ, e.g., the ALU width is 32-bit and the GPR width is 64-bit or 16-bit, the
natural mode should be defined carefully according to other criteria (for instance, from the
target application).

2.1.2 FP machine mode

Implementations with an FPU additionally may have a Floating Point (FP) machine mode
designated only for the FP instructions with bit widths other than the “power-of-two” widths
in Table 1 (e.g., 80 bits for extended FP precision). Therefore, in the text, the machine
modes of Table 1 are also referred to as integer machine modes. See also Subsection 3.2.2.

12

2. ARCHITECTURAL PROPERTIES

2.1.3 Regularity

The property of regularity of the ISA imposes that all machine modes up to (and including)
the defined natural machine mode must be implemented. For example, an implementation
with a 32-bit natural machine mode must also implement 8- and 16-bit machine modes.

2.2 Register files

A set of registers grouped by their function is called register file. The PEAKTOP ISA
predefines two register files:

• GPR file

• Special register file

Furthermore, implementations may define up to six additional register files, e.g., DSP file
or Floating Point Register (FPR) file, or other implementation-specific register files, e.g.,
additional GPR file. Thus, with the predefined two register files, in total up to eight register
files are possible. All registers within a register file must have the same width, which is a
consequence of the regularity property.

The register state is the state of all registers in all register files at a given point of time.

2.2.1 Enumeration, labeling and representation

The instructions of the PEAKTOP ISA have 6-bit fields that specify the register(s) to be
used. This means that the maximal number of registers in each of the register files is 64.
However, implementations can have lower number of registers. All registers within a register
file are enumerated from 0 to max. 63. Thus, the 6-bit instruction fields directly specify the
number of the register to be used.

The register names (labels) reg<nr> and spc<nr> denote the <nr>-th register of the GPR
file and the special register file, respectively. For example, reg3 denotes GPR 3. Furthermore,
the labels REG and SPC (without numbers) refer to the entire GPR and special register file,
respectively. If the implementation opts to use DSP or FPR files, the register names and
labels are dsp<nr> and fpr<nr> for the registers, and DSP and FPR for the entire files,
respectively. For other implementation-specific register files, the register names and labels
are left unspecified.

In the register representations, the bit significance of the register increases with sliding from
the left to right. Thus, the Most Significant Bit (MSB) of the register is on the far left side,
while the Least Significant Bit (LSB) is on the far right side. Fig. 1 shows an 8-bit register
with indicated MSB (7) and LSB (0). Bit enumeration starts from zero.

7 6 5 4 3 2 1 0
1 1 0 1 0 0 0 1

LSBMSB

Fig. 1: Graphical representations of registers, instructions and bit-fields

This is also true for the representation of instructions and instruction bit-fields.

13

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

2.2.2 Registers operating in lower machine modes

In machine modes that are shorter than the GPR width, only the corresponding LSBs of the
registers are used. For example, Fig. 2 shows a 32-bit register file operating in 16-bit and
8-bit mode, in which only the lower 16 and 8 bits (white fields) are used, and the upper 16
and 24 bits (grey fields) are not used, respectively.

31 015

(a) 32-bit register file in 16-bit machine mode

31 07

(b) 32-bit register file in 8-bit machine mode

Fig. 2: Registers operating in lower machine modes

On the other side, if the machine mode is greater than the GPR width, then the principle of
circularity applies (see Subsection 2.2.3).

2.2.3 Circularity

In machine modes that are wider than the register file width, more than one registers are
used. For example, when writing a 32-bit register file in 64-bit machine mode, the higher
32-bit part will not be truncated but written to the subsequent register. That is, two 32-bit
registers will be written: the lower 32-bits will be written in the register specified by the
instruction (e.g., register 2) and the higher 32-bits will be written in register 3. On the
other hand, when reading register 2 in 64-bit machine mode, the 64-bit data is formed by
concatenating register 3 (higher 32 bits) and register 2 (lower 32 bits). Similarly, in 128-bit
machine mode, four registers are used, etc.

Fig. 3 shows an example with an 8-bit register file in which register 2 is written/read in 16-bit
machine mode. The ordering is little-endian.

0

1

2

3

4

write
read

16-bit data

11010001 00110101

8-bit wide register file with 5 registers

0 0 1 1 0 1 0 1

1 1 0 1 0 0 0 1

Fig. 3: Read/write of data wider than the register file width

However, the number of registers in the file is limited, as said, there can be maximum 64
registers. If the last register is written/read in a wider machine mode, then the higher data
part comes from or goes to the first register, as if they are subsequent neighbors. This is
the property of register circularity of the ISA. Fig. 4 shows an 8-bit register file with five
registers, in which the last register (4) is written/read in 16-bit machine mode.

14

https://www.ihp-microelectronics.com

2. ARCHITECTURAL PROPERTIES

0

1

2

3

4

write
read

16-bit data

11010001 00110101

8-bit wide register file with 5 registers

0 0 1 1 0 1 0 1

1 1 0 1 0 0 0 1

Fig. 4: Read/write of wider data in the last register

In this case, the higher 32 bits are written in register 0. Thus, the register file of Figs. 3 and 4
can be represented as in Fig. 5, showing more clearly which data parts go where. In Fig. 5
the bit significance of the registers’ content and the register number increase with moving
clock-counterwise.

4

3

2

1

0

Fig. 5: Register circularity

If more than two registers are involved in a read/write operation, the same principle applies
in the same manner.

Circularity of a GPR file with a non-standard width in integer machine mode

FPUs with extended precision may impose implementations using a “non-standard”, i.e., not
a power-of-two width of the GPR file. In such a case, all register bits are used in the FP
machine mode. However, for integer machine modes that are shorter than the GPR width,
only the corresponding subset of bits at the least significant end of the GPRs are “visible”
(see Subsection 2.2.2). On the other hand, if the integer machine mode is greater than the
GPR width, the property of circularity is here applied in the same manner for the “visible”
part of the GPR file.

2.2.4 GPR file

The GPR file is used directly by most of the instructions. In fact, all other register files can
be accessed only through the GPR file by inter-register transfer instructions1. As said, the
maximal number of GPRs can be 64, but the minimal number is 3, i.e., all implementations
must have at least three GPRs.
1 An exception to this is when implementations opt to have an FPR file which is accessed by the FP
instructions (see Subsection 2.2.6).

15

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

GPR width

The minimal GPR width is 8 bits and the maximal is 1024 bits (according to the machine
modes in Table 1). However, the GPR width does not have to be a “power-of-two” number.
For instance, implementations with FPU may require extended FP precision, e.g., 80-bit, in
which case the GPR width can be set to 80 bits. Alternatively, implementations may opt to
add another FPR file, independent from the GPR file. In this case, the FP instructions use
the FPR file and not the GPR file (see Subsection 2.2.6).

2.2.5 Special register file

Table 2 shows the special registers predefined by the PEAKTOP ISA. Section 5 shows all
the details of the special registers.

Table 2: Special registers

Nr. Register
1 IMPLEMENTATION REGISTER
2 EXECUTION STATUS
3 EXCEPTION INSTRUCTION
4 EXCEPTION REGISTER
5 EXCEPTION MASKS
6 EXCEPTION TABLE BASE ADDRESS
7 INTERRUPT TABLE BASE ADDRESS
8 CORE ID
9 PROCESS ID
10 SYSTEM CONTROL REGISTER
11 NMI RETURN POINTER
12 EXCEPTION RETURN POINTER
13 USER CONTROL REGISTER
14 CALL RETURN POINTER
15 INTERRUPT RETURN POINTER
16 DSP CONFIGURATION REGISTER

2.2.6 DSP, FPR and implementation-specific register files

These register files are optional and can be accessed only through the GPR file by inter-
register transfer instructions (see Subsection 3.1.2). However, the PEAKTOP ISA specifies
that if a FPR file is implemented, then the FP instructions use the FPR file, and not the
GPR file. On the other hand, If FPR file is not implemented, the FP instructions use the
GPR file.

Furthermore, the PEAKTOP ISA provides a 4-bit auxiliary opcode which specifies the inter-
register transfer between the GPR file on one hand, and the DSP and FPR file on the other
(see Table 8). Thus, in total 7-out-of-16 codes are predefined, while the other 9 codes are
left for (up to four) implementation-specific register files.

2.3 Memory addressing

2.3.1 Address space

The PEAKTOP ISA supports up to 128-bit virtual address space.

16

https://www.ihp-microelectronics.com

2. ARCHITECTURAL PROPERTIES

The lower part of the virtual address is the data or instruction address (see Subsections 2.3.2
and 2.3.3). The higher part of the virtual address is contained in the PROCESS ID special
register.

The physical address can be formed either directly from the virtual address (as a subset
of the virtual address), or, by a translation with a Memory Management Unit (MMU) or
Memory Protection Unit (MPU).

The Input/Output (IO) devices arememory-mapped and the instructions make no difference
in accessing memory or IO.

2.3.2 Data addressing modes

Data is accessed in memory withmemory transfer instructions. The data address is formed
in one of three ways:

Register The address is contained in a GPR.

Displacement base + offset: the address is formed as a sum of the base address contained
in a GPR, and a 12-bit signed offset.

Indexed base + index: the address is formed as a sum of the base address contained
in a GPR, and the index contained also in a GPR.

The register and indexed addressing modes include forms with automatic pre- and post-
increment/decrement of the register/index GPRs according to the machine mode, i.e., ac-
cording to the number of accessed bytes.

Furthermore, an immediate access to data and operands is also provided. The load immediate
instruction has an 18-bit signed/unsigned immediate, while arithmetic/logic instructions have
a 14-bit signed/unsigned immediate.

2.3.3 Instruction addressing

The instruction address is formed by multiplying the INSTRUCTION COUNTER by four (see
Subsection 2.3.4). The INSTRUCTION COUNTER is automatically incremented by one. How-
ever, a program transfer instruction (unconditional or taken branch) overwrites it with the
target instruction address. The program transfers can be of two types, depending on the way
the instruction address is formed:

Relative In relative program transfer, a signed offset (20-bit for unconditional transfer
and 14-bit for branches) is added to the current value of the INSTRUCTION
COUNTER.

Absolute In absolute program transfer, the INSTRUCTION COUNTER is overwritten
with the contents of a GPR specified by the program transfer instruction.

Finally, the INSTRUCTION COUNTER is changed upon entering interrupt, exception or NMI
handling (see Subsection 2.4).

2.3.4 Address alignment

It is required that the instruction address is always word-aligned (four-byte-aligned), i.e.,
the two LSBs of the instruction address are always zero. Word-alignment of instructions
facilitates implementation since all instructions are 32-bit wide.

The data address, on the other hand, does not have to be aligned in any way.

17

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

2.3.5 Endianness

In respect to memory addressing implementations can choose either big or little endianness.
Static or dynamic configurability of the endianness is also allowed.

However, in respect to the internal operation of the register files, it is strictly specified to
be little-endian2 for the purposes of program compatibility, portability and simplicity. See
Subsection 2.2.3.

2.3.6 Orthogonality

The property of orthogonality of the ISA imposes that all addressing modes treat and
consider equal all GPRs in the GPR file in respect to their width, functionality and purpose.
That is, there are no GPRs with special widths, functionalities or purpose, but all are equally-
wide general-purpose registers. This means that all instructions (not only addressing modes)
treat and consider equal all GPRs.

Of course, at a higher level, e.g., during compiler construction, some GPRs may be assigned
special roles such as stack or frame pointers, but this view remains only at the higher level.

2.4 Program flow

A routine is a set of instructions performing some task. The program routines are called
procedures, while the interrupt/exception handling routines are called handlers.

2.4.1 INSTRUCTION COUNTER

After system reset, fetching instructions from memory starts at address zero. The INSTRUC-
TION COUNTER is also reset to zero. After each successfully executed instruction, the IN-
STRUCTION COUNTER is automatically incremented by one. The value of the INSTRUCTION
COUNTER can be changed in four more ways:

• by a program transfer instruction (see Subsection 2.3.3);

• by a return from routine instruction;

• upon entering interrupt handling when it is overwritten with the INTERRUPT TABLE
BASE ADDRESS;

• upon entering exception handling or NMI handling when it is overwritten with the
EXCEPTION TABLE BASE ADDRESS.

The program transfer instructions have the option to save the current INSTRUCTION
COUNTER in the CALL RETURN POINTER. On the other hand, the INSTRUCTION COUNTER is
automatically saved in the INTERRUPT RETURN POINTER, EXCEPTION RETURN POINTER
or NMI RETURN POINTER on entering interrupt, exception or NMI handling, respectively.
Returning from a routine to the point of the routine call, or to the point of interruption/ex-
ceptional instruction is done by executing a return from routine instruction.

2.4.2 Data and control inter-dependencies

The data inter-dependencies between instructions can be deduced from the register speci-
fiers within the instructions.
2 Therefore, little endianness in the PEAKTOP is slightly more preferred than big also for the memory.

18

https://www.ihp-microelectronics.com

2. ARCHITECTURAL PROPERTIES

Although there is an EXECUTION STATUS register containing flags from execution of arith-
metic/logic instructions, the branch instructions do not use them, which means that imple-
mentations do not have to take care of the EXECUTION STATUS flags when dealing with
control inter-dependencies.

However, software should take care in implementations with out-of-order execution if it de-
cides to use the EXECUTION STATUS register, since this register reflects the status of the last
executed arithmetic/logic instruction. That is, in out-of-order execution, a subsequent arith-
metic/logic instruction can be executed before the arithmetic/logic instruction upon which a
branch makes a decision according to an execution flag.

2.4.3 Pausing execution

Program execution can be paused (definitely or indefinitely) by the WAIT instruction. A
definite pause is finished when the predefined pause period expires. Furthermore, both definite
and indefinite pauses are finished by an interrupt/NMI, or by reset.

2.5 Operating system support

The PEAKTOP ISA defines two operating modes:

system In system mode, all instructions can be executed, and all registers can be
accessed.

user In user mode, system instructions cannot be executed and some special reg-
isters cannot be accessed.

An attempt in user mode to execute a system instruction or to access some special registers
which cannot be accessed in user mode, raises an exception.

The execution starts in system mode. Writing the 0-th bit of the SYSTEM CONTROL REG-
ISTER with zero switches to execution in user mode (see Subsection 5.10). However, only
a raised, potent exception, potent interrupt or NMI switches to execution in system mode.
Thus, for example, an attempt to write to the SYSTEM CONTROL REGISTER in user mode
will raise an exception, which if potent, will transfer execution to the exception handler in
which the operating system can determine the operating mode.

With these simple mechanisms, the PEAKTOP ISA satisfies the Popek and Goldberg’s vir-
tualization requirements (classic virtualization – trap-and-emulate) [1].

MMU/MPU

Implementations may include MMU/MPU for address translation and memory/IO access
protection which can be largely used by the operating system. The PROCESS ID special
register is used to specify the process and to form the virtual address (see Subsection 2.3.1).

2.6 Multiprocessing support

The PEAKTOP ISA provides pairs of load/store instructions in which the store returns one
or zero in order to tell whether the load/store at the given memory location was performed
atomically or not, respectively. This “atomic” load is called load-locked, while the store is
called store-conditional. Load-locked and store-conditional can be executed in any machine
mode. However, the machine modes in a load-locked/store-conditional pair must be the
same. On the other side, the addressing modes may differ in a single pair of load-locked and

19

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

store-conditional. Nevertheless, the computed (effective) data address still must be the same
for the pair, otherwise the store-conditional will always fail. Multiprocessor synchronization
routines and libraries may be built out of these pairs of instructions [2].

Additionally, the USER CONTROL REGISTER has a writable bit SYNC which may be used
by the hardware and software to build synchronization mechanisms (see Subsection 5.13).
The state of this bit is reflected on the output sync line. Furthermore, in a multiprocessor
environment, often it is required that the processing element is identified by a single unique
ID within the system. In this direction, the CORE ID special register can be used by the
hardware or software.

20

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

This Section details the binary layout of the instruction set. All instructions in the PEAKTOP
ISA are 32-bit wide. In the representations of the bit fields, the bit significance increases with
sliding to the left. Thus, the MSB of the field is on the first position on the left side, while
the LSB is on the first position on the right side (see Fig. 1). The eight MSBs of the 32-bit
wide instruction is the instruction OPCODE. There is also an additional, 4-bit auxiliary opcode
AUXCODE.

The instructions are divided according to their function in three groups:

• Data transfer instructions

• Arithmetic/logic instructions

• Control instructions

Note that further division and more detailed instruction specification is given in Section 6!

3.1 Data transfer instructions

Fig. 6 shows the layout of the data transfer instruction and Table 3 shows the description of
their bit fields.

D L MMODE O U T

8

DESTINATION AUXCODE BASE INDEX

OPCODE

6 4 2 6 6

IMMEDIATE18

OFFSET12HI OFFSET12LO

Fig. 6: Layout of data transfer instructions

OFFSET12 is a 12-bit signed offset used for data address formation. It is a concatenation of the
6-bit wide fields OFFSET12HI and OFFSET12LO.

Three types of data transfer are possible:

• Memory transfer

• Inter-register transfer

• Load immediate

The width of the data which is transferred is specified by the MMODE field. The data width is
a power-of-two and is min. 8× 20 = 8 bits for MMODE = 000, and max. 8× 27 = 1024 bits
for MMODE = 111 (see Table 1).

21

PEAKTOP Instruction Set Architecture Manual

Table 3: Bit field description of data transfer instructions

Bit field Width Description
D 1 Data transfer (always 1 for data transfer instructions)
L 1 Load

MMODE 3 Machine mode
O 1 Offset
U 1 Unsigned immediate data / Atomic memory transfer
T 1 Type of transfer

DESTINATION 6 Destination register specifier
AUXCODE 4 Auxiliary opcode
BASE 6 Base register specifier
INDEX 6 Index register specifier

IMMEDIATE18 18 Immediate signed/unsigned data
OFFSET12HI 6 High part of the 12-bit signed address offset OFFSET12
OFFSET12LO 6 Low part of 12-bit signed address offset OFFSET12

Maximal transfer width

Implementations define a maximal transfer width parameter. In order to preserve the
regularity property (see Subsection 2.1.3), all transfer widths up to the defined maximal
transfer width must be implemented. For example, an implementation with 64-bit maximal
transfer width must implement also 8-, 16- and 32-bit transfer widths. An attempt to execute
an instruction specifying a width greater than the maximal transfer width (e.g., 128-bit in
the example) raises the UNIMPLEMENTED INSTRUCTION exception.

3.1.1 Memory transfer

If the transfer type bit T = 0, a memory transfer is inferred:

load
L = 1

A memory value is loaded into a REG register (GPR) specified by the DES-
TINATION field.

store
L = 0

The value of the REG register specified by the DESTINATION field is stored
to memory.

Addressing

The address is formed in three different ways:

displacement
O = 1

MEM[REG[BASE] + OFFSET12]: the value of the signed 12-bit offset con-
tained in the OFFSET12HI and OFFSET12LO fields is added to the value of
the GPR specified by the BASE field to form the address.

register
O = 0

MEM[REG[INDEX]]: the address is contained in the GPR specified by the
INDEX field. For register addressing, the MSB of AUXCODE should be 0.

indexed
O = 0

MEM[REG[BASE] + REG[INDEX]]: the address is a sum of the values of the
GPRs specified by the BASE and INDEX fields. For indexed addressing, the
MSB of AUXCODE should be 1.

22

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

The expressions REG[<nr>], SPC[<nr>] and DSP[<nr>] refer to the value of the <nr>-th REG,
SPC and DSP register, respectively. Furthermore, the expression REG[<nr>][<bitnr>] denotes
the <bitnr>-th bit of the <nr>-th GPR, while REG[<nr>][<bithi>:<bitlo>] denotes a range
of bits <bithi> down to <bitlo> of the <nr>-th register.

The expression MEM[<address>] refers to the value in memory at a location <address>. Fur-
thermore, expressions like MEM[REG[INDEX]] or MEM[REG[BASE] + REG[INDEX]] are shortly
written as MEM[INDEX] and MEM[BASE + INDEX] since the data address is always formed by
using registers from the GPR file.

In register and indexed addressing the value of the index register can be automatically in-
cremented or decremented before or after the memory transfer. The increment/decrement
value is determined according to the MMODE field. For example, a pre-increment in a 16-bit
transfer will add 2 to the value of the INDEX register before forming the address, while a
post-decrement in a 32-bit transfer will subtract 4 from the value of the INDEX register after
forming the address. The selection of the pre-/post- increment/decrement is done by the
AUXCODE field (see Table 8).

The expressions INDEX++ and INDEX-- denote post-increment and post-decrement of the index
GPR, respectively. Similarly, ++INDEX and --INDEX denote pre-increment and pre-decrement.

Atomic memory transfer

Synchronization primitives for memory transfer in multiprocessing applications are specified
by setting the bit U = 1: load-locked for L = 1 and store-conditional for L = 0. All
other fields have the same function as for the “normal” memory transfer for U = 0. From
the ISA point of view, the single difference is that store-conditional writes the GPR specified
by the DESTINATION field with 1 if the atomicity of the load-store couple is preserved, or 0
otherwise, while in normal store this GPR is not changed. The width of the written 0 or 1 is
also specified by MMODE.

3.1.2 Inter-register transfer

Inter-register transfer is inferred by T = 1 and O = 0. Data can be transferred (copied)
from any REG register to any other REG register. Furthermore, data can be transferred from
any REG register to any register in other register files. Similarly, data from any register in any
register file can be transferred to any REG register. However, transfer between other register
files (not involving a REG register) is not possible. The AUXCODE field differentiates these
possibilities (see Table 8). The destination register number is specified by the DESTINATION
field, while the data source register number is specified by the INDEX field. For inter-register
transfer L = 1 and U = 0.

In fact, writing and reading a non-REG register requires data transfer to/from a REG register
since the instructions for memory transfer use only REG registers. Thus, for example, if a
SPC register is to be loaded from memory, the memory value has to be firstly loaded into a
REG register, and then copied by an inter-register transfer instruction to the destination SPC
register. Similarly, before storing a SPC register to memory, its value has to be firstly loaded
to a REG register, after which the REG register is stored to memory.

23

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

3.1.3 Load immediate

Loading of an immediate value is inferred by T = 1, O = 1 and L = 1. The immediate
value specified in the 18-bit IMMEDIATE18 instruction field is directly loaded into a REG
register specified by the DESTINATION field. By specifying U = 0 the immediate value is
sign-extended to the width of the transfer specified by MMODE, according to the MSB of
the IMMEDIATE18 field. By specifying U = 1 the value is zero-extended. Of course, if the
transfer width is 16- or 8-bit, the MSBs of the immediate value are truncated, i.e., the lower
16 or 8 bits are correspondingly taken. See Table 4.

Table 4: Sign/zero extension and truncation of an immediate value according to MMODE

MMODE U = 0 U = 1
IMMEDIATE18 = 011001001000110001

8 00110001 00110001
16 1001001000110001 1001001000110001
32 00000000000000011001001000110001 00000000000000011001001000110001

IMMEDIATE18 = 111001001000110001
8 00110001 00110001
16 1001001000110001 1001001000110001
32 11111111111111111001001000110001 00000000000000111001001000110001

Table 4 shows two examples of IMMEDIATE18, one with MSB of 0 and the other with MSB
of 1, while the rest 17 bits are the same in both cases, i.e., 11001001000110001. Note that
in the first case for MMODE = 16 the MSB of the truncated value is 1 and will be treated as
negative number in signed operations, although the supplied immediate was originally positive
(with MSB of 0). The same holds for the latter case for MMODE = 8, where the truncated
value is positive, and the immediate was originally negative. Of course, in unsigned operations
this does not matter.

3.2 Arithmetic/logic instructions

Fig. 7 shows the layout of the arithmetic/logic instructions and Table 5 shows the description
of their bit fields.

D C MMODE I U F

8

DESTINATION AUXCODE SOURCE SOURCE2

OPCODE

6 4 2 6 6

IMMEDIATE14

I8HI I8LO

Fig. 7: Layout of arithmetic/logic instructions

IMMEDIATE8 is an 8-bit signed/unsigned immediate operand. It is a concatenation of the 2-bit
wide field I8HI and the 6-bit wide field I8LO. Bit U signals whether IMMEDIATE8 is signed (0) or
unsigned (1), i.e., the same as for IMMEDIATE14.

The arithmetic/logic instructions are used for:

• Integer arithmetic

24

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

Table 5: Bit field description of arithmetic/logic instructions

Bit field Width Description
D 1 Data transfer (always 0 for arithmetic/logic instructions)
C 1 Control (always 0 for arithmetic/logic instructions)

MMODE 3 Machine mode
I 1 Immediate operand
U 1 Unsigned operation
F 1 Floating point operation

DESTINATION 6 Destination register specifier
AUXCODE 4 Auxiliary opcode
SOURCE 6 Source operand register specifier
SOURCE2 6 Second source operand register specifier

IMMEDIATE14 14 Immediate signed/unsigned operand
I8HI 2 High part of 8-bit immediate operand IMMEDIATE8
I8LO 6 Low part of 8-bit immediate operand IMMEDIATE8

• Shift/rotate

• Logic operations

• Bit operations

• Floating point operations

• Fused multiplication-addition/subtraction

Each arithmetic/logic operation is performed on at least one operand residing in a GPR
specified by the DESTINATION field. The result of the operation is written back in the same
register that supplied the first operand, i.e., the register specified by the DESTINATION field
is overwritten after instruction execution. The number of bits written back to the register
is specified by MMODE which also determines the width of operation. Each arithmetic/logic
instruction also updates the EXECUTION STATUS register (see Subsection 5.2).

An implementation may choose not to implement all of the arithmetic/logic instructions.
However, it shall raise the UNIMPLEMENTED INSTRUCTION exception on each encountered
unimplemented instruction.

3.2.1 Integer unit

The integer unit executes the integer arithmetic, shift/rotate, logic and bit operations3.

The second operand comes either from a GPR specified by the SOURCE field, or, as an
immediate specified by the IMMEDIATE14 field. The I bit distinguishes the two alternatives:

I=0: REG[DESTINATION] ← REG[DESTINATION] <operation> REG[SOURCE]

I=1: REG[DESTINATION] ← REG[DESTINATION] <operation> IMMEDIATE14

Signed/unsigned operation

Signed/unsigned operation is specified by setting the bit U to 0/1, respectively. That is, the
integer arithmetic instructions can be executed either as signed or unsigned. Here, not only
the operands are treated as unsigned, but also the operation is affected, e.g., the ADD/SUB
instructions will overflow differently in unsigned operation compared to signed.

Furthermore, for I = 1 the immediate value is sign-extended for U = 0 and zero-extended
for U = 1 to the width of the operation specified by MMODE, according to the MSB of
the IMMEDIATE14 field. Of course, for 8-bit operation (byte mode), the six MSBs of the
immediate operand are truncated (i.e., only the lower 8 bits are taken). This applies not
3 The reverse bits instruction RVB is considered to be a part of the DSP unit.

25

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

only for integer arithmetic instructions, but also for the logic operations. See Table 4 as an
example of sign/zero extension and truncation of an immediate value.

However, for shift/rotate, logic and bit instructions, the input operands are always considered
by the integer unit to be unsigned. Here, the U bit does not specify signed/unsigned operation
but differentiates these instructions (see Table 9), or has another meaning, e.g., arithmetic/-
logic shift. That is, for the SL and SR instructions, U = 1 specifies logic shift, while U = 0
specifies arithmetic shift. The arithmetic right shift pulls the MSB, while the logic right shift
which pulls 0. On the other side, the arithmetic left shift triggers the OVERFLOW exception
on a change of the MSB value, while the logic left shift does not trigger exceptions.

3.2.2 Floating point unit

The FP machine mode is specified by the F bit (not by MMODE). That is, only for the FP
instructions the F bit is 1, which also infers the FP machine mode. For non-FP instructions
(F=0), the integer machine mode is specified by the MMODE field. Nevertheless, some FP
instructions still use the MMODE field: e.g., conversions from integer to FP formats specify
the integer width with MMODE.

In conversions from floating point to integer format (FF2I) or vice versa (FI2F) the bit
U specifies whether the integer result or source operand, respectively, is signed (U = 0) or
unsigned U = 1. while the MMODE field specifies the integer width.

In conversions between floating point formats with different widths by the “extend” (FEXT),
and “squeeze” (FSQZ) instructions, the MMODE field specifies the FP width. However, here
only the 16-, 32-, 64- and 128-bit formats, i.e., H, W, D, Q and 1 machine modes are
possible4.

3.2.3 DSP unit

The DSP unit is optional and contains the DSP registers whose functionality is here not an
object of specification. Subsection 3.1.2 only specifies the inter-register transfer between the
GPR and the DSP registers.

Furthermore, the DSP applications can be also supported by instructions. The reverse bits
instruction RVB and the fused multiply-add/subtract instructions (both integer and FP) are
especially used by DSP applications, e.g., for Fast Fourier Transform (FFT) computations.
Therefore, they are called DSP instructions.

The fused multiply-add (MAD) and multiply-subtract (MSU) instructions use a third operand
which comes either from a GPR specified by the SOURCE2 field, or, as an immediate specified
by the IMMEDIATE8 field. Here too, the I bit distinguishes the two alternatives:

I=0: REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] ± REG[SOURCE2]

I=1: REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] ± IMMEDIATE8

The signed/unsigned operation of the MAD and MSU instructions is completely the same as
for the instructions for integer arithmetic (see Subsection 3.2.1), with the single difference
that now the 8-bit IMMEDIATE8 field is used instead of IMMEDIATE14.

However, there are also floating point versions of these instructions (FMAD and FMSU) whose
third operand can come only from a GPR specified by SOURCE2, and not from the IMMEDI-
ATE8 field. Actually, no floating point instruction uses an immediate operand.

4 This is based on the FP format definitions of the IEEE Std 754-2008 standard [3].

26

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

3.3 Control instructions

Fig. 8 shows the layout of the control instructions and Table 6 shows the description of their
bit fields.

D C MMODE O A P

8

ARGUMENT AUXCODE LOCATION

OPCODE

6 4 2 6 6

OFFSET20HI OFFSET20LO

OFFSET14

Fig. 8: Layout of control instructions

Table 6: Bit field description of control instructions

Bit field Width Description
D 1 Data transfer (always 0 for control instructions)
C 1 Control (always 1 for control instructions)

MMODE 3 Machine mode
O 1 Offset
A 1 Absolute transfer
P 1 Procedural transfer

ARGUMENT 6 Branch argument register specifier
AUXCODE 4 Auxiliary opcode
LOCATION 6 Location transfer register specifier
OFFSET20HI 6 High part of 20-bit signed (instruction) offset OFFSET20
OFFSET20LO 14 Low part of 20-bit signed (instruction) offset OFFSET20
OFFSET14 14 Signed (instruction) offset

OFFSET20 is a 20-bit signed offset used for unconditional program transfer. It is a concatenation
of the 6-bit wide field OFFSET20HI and the 14-bit wide OFFSET20LO.

The control instructions are used for program control and are of four types:

• Unconditional program transfer

• Conditional (branch) program transfer

• Return from routine

• Pause instruction execution

3.3.1 Program transfer

In program transfers, the opcode bit O specifies whether the value comes from a register or
from a signed offset:

register
O = 0

The value comes from the GPR specified by the 6-bit LOCATION field of the
instruction.

offset
O = 1

The value comes from the offset field, i.e., OFFSET20 for unconditional, and
OFFSET14 for conditional transfers.

27

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

If the width of the specified values is shorter than the width of the INSTRUCTION COUNTER,
the supplied value is sign-extended. For example, OFFSET14 is 14-bit, while the INSTRUC-
TION COUNTER is usually greater than 20-bits. In this case, the offset will be sign-extended
according to the MSB of OFFSET14. On the other side, if the GPR specified by LOCA-
TION is wider than the INSTRUCTION COUNTER, the LSBs of the GPR will be written to the
INSTRUCTION COUNTER.

The program transfers (both conditional and unconditional) could be either relative to the
INSTRUCTION COUNTER or absolute, which is specified by the opcode bit A:

relative
A = 0

Program execution is transferred to an address obtained by addition of the
signed offset or the GPR value to the current value of the INSTRUCTION
COUNTER.

absolute
A = 1

Program execution is transferred to an absolute address contained in the
specified GPR or in the signed offset.

Finally, in procedural program transfers, the value of the INSTRUCTION COUNTER incre-
mented by 1, is additionally written to the CALL RETURN POINTER (see Subsection 5.14)
which can be later used by the return from routine instructions (Subsection 3.3.2). The
procedural transfer is specified by setting the opcode bit P to 1.

Branching

Table 10 summarizes all control instructions. Branches use the ARGUMENT specifier to inves-
tigate the specified GPR whether to make the program transfer or not. For example, the
Branch if MSB instruction (BM) checks if the MSB of the GPR is 1 or 0. If 1, the program
transfer is made, otherwise the next instruction after BM is fetched.

The MMODE field specifies the machine mode, i.e., the (sub)width of the GPR to be inves-
tigated. For example, if the GPR is 32-bit wide, and an 8-bit machine mode is specified
(MMODE = 000), then bit 7 of the GPR (not bit 31) will be investigated by the BM instruc-
tion. In order to investigate bit 31, MMODE should be set for 32-bit, i.e., MMODE = 010 (see
Table 1). Furthermore, for 8-bit machine mode, the Branch if MSB or Zero instruction (BMZ)
will additionally check if the eight LSBs are zero. Thus, BMZ will branch if the bit 7 is 1,
or if the eight LSBs are all zero. Similarly, for 32-bit machine mode, all GPR bits will be
additionally checked if they are all zero.

Branch if (Not) all Ones (BO/BNO) instructions are similar to Branch if (Not) Zero (BZ/BNZ).
That is, BZ/BNZ checks whether all the bits of the register (in the specified machine mode)
are zero, while BO/BNO checks if all the bits are ones.

3.3.2 Return from routine

A return from routine instruction transfers the program execution at an instruction address
location specified by the return pointers (see Table 7). The MMODE field distinguishes which
return pointer is used.

Table 7: Return pointers used by ‘return from routine’ instructions

MMODE Instruction Used return pointer Return from
000 RET CALL RETURN POINTER Procedure
001 RETI INTERRUPT RETURN POINTER Interrupt handler
010 RETE EXCEPTION RETURN POINTER Exception handler
011 RETN NMI RETURN POINTER NMI handler

The CALL RETURN POINTER is written during an execution of a procedural program transfer
instruction in which the bit P is 1 (see Subsection 3.3.1). It is written with the address of the
instruction following the procedural program transfer instruction that is being executed. On
the other hand, the interrupt/exception/NMI return pointers are written automatically upon

28

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

entering interrupt/exception/NMI handling with the address of the instruction following the
interrupted or exceptional instruction, respectively. However, the return pointers can be also
written by an inter-register transfer instruction (see Subsection 3.1.2).

If the bit P is set to 1, the instruction address found in the return pointer is decremented by
1. That is, execution returns to the previous instruction address found in the return pointers.
At this address is the last executed instruction before the routine call (if the return pointer
is not overwritten in the meantime). This is useful, for example, when the same instruction
should be re-executed after handling the exception that it caused. Another useful case for a
return from routine with P=1 is described in Subsection 3.3.3.

3.3.3 Pause instruction execution

The WAIT instruction pauses instruction execution. The pause period is specified by supplying
a wait timer value. Similar to the JMP instruction, the opcode bit O specifies whether the
wait timer value comes from a GPR or as an immediate value placed in the OFFSET20 field.

If the wait timer value is zero, instruction execution is paused indefinitely, i.e., it can be
resumed only by an interrupt (or NMI). After servicing the interrupt, executing a RETI
(or RETN) instruction at the end of the handling routine returns the program execution to
the instruction following the WAIT instruction. Alternatively, the option P can be specified
for the RETI (or RETN) instruction, which will return program execution again to the WAIT
instruction in order to wait for the following interrupt.

On the other hand, specifying a non-zero wait timer value loads the wait timer to that value.
The wait timer is decremented on each clock cycle. When the wait timer reaches zero, the
pause is finished and execution is resumed with the instruction following the WAIT instruction.

Of course, a reset terminates the pause (either indefinite or definite) and an instruction fetch
from address zero follows.

3.4 Summary

Table 8 summarizes the data transfer instructions: in places where the L or the U bit is
not given, it means that both alternatives of the bit for the corresponding instruction are
possible. N/A means that the field is not applicable, i.e., not used by the instruction. The
MMODE field is always used by all data transfer instructions and it specifies the data transfer
width according to Table 1.

The mnemonic MOV is assigned for all data transfer instructions. In assembly, the differentiation
between transfer types is made according to the type and the ordering of the arguments (see
Table 68). Subsection 6.4 gives further details on the use of pseudo-mnemonics which can be
alternatively used for immediate visual distinction of the data transfer type.

Table 9 summarizes the arithmetic/logic instructions: in places where the I or the U bit is
not given, it means that both alternatives of the bit for the corresponding instruction are
possible. Similarly, if MMODE is not given, it means that more combinations for the MMODE
are possible. Arithmetic/logic instructions always use the AUXCODE field.

Table 10 summarizes the control instructions: in places where the O,A or the P bit is not
given, it means that both alternatives of the bit for the corresponding instruction are possible.
Similarly, if MMODE is not given, it means that more combinations for the MMODE are possible.
Control instructions always use the AUXCODE field.

29

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Table 8: Summary of data transfer (MOV) instructions

L O U T AUXCODE Description Used fields
Memory transfer

1 0 N/A REG[DESTINATION] ↔ MEM[BASE+OFFSET12] DESTINATION,
BASE,OFFSET12

0 0 0000 REG[DESTINATION] ↔ MEM[INDEX]
0 0 0001 REG[DESTINATION] ↔ MEM[INDEX++] DESTINATION,
0 0 0010 REG[DESTINATION] ↔ MEM[INDEX--] AUXCODE,
0 0 0101 REG[DESTINATION] ↔ MEM[++INDEX] INDEX
0 0 0110 REG[DESTINATION] ↔ MEM[--INDEX]
0 0 1000 REG[DESTINATION] ↔ MEM[BASE+INDEX]
0 0 1001 REG[DESTINATION] ↔ MEM[BASE+(INDEX++)] DESTINATION,
0 0 1010 REG[DESTINATION] ↔ MEM[BASE+(INDEX--)] BASE,AUXCODE,
0 0 1101 REG[DESTINATION] ↔ MEM[BASE+(++INDEX)] INDEX
0 0 1110 REG[DESTINATION] ↔ MEM[BASE+(--INDEX)]

Inter-register transfer
1 0 0 1 0000 REG[DESTINATION] ← REG[INDEX]
1 0 0 1 0001 REG[DESTINATION] ← SPC[INDEX]
1 0 0 1 0010 SPC[DESTINATION] ← REG[INDEX] DESTINATION,
1 0 0 1 0011 REG[DESTINATION] ← DSP[INDEX] AUXCODE,
1 0 0 1 0100 DSP[DESTINATION] ← REG[INDEX] INDEX
1 0 0 1 1110 REG[DESTINATION] ← FPR[INDEX]
1 0 0 1 1111 FPR[DESTINATION] ← REG[INDEX]

Load immediate

1 1 1 N/A REG[DESTINATION] ← IMMEDIATE18 DESTINATION,
IMMEDIATE18

Thus, in total 53 mnemonics are used for all native instructions. Pseudo-instructions introduce
additional pseudo-mnemonics, as described in Subsection 6.4.

30

https://www.ihp-microelectronics.com

3. BINARY LAYOUT

Table 9: Summary of arithmetic/logic instructions

MMODE I U F AUXCODE Mnemonic Description Used fields
Integer arithmetic

0 0000 ADD Add
0 0001 SUB Subtract DESTINATION,
0 0010 MUL Multiply SOURCE/IMMEDIATE14
0 0011 DIV Divide

Shift/rotate
0 0100 SL Shift left (arith./logic)
0 0101 SR Shift right (arith./logic) DESTINATION,

0 0 0110 RL Rotate left SOURCE/IMMEDIATE14
1 0 0110 RR Rotate right

Logic operations
0 0111 AND AND bitwise
0 1000 NAND Negated AND bitwise DESTINATION,
0 1001 OR OR bitwise SOURCE/IMMEDIATE14
0 1010 XOR Exclusive OR bitwise

Bit operations
0 0 1011 SB Set bit
1 0 1011 RB Reset bit DESTINATION,
0 0 1100 TB Test bit SOURCE/IMMEDIATE14
1 0 1100 RVB Reverse bits

Floating point operations
000 0 0 1 0000 FADD FP Add
000 0 0 1 0001 FSUB FP Subtract
000 0 0 1 0010 FMUL FP Multiply DESTINATION,
000 0 0 1 0011 FDIV FP Divide SOURCE
000 0 0 1 0100 FREM FP Remainder
000 0 0 1 0101 FCMP FP Compare
000 0 0 1 0110 FSQR FP Square root

DESTINATION

000 0 0 1 0111 FABS FP Absolute
000 0 0 1 1000 FNEG FP Negate
000 0 0 1 1001 FRND FP Round to integer

0 1 1010 FF2I FP to integer
0 1 1011 FI2F Integer to FP
0 0 1 1100 FEXT Extend FP format
0 0 1 1101 FSQZ Squeeze FP format

Fused multiplication-addition/subtraction
0 1110 MAD Multiply-Add DESTINATION,SOURCE,
0 1111 MSU Multiply-Subtract SOURCE2/IMMEDIATE8

0 0 1 1110 FMAD FP Multiply-Add DESTINATION,
0 0 1 1111 FMSU FP Multiply-Subtract SOURCE,SOURCE2

31

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Table 10: Summary of control instructions

MMODE O A P AUXCODE Mnemonic Description Used fields
Unconditional program transfer

000 0000 JMP Jump LOCATION/
OFFSET20

Conditional (branch) program transfer
0001 BZ Branch if Zero
0010 BNZ Branch if Not Zero
0011 BM Branch if MSB
0100 BMZ Branch if MSB or Zero
0101 BNM Branch if Not MSB
0110 BNMO Branch if Not MSB or all Ones ARGUMENT,
0111 BL Branch if LSB LOCATION/
1000 BLZ Branch if LSB or Zero OFFSET14
1001 BNL Branch if Not LSB
1010 BNLO Branch if Not LSB or all Ones
1011 BO Branch if all Ones
1100 BNO Branch if Not all Ones

Return from routine
000 0 0 1101 RET Return from procedure

N/A001 0 0 1101 RETI Return from interrupt handler
010 0 0 1101 RETE Return from exception handler
011 0 0 1101 RETN Return from NMI handler

Pause instruction execution

000 0 0 1110 WAIT Wait (do not execute) LOCATION/
OFFSET20

32

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

An exception is a special case, situation, event, or deviation from the normal, standard and
usual behavior of the instruction or the system, and requires special attention. An interrupt
is a signal coming from an external component such as an IO device that requires attention.
The interrupt line is usually driven by an interrupt controller.

Exceptions and interrupts can be disabled all at once or masked individually. A raised excep-
tion/interrupt is potent if the exceptions/interrupts are enabled, and the exception/interrupt
is not masked. Similarly, a raised exception/interrupt is impotent if the exceptions/interrupts
are disabled or the exception/interrupt is masked.

When a potent exception/interrupt is raised, the sequence of program instructions is inter-
rupted and execution continues at an address specified by special registers. At this address
usually an interrupt/exception handler dispatcher is placed, which further transfers the ex-
ecution at the corresponding interrupt/exception handlers. On the other side, an impotent
exception/interrupt does not interrupt the sequence of program instructions and the normal
execution continues.

4.1 Non-Maskable Interrupt (NMI)

The NMI is a top priority interrupt intended for use in abnormal situations that should
(theoretically) never happen, or, for events that are exceptional, highly-important, and occur
only rarely. NMI is therefore treated like an exception with highest priority which cannot be
masked nor disabled, but it is called an interrupt since it is signaled by a hardware line like
the “maskable” interrupts. NMI is immediately handled no matter of processor state, after
completion of the interrupted instruction.

The NMI is signaled by a single hardware NMI line, which is different from the (maskable)
interrupt line. The interrupt controller can also drive the NMI line and enable multiple sources
for the NMI.

NMI handling

Fig. 9 shows a program routine (procedure) that is interrupted by an NMI at the pi instruction.

procedure

NMI handler

pi−2 pi−1 pi

h1 h2 . . . hn

pi+1 pi+2

time

RETN

NMI entering NMI
handling

return from
NMI handler

Fig. 9: NMI handling

The NMI handler has n instructions h1, h2, . . . , hn. After full completion of the interrupted
instruction pi, the NMI handler is entered. The following instruction which is executed is the
h1 instruction from the NMI handler. The RETN instruction (return from NMI handler) is
the hn instruction of the NMI handler which returns execution to the procedure at the pi+1
instruction.

33

PEAKTOP Instruction Set Architecture Manual

Upon entering NMI handling:

• The NMI RETURN POINTER is written with the value of the INSTRUCTION COUNTER.

• The EXCEPTION TABLE BASE ADDRESS register specifies the address at which pro-
gram execution is transferred (see Subsection 5.6).

• The operating mode is automatically switched to system mode.

• Bit 0 in the EXCEPTION REGISTER is set (see Subsection 5.4).

• The EXCEPTION INSTRUCTION register is written with the interrupted instruction (see
Subsection 5.3).

• Both exceptions and interrupts are disabled.

Handler interruptability

The NMI handler is interruptable only by another NMI. Of course, if exceptions/interrupts
are made potent by the handler itself, they can also interrupt the handler.

Disabling and masking

The NMI can be neither disabled nor masked, i.e., the NMI is always potent.

Acknowledging

Once the NMI is handled, it should be acknowledged by reseting bit 0 in the EXCEPTION
REGISTER (see Subsection 5.4), otherwise the execution will enter exception handling of
the NMI exception after finishing NMI handling. The acknowledgement should happen be-
fore executing the RETN instruction. Furthermore, acknowledging may be required in an
implementation-specific manner, e.g., by writing corresponding registers in the entity that is
raising the NMI.

Return from handling

The NMI handler is usually terminated with the RETN system instruction which restores back
the operating mode and the enabled/disabled status of the exceptions and the interrupt line
as they were before NMI handling was entered.

4.2 Exceptions

The PEAKTOP ISA predefines 21 exceptions which are summarized in Table 11. As said,
the NMI is treated like an exception with highest priority and is therefore written in Table 11
as exception 0. Up to 64 exceptions may be defined. Exceptions 22 to 63 are left for
implementation-specific purposes.

The exceptions are divided into two types according to the source by which they are raised:

instruction-raised The exception is raised by an exceptional instruction, i.e., in-
struction that can raise exception(s).

hardware-raised The exception is raised by a hardware mechanism (e.g., debug or
memory access mechanism, or the DSP unit).

When a potent, instruction-raised exception occurs, the destination GPRs are not written-
back by the exceptional instruction since the corresponding handler should decide what is to be
done. On the other hand, if an impotent, instruction-raised exception occurs, the exceptional
instruction is either skipped , or it performs a normal write-back to the destination GPR and
the EXECUTION STATUS register. A skipped instruction does not change any register (except
that the EXCEPTION REGISTER is updated to mark the exception occurrence). For example,
a system instruction in user mode is skipped when the SYSTEM INSTRUCTION exception is

34

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

Table 11: Exceptions

Nr. Exception Raised by If impotent
0 NMI NMI line N/A
1 DEBUG MODE EXCEPTION debug mode no change
2 INVALID INSTRUCTION instruction skipped
3 SYSTEM INSTRUCTION instruction skipped
4 UNIMPLEMENTED GPR BANK instruction skipped
5 UNIMPLEMENTED INSTRUCTION instruction skipped
6 UNIMPLEMENTED REGISTER instruction skipped
7 INVALID OPERATION instruction skipped/write-back
8 DIVISION BY ZERO instruction write-back
9 OVERFLOW instruction write-back
10 FP INVALID OPERATION instruction write-back
11 FP DENORMALIZED OPERAND instruction write-back
12 FP DIVISION BY ZERO instruction write-back
13 FP OVERFLOW instruction write-back
14 FP UNDERFLOW instruction write-back
15 FP INEXACT RESULT instruction write-back
16 DSP EXCEPTION 0 DSP unit no change
17 DSP EXCEPTION 1 DSP unit no change
18 DSP EXCEPTION 2 DSP unit no change
19 DSP EXCEPTION 3 DSP unit no change
20 I SYSTEM BUS ERROR mem. acc. undefined, error
21 D SYSTEM BUS ERROR mem. acc. no change, error

impotent, but an instruction causing impotent DIVISION BY ZERO or OVERFLOW will write-
back an appropriate result (e.g., the maximal possible integer). Table 11 also summarizes
this.

On the other side, impotent, hardware-raised exceptions do not change the registers, except
the EXCEPTION REGISTER which notifies the occurrence of the exception. Of course, if
a potent, hardware-raised exception occurs, the currently executing instruction is finished
normally, after which the exception handling begins.

Finally, an impotent I SYSTEM BUS ERROR leads to an undefined state of execution in which
the behavior of the system is not determined. This state is signaled on the hardware error
line, and can be only exited by a reset.

Exception handling

Fig. 10 shows a program routine (procedure) that is interrupted by an exception at the pi

instruction.

procedure

exception handler

pi−2 pi−1 pi

h1 h2 . . . hn

pi+1 pi+2

time

RETE

exception entering exception
handling

return from
exception handler

Fig. 10: Exception handling

The exception handler has n instructions h1, h2, . . . , hn.If the exception is hardware-raised,
the exception handler is entered after full completion of the interrupted instruction pi. How-
ever, if the exception is instruction-raised (by the pi instruction) then the pi instruction does
not write-back anything to the registers, i.e., the pi instruction is not completed when the

35

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

exception handler is entered (and will not be completed after returning from the handler).
This is because it is left to the handler to decide what to do with the exceptional instruction.
The following instruction which is executed is the h1 instruction from the exception handler.
The RETE instruction (return from exception handler) is the hn instruction of the exception
handler which returns execution to the procedure at the pi+1 instruction.

Upon entering exception handling:

• The EXCEPTION RETURN POINTER is written with the value of the INSTRUCTION
COUNTER.

• The EXCEPTION TABLE BASE ADDRESS register specifies the address at which pro-
gram execution is transferred (see Subsection 5.6).

• The operating mode is automatically switched to system mode.

• The corresponding exception bit in the EXCEPTION REGISTER is set (see Subsec-
tion 5.4).

• The EXCEPTION INSTRUCTION register is written with the interrupted instruction (see
Subsection 5.3).

• Both exceptions and interrupts are disabled.

Handler interruptability

The exception handler is interruptable only by an NMI. Of course, if exceptions/interrupts
are made potent by the handler itself, they can also interrupt the handler.

Disabling and masking

All exceptions can be disabled at once (except NMI) by writing a zero to the ENABLE EX-
CEPTIONS bit in the SYSTEM CONTROL REGISTER (see Subsection 5.10). They are disabled
after reset, so this bit should be written with one in order to enable them. Furthermore, excep-
tions can be masked individually by writing a one to the corresponding bit in the EXCEPTION
MASKS register (see Subsection 5.5).

Acknowledging

Once an exception is handled, it should be acknowledged in the EXCEPTION REGISTER (see
Subsection 5.4) by reseting its bit, otherwise the dispatcher will select it again for handling
(which is already done). The acknowledgement should happen before executing the RETE
instruction.

Return from handling

The exception handler is usually terminated with the RETE system instruction which restores
back the operating mode and the enabled/disabled status of the exceptions and the interrupt
line as they were before exception handling was entered.

4.2.1 DEBUG MODE EXCEPTION

The exception is raised by the debug mode mechanism. The debug mode is activated by writ-
ing a one to the DEBUG MODE bit in the SYSTEM CONTROL REGISTER (see Subsection 5.10).
In debug mode, this exception is raised and exception handling starts after each executed
and fully-completed instruction. However, the handler is uninterrupted since exceptions and
interrupts are automatically disabled when handling starts.

Raised by. . .

Hardware-raised: debug mode mechanism

36

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

If impotent. . .

The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Subsec-
tion 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4). No
other register change is made. However, debug mode is practically disabled if this exception
is masked.

4.2.2 INVALID INSTRUCTION

An attempt to execute an invalid instruction raises this exception. Any combination of 32
bits that is read as an instruction but cannot be decoded as a valid instruction, i.e., it does
not comply to the specification in this document, raises this exception.

Raised by. . .

Instruction-raised: invalid (out-of-specification) instruction.

If impotent. . .

The exceptional instruction is skipped. The exceptional instruction is written in the EX-
CEPTION INSTRUCTION register (see Subsection 5.3), and the exception is noted in the
EXCEPTION REGISTER (see Subsection 5.4). No other register change is made.

4.2.3 SYSTEM INSTRUCTION

An attempt to execute a system instruction in user mode raises this exception.

Raised by. . .

Instruction-raised: by RETE, RETN and by any inter-register transfer (MOV) executed in user
mode in which the destination is a special register that cannot be written in user mode (see
Table 12).

If impotent. . .

The exceptional instruction is skipped. The exceptional instruction is written in the EX-
CEPTION INSTRUCTION register (see Subsection 5.3), and the exception is noted in the
EXCEPTION REGISTER (see Subsection 5.4). No other register change is made.

4.2.4 UNIMPLEMENTED GPR BANK

An attempt to specify an unimplemented (physically non-existing) GPR bank raises this
exception.

Raised by. . .

Instruction-raised: by an inter-register transfer (MOV) from a GPR to the SYSTEM CONTROL
REGISTER (see Subsection 5.10) in which the GPR BANK field (bits 4 through 7) is changed.

If impotent. . .

The exceptional instruction is skipped. The exceptional instruction is written in the EX-
CEPTION INSTRUCTION register (see Subsection 5.3), and the exception is noted in the
EXCEPTION REGISTER (see Subsection 5.4). No other register change is made.

4.2.5 UNIMPLEMENTED INSTRUCTION

An attempt to execute a valid but unimplemented instruction raises this exception. In other
words, this exception is raised when the the specific implementation does not implement the

37

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

instruction.

Raised by. . .

Instruction-raised: by any unimplemented instruction.

If impotent. . .

The exceptional instruction is skipped. The exceptional instruction is written in the EX-
CEPTION INSTRUCTION register (see Subsection 5.3), and the exception is noted in the
EXCEPTION REGISTER (see Subsection 5.4). No other register change is made.

4.2.6 UNIMPLEMENTED REGISTER

An attempt to specify an unimplemented register in any of the 6-bit instruction fields for
register specification raises this exception. For example, an instruction that specifies a GPR
with number greater than 31 in an implementation which has a GPR file with 32 registers
will raise this exception. This holds for any register file, not only for the GPR. Furthermore,
this exception is raised also in the case when the entire register file is not implemented. For
example, if the DSP file is not implemented, and the instruction specifies access to a DSP
register.

Raised by. . .

Instruction-raised: by any instruction that specifies an unimplemented register.

If impotent. . .

The exceptional instruction is skipped. The exceptional instruction is written in the EX-
CEPTION INSTRUCTION register (see Subsection 5.3), and the exception is noted in the
EXCEPTION REGISTER (see Subsection 5.4). No other register change is made.

4.2.7 INVALID OPERATION

An attempt to perform an invalid operation specified by a (non-FP) instruction raises this
exception.

Raised by. . .

Instruction-raised: by bit operations SB, RB, TB and RVB when the second argument specifies
a bit weight which is greater than the specified machine mode or greater than the ALU
width. Furthermore, when operating in system mode, it is raised by an inter-register transfer
instruction (MOV) from a GPR to a non-writable special register (see Table 12).

If impotent. . .

The exceptional instruction is skipped. However, if the exception is raised by an arithmetic/-
logic instruction, an undefined result may be written to the destination GPR. The INVALID
OPERATION bit in the EXECUTION STATUS register is set (see Subsection 5.2), provided
that the exception is raised by an arithmetic/logic instruction. The exceptional instruction
is written in the EXCEPTION INSTRUCTION register (see Subsection 5.3), and the exception
is noted in the EXCEPTION REGISTER (see Subsection 5.4). No other register change is
made.

4.2.8 DIVISION BY ZERO

An integer division when the divisor is zero raises this exception.

Raised by. . .

Instruction-raised: by the integer division instruction DIV.

38

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

If impotent. . .

The result of division by zero is written to the destination GPRs: the quotient is the maximal
representable (signed/unsigned) number in the specified machine mode, while the remain-
der is zero. The DIVISION BY ZERO bit in the EXECUTION STATUS register is set (see
Subsection 5.2). The exceptional instruction is written in the EXCEPTION INSTRUCTION
register (see Subsection 5.3), and the exception is noted in the EXCEPTION REGISTER (see
Subsection 5.4).

4.2.9 OVERFLOW

An integer operation which results in a number that is greater than the maximal representable
number in the specified machine mode raises this exception.

Raised by. . .

Instruction-raised: by the addition/subtraction instructions (ADD, SUB), by signed division
with DIV in which the dividend is the minimal representable number in the specified machine
mode and the divisor is -1, and by the arithmetic left shift (SL) when the MSB changes
state.

If impotent. . .

The result of the operation is written to the destination GPRs. That is, the maximal rep-
resentable (signed/unsigned) number is written for ADD, SUB and for the quotient of DIV,
while the remainder of DIV is zero. For arithmetic left shift, the result is the same as if logic
left shift was executed. The OVERFLOW bit in the EXECUTION STATUS register is set (see
Subsection 5.2). The exceptional instruction is written in the EXCEPTION INSTRUCTION
register (see Subsection 5.3), and the exception is noted in the EXCEPTION REGISTER (see
Subsection 5.4).

4.2.10 FP INVALID OPERATION

An attempt to perform an invalid operation specified by an FP instruction raises this excep-
tion.

Raised by. . .

Instruction-raised:

• by any FP instruction in which one or more operands is a signaling Not a Number (NaN),
or the result is NaN;

• by FADD, FSUB, FMAD or FMSU when the operands imply addition or subtraction of
infinities with opposite signs, e.g., positive infinity plus negative infinity;

• by FMUL, FMAD or FMSU when one multiplication operand is zero and the other is
infinity;

• by FDIV when both operands are zero or both are infinity;

• by FREM when none of the operands is NaN, and the first operand is infinity or the
second operand is zero;

• by FSQR when the operand is less than zero;

• by FF2I when the operand is infinity or NaN, or, when the operand is greater than the
maximal representable integer in the specified machine mode.

See page 37 of the IEEE Std 754-2008 standard [3] for further explanation.

39

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

If impotent. . .

A quiet NaN is written to the destination GPR if the format of the result is an FP number.
If the format of the result is integer (e.g., FF2I raises the exception) then the instruction is
skipped and no change to the destination GPR is made. The INVALID OPERATION bit in
the EXECUTION STATUS register is set (see Subsection 5.2). The exceptional instruction is
written in the EXCEPTION INSTRUCTION register (see Subsection 5.3), and the exception is
noted in the EXCEPTION REGISTER (see Subsection 5.4).

4.2.11 FP DENORMALIZED OPERAND

An FP operation in which one or more operands is a denormalized FP number raises this
exception. However, if the operands are not denormalized and the instruction result is de-
normalized this exception is not raised.

Raised by. . .

Instruction-raised: all FP instructions except integer to FP conversion (FI2F).

If impotent. . .

The result of the operation is written to the destination GPR. The DENORMALIZED bit in
the EXECUTION STATUS register is set (see Subsection 5.2). The exceptional instruction is
written in the EXCEPTION INSTRUCTION register (see Subsection 5.3), and the exception is
noted in the EXCEPTION REGISTER (see Subsection 5.4).

4.2.12 FP DIVISION BY ZERO

An FP division when the divisor is zero and the dividend is a finite, nonzero FP number raises
this exception (see page 37 in [3]).

Raised by. . .

Instruction-raised: by the FP division instruction FDIV.

If impotent. . .

The result (±infinity) is written to the destination GPR. The DIVISION BY ZERO bit in
the EXECUTION STATUS register is set (see Subsection 5.2). The exceptional instruction is
written in the EXCEPTION INSTRUCTION register (see Subsection 5.3), and the exception is
noted in the EXCEPTION REGISTER (see Subsection 5.4).

4.2.13 FP OVERFLOW

An FP operation in which the result (either FP or integer) exceeds the largest representable
finite number of the destination format. (see page 37 in [3]).

Raised by. . .

Instruction-raised: by the FP arithmetic instructions FADD, FSUB, FMUL, FDIV, FMAD and
FMSU, by round to integer FRND, and by the FP conversion instructions FF2I, FI2F and
FSQZ.

If impotent. . .

The result of the operation is written to the destination GPR: the result is either ±infinity or
the most negative/positive number of the destination format, depending on the FP rounding
mode. The OVERFLOW bit in the EXECUTION STATUS register is set (see Subsection 5.2).
The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Sub-
section 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4).

40

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

4.2.14 FP UNDERFLOW

An FP operation in which the result is a tiny non-zero number raises this exception (see page
38 in [3]).

Raised by. . .

Instruction-raised: by the FP instructions FADD, FSUB, FMUL, FDIV, FSQR, FSQZ, FMAD and
FMSU.

If impotent. . .

The rounded result is written to the destination GPR. The UNDERFLOW bit in the EXECUTION
STATUS register is set (see Subsection 5.2) only if the result is inexact, in which case also the
FP INEXACT RESULT exception is raised. If the result is exact, although the result is tiny
(and denormalized), the UNDERFLOW bit is not set and the FP INEXACT RESULT exception
is not signaled. The exceptional instruction is written in the EXCEPTION INSTRUCTION
register (see Subsection 5.3), and the exception is noted in the EXCEPTION REGISTER (see
Subsection 5.4).

4.2.15 FP INEXACT RESULT

An FP operation in which the rounded result is not exact raises this exception. Furthermore,
this exception is also raised when the result overflows and the FP OVERFLOW exception is
impotent. Similarly, it is also raised when an inexact result underflows and the FP UNDERFLOW
is impotent. (see pages 37 and 38 in [3]).

Raised by. . .

Instruction-raised: by the FP instructions FADD, FSUB, FMUL, FDIV, FSQR, FRND, FF2I,
FI2F, FSQZ, FMAD and FMSU.

If impotent. . .

The rounded (or overflowed) result is written to the destination GPR. The INEXACT bit in
the EXECUTION STATUS register is set (see Subsection 5.2). The exceptional instruction is
written in the EXCEPTION INSTRUCTION register (see Subsection 5.3), and the exception is
noted in the EXCEPTION REGISTER (see Subsection 5.4).

4.2.16 DSP EXCEPTION 0

The exception is implementation-specific and is raised by the DSP unit.

Raised by. . .

Hardware-raised: by the DSP unit.

If impotent. . .

The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Sub-
section 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4).
No other register change is made.

4.2.17 DSP EXCEPTION 1

The exception is implementation-specific and is raised by the DSP unit.

Raised by. . .

Hardware-raised: by the DSP unit.

41

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

If impotent. . .

The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Sub-
section 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4).
No other register change is made.

4.2.18 DSP EXCEPTION 2

The exception is implementation-specific and is raised by the DSP unit.

Raised by. . .

Hardware-raised: by the DSP unit.

If impotent. . .

The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Sub-
section 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4).
No other register change is made.

4.2.19 DSP EXCEPTION 3

The exception is implementation-specific and is raised by the DSP unit.

Raised by. . .

Hardware-raised: by the DSP unit.

If impotent. . .

The exceptional instruction is written in the EXCEPTION INSTRUCTION register (see Sub-
section 5.3), and the exception is noted in the EXCEPTION REGISTER (see Subsection 5.4).
No other register change is made.

4.2.20 I SYSTEM BUS ERROR

The exception is raised during instruction fetch. Read/write/execute access violation is a
common cause of this exception raised by the MMU/MPU, or by external memory or IO
devices. Furthermore, parity error checks, or other implementation-specific mechanisms can
also raise this exception.

Raised by. . .

Hardware-raised: by the memory/IO access mechanism.

If impotent. . .

The state of execution is undefined. Error is signaled on the error line.

4.2.21 D SYSTEM BUS ERROR

The exception is raised during a memory data access. Read/write/execute access violation
is a common cause of this exception raised by the MMU/MPU, or by external memory or IO
devices. Furthermore, parity error checks, or other implementation-specific mechanisms can
also raise this exception.

Raised by. . .

Hardware-raised: by the memory/IO access mechanism.

42

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

If impotent. . .

The state of execution is defined, but error is signaled on the error line anyway.

4.3 Interrupts

An Interrupt Request (IRQ) is signaled over a single hardware line called the interrupt line.

Interrupt handling

Fig. 11 shows a program routine (procedure) that is interrupted by an interrupt at the pi

instruction.

procedure

interrupt handler

pi−2 pi−1 pi

h1 h2 . . . hn

pi+1 pi+2

time

RETI

interrupt entering interrupt
handling

return from
interrupt handler

Fig. 11: Interrupt handling

The interrupt handler has n instructions h1, h2, . . . , hn. After full completion of the inter-
rupted instruction pi, the interrupt handler is entered. The following instruction which is
executed is the h1 instruction from the interrupt handler. The RETI instruction (return from
interrupt handler) is the hn instruction of the interrupt handler which returns execution to
the procedure at the pi+1 instruction.

Upon entering interrupt handling:

• The INTERRUPT RETURN POINTER is written with the value of the INSTRUCTION
COUNTER.

• The INTERRUPT TABLE BASE ADDRESS register specifies the address at which pro-
gram execution is transferred (see Subsection 5.7).

• The operating mode is automatically switched to system mode.

• The interrupts are disabled, while the enabled/disabled status of the exceptions is not
changed.

Handler interruptability

The interrupt handler is interruptable by an NMI and by potent exceptions. Of course, if
interrupts are made potent by the handler itself, they can also interrupt the handler.

Disabling and masking

The interrupt line can be disabled by writing a zero to the ENABLE INTERRUPTS bit in
the SYSTEM CONTROL REGISTER (see Subsection 5.10). The interrupt line is disabled after
reset, so this bit should be written with one in order to enable it. The individual masking of
the interrupts is done in the interrupt controller, which is here not an object of specification.

Acknowledging

Acknowledging the interrupts (if required) is done by writing corresponding registers in the
interrupt controller and/or the interrupt-requesting device.

43

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Return from handling

The interrupt handler is usually terminated with the RETI system instruction which restores
back the enabled/disabled status of the interrupt line as it was before interrupt handling was
entered.

4.4 Handling mechanism

The following points summarize the NMI, exception and interrupt handling mechanism:

• Exceptions and interrupts are disabled automatically upon entering NMI or exception
handling, i.e., bits 2 and 3 (ENABLE EXCEPTIONS and ENABLE INTERRUPTS) in the
SYSTEM CONTROL REGISTER are reset (see Subsection 5.10).

• Interrupts are disabled automatically upon entering NMI, exception or interrupt han-
dling, i.e., bit 3 (ENABLE INTERRUPTS) in the SYSTEM CONTROL REGISTER is reset.

• System mode is automatically switched upon entering NMI, exception or interrupt
handling, i.e., bit 0 (SYSTEM MODE) in the SYSTEM CONTROL REGISTER is set. The
system should decide when to switch to user mode. For instance, user mode could be
switched after the system reads the interrupt controller information and the address of
the handling procedure is known.

• The system should acknowledge exceptions by resetting the corresponding bit(s) in the
EXCEPTION REGISTER (see Subsection 5.4). It may be also required to acknowledge
the interrupts to the interrupt controller and/or to the interrupt-requesting device. A
privileged access (in system mode) to the interrupt controller and/or device may be
required.

• The RETE and RETN instructions restore the SYSTEM CONTROL REGISTER bits 0, 2
and 3 to the state before entering exception or NMI handling, while the RETI instruction
restores only bit 3. However, if a RETE/RETN instruction is executed out of exception
or NMI handling (i.e., in a program procedure), or RETI is executed out of interrupt
handling, the SYSTEM CONTROL REGISTER bits are not changed. RETE and RETN are
system instructions, while RETI is not.

4.4.1 Hierarchy and priority

Assuming that exceptions and interrupts are potent (initially), and that the NMI, exception
and interrupt handlers do not contain instructions that change the ENABLE EXCEPTIONS
and ENABLE INTERRUPTS bits in the SYSTEM CONTROL REGISTER (see Subsection 5.10),
an exception can interrupt the execution of an interrupt handler. A NMI can interrupt any
routine including NMI handler (see Fig. 12).

It is also possible that several exceptions are raised at once. The exception handler dispatcher
routine should then decide on the priority of the multiple exceptions that are raised, and
transfer execution to the corresponding exception handler. After acknowledging the exception
and executing RETE, the next exception (of the multiple raised) is selected for handling by
the dispatcher, until all exceptions are handled. Fig. 13 shows a case in which two exceptions
are raised simultaneously at instruction pi.

They are handled one after another, without executing procedure instructions in-between.
The handlers of exception 1 and 2 have n and m instructions, respectively. After handling
both exceptions serially (one after another), the execution of the procedure continues at
instruction pi+1.

44

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

procedure

interrupt handler

exception handler

NMI handler

time

interrupt

exception

NMI
RETI

RETE

RETN

(a) Exception interrupting interrupt handler and NMI interrupting exception handler

procedure

interrupt handler

NMI handler

time

interrupt

NMI

RETI

RETN

(b) NMI interrupting interrupt handler

Fig. 12: Hierarchy of NMI, exceptions and interrupts

procedure

exception handler

pi

h
(1)
1 h

(1)
2

. . . h
(1)
n h

(2)
1 h

(2)
2

. . . h
(2)
m

pi+1

time

2 exceptions handling
exception 1

RETE

handling
exception 2

RETE

Fig. 13: Multiple exceptions raised simultaneously

4.4.2 Postponed handling

The occurrence of impotent exceptions is marked in the EXCEPTION REGISTER (see Sub-
section 5.4). Once the exceptions become potent, the exception handling mechanism is
activated. Here too, the dispatcher decides on the priority if multiple (impotent) exceptions
are marked in the EXCEPTION REGISTER. Similarly, if the interrupt line is disabled, a signaled
interrupt is still marked internally. Once the interrupt line is enabled, the interrupt handling
mechanism is activated.

Fig. 14 shows an exception/interrupt that is raised at instruction pi when the excep-
tions/interrupts are disabled. Their enabling is done j instructions later by an inter-register
transfer instruction pi+j (MOV) which sets the ENABLE EXCEPTIONS/ENABLE INTER-
RUPTS bit in the SYSTEM CONTROL REGISTER. After full execution of this instruction,
the exception/interrupt handling is done immediately, at which point, as said, the excep-
tions/interrupts are disabled (i.e., the ENABLE EXCEPTIONS/ENABLE INTERRUPTS bit is
reset automatically). At the end of handling, the RETE/RETI instruction restores back
the value of the ENABLE EXCEPTIONS/ENABLE INTERRUPTS bit as it was before entering
exception/interrupt handling, which in this case is set by the MOV instruction to 1. It is also
here assumed that the exception/interrupt handlers do not contain instructions that change
the ENABLE EXCEPTIONS/ENABLE INTERRUPTS bit.

In this way, the execution of the exception/interrupt handlers is postponed: instead of ex-

45

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

procedure

exception handler

EXCEPTIONS

pi pi+1 . . . pi+j

h1 h2 . . . hn

pi+j+1

disabled

enabled

disabled enabled
time

MOV

RETE

exception enabling
exceptions

(a) Postponded exception handling

procedure

interrupt handler

INTERRUPTS

pi pi+1 . . . pi+j

h1 h2 . . . hn

pi+j+1

disabled

enabled

disabled enabled
time

MOV

RETI

interrupt enabling
interrupts

(b) Postponed interrupt handling

Fig. 14: Postponed execution of exception and interrupt handlers

ecuting in the time of their occurrence, the execution happens after enabling the excep-
tions/interrupts. Postponing the handling of an individual exception is done by setting its
mask bit in the EXCEPTION MASKS register (see Subsection 5.5) instead of disabling all
exceptions.

Finally, NMI handling cannot be postponed.

4.4.3 Nesting

As said, upon entering exception handling, the exceptions are disabled. However, the excep-
tion handler may decide to enable them. If a potent exception occurs during the execution of
a previously invoked exception handler, the handler is interrupted and exception handling is
re-entered. This is called exception nesting, and the latter exception is a nested exception
of first order, while the first exception whose handler was executing is the base exception. If
the nested exception is interrupted by another potent exception, it is called a nested exception
of second order, etc.

The same discussion holds for the interrupts, i.e., the execution of an interrupt handler may
be interrupted by a nested interrupt, which is called interrupt nesting. Fig. 15 shows the
nesting of exceptions and interrupts.

Nesting of exceptions and interrupts requires extra software since the return pointers
(EXCEPTION RETURN POINTER/INTERRUPT RETURN POINTER registers) are automati-
cally overwritten upon each re-entering into the exception/interrupt handling routines.
Therefore, before making the exceptions/interrupts potent, the handler should preserve the
current return pointers in order to be able to return to the correct addresses after han-
dling the nested exceptions/interrupts. Nevertheless, a potent interrupt during exception or
NMI handling, or potent exception during interrupt or NMI handling does not require extra
software since the return pointers are different for NMI, exceptions and interrupts, and the
correct use of the return from routine instructions is sufficient (see Fig. 12).

A nested NMI, however, is difficult to handle since the extra software required to save the
return pointers may even not be executed when the NMI handler is interrupted by a nested
NMI (due to the inability to disable or mask the NMI). Therefore, system designers should

46

https://www.ihp-microelectronics.com

4. EXCEPTIONS AND INTERRUPTS

procedure

exception handler (base)

1st order nested handler

time

base exception

nested exception

RETE

RETE

(a) Nested exception handling

procedure

interrupt handler (base)

1st order nested handler

time

base interrupt

nested interrupt

RETI

RETI

(b) Nested interrupt handling

Fig. 15: Nesting exceptions and interrupts

take into consideration whether nested NMI should be allowed, and if so, how they should
be handled.

47

https://www.ihp-microelectronics.com

5. SPECIAL REGISTERS

According to Table 2 there are 16 predefined special registers. Their width can differ between
implementations. However, in order to ensure greater portability of programs, a 32-bit width
of the special register file is recommended, in which the special registers are either 32-bit or
64-bit wide (see Table 12). A 64-bit special register is composed of two 32-bit registers in the
special register file in which the more significant part is with higher enumeration (little-endian
ordering). In total, the 16 predefined special registers occupy 27 32-bit wide registers since
11 of them are 64-bit wide. Using the principle of circularity (see Subsection 2.2.3) the 64-bit
registers can be accessed at once, or, the higher and lower parts can be accessed individually.

This recommendation limits the physical address space to 64 bits since the return pointers and
exception/interrupt base addresses are 64-bit wide registers!

Table 12 also shows the recommended aliases of the special registers (i.e., additional register
names) to be used. However, the register names spc0, spc1,. . . , spc63 should be valid for all
implementations.

Table 12: Recommended register aliases and access permissions in user/system mode of a 32-bit
wide special register file

Name Alias Register User acc. Sys. acc.
spc0 IMP IMPLEMENTATION REGISTER r- r-
spc1 IMP2
spc2 EST EXECUTION STATUS r- rw
spc3 EXI EXCEPTION INSTRUCTION r- rw
spc4 EXC EXCEPTION REGISTER r- rw
spc5 EXC2
spc6 EXM EXCEPTION MASKS r- rw
spc7 EXM2
spc8 ETB EXCEPTION TABLE BASE ADDRESS r- rw
spc9 ETB2

spc10 ITB INTERRUPT TABLE BASE ADDRESS r- rw
spc11 ITB2
spc12 CID CORE ID r- rw
spc13 PID PROCESS ID r- rw
spc14 PID2
spc15 SCR SYSTEM CONTROL REGISTER r- rw
spc16 NRP NMI RETURN POINTER r- rw
spc17 NRP2
spc18 ERP EXCEPTION RETURN POINTER r- rw
spc19 ERP2
spc20 UCR USER CONTROL REGISTER rw rw
spc21 CRP CALL RETURN POINTER rw rw
spc22 CRP2 rw rw
spc23 IRP INTERRUPT RETURN POINTER rw rw
spc24 IRP2
spc25 DCR DSP CONFIGURATION REGISTER rw rw
spc26 DCR2

Furthermore, Table 12 shows the read/write access permissions in user and system mode.
In user mode, prohibited write operation to a register triggers the SYSTEM INSTRUCTION

48

5. SPECIAL REGISTERS

exception. In system mode, prohibited write operation to a register triggers the INVALID
OPERATION exception. Specifying a non-existing register triggers the UNIMPLEMENTED REG-
ISTER exception.

[<hi>:<lo>] denotes a range of bits within a register (a bit field) starting from bit number <hi>
down to bit number <lo>.

Reset state

All special registers except the IMPLEMENTATION REGISTER (see Subsection 5.1) and the
SYSTEM MODE bit in the SYSTEM CONTROL REGISTER (see Subsection 5.10) are reset to
zero on system reset.

5.1 IMPLEMENTATION REGISTER

IMP
... 1 031 30 ...

IMP2
... 33 3263 62 ...

Fig. 16: IMPLEMENTATION REGISTER

The IMPLEMENTATION REGISTER (Fig. 16) is a read-only register both in system and in
user mode. Its contents is fixed during design time and reflects the properties of the imple-
mentation. The bits and bit-fields of the IMPLEMENTATION REGISTER are as follows.

[2:0] Maximal transfer width (see Subsection 3.1). The machine mode encoding
(see Table 1) in this field shows the maximal transfer width.

[5:3] GPR width (see Subsection 2.2.4). The machine mode encoding (see Table 1)
in this field shows the GPR width.

[8:6] ALU width. The machine mode encoding (see Table 1) in this field shows the
ALU width.

[14:9] Physical address width. The binary number in this field incremented by one
gives the physical address width of the implementation.

15 Separate instruction and data interface. If this bit is 1, the implementation
has separate instruction and data interface for memory/cache access. If this
bit is 0, the implementation uses a single interface to memory/cache for both
instruction and data.

[19:16] FPU type:
0000 No FPU
0001 Halfword FPU (16-bit FP format)
0010 Single FPU (32-bit FP format)
0011 Double FPU (64-bit FP format)
0100 Quadruple FPU (128-bit FP format)
0101 Octuple FPU (256-bit FP format)
1001 Extended halfword FPU (> 16-bit FP format)
1010 Extended single FPU (> 32-bit FP format)
1011 Extended double FPU (> 64-bit FP format)
1100 Extended quadruple FPU (> 128-bit FP format)
1101 Extended octuple FPU (> 256-bit FP format)

49

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

[31:20] Architecture number (low part). This number is used for further differenti-
ation between implementations.

[37:32] Number of GPRs. The binary number in this field incremented by one gives
the number of GPRs in the implementation.

[43:38] PROCESS ID width. The binary number in this field incremented by one gives
the number of used bits in the PROCESS ID register (see Subsection 5.9). Thus,
the number in this field plus the number contained in the field [14:9] plus two,
gives the virtual address width of the implementation.

45 Multiplier present. If this bit is 1 it shows that a multiplier is present in the
implementation which executes the MUL instruction. If this bit is 0 there is no
multiplier in the implementation and execution of a MUL instruction raises the
UNIMPLEMENTED INSTRUCTION exception.

46 Divider present. If this bit is 1 it shows that a divider is present in the
implementation which executes the DIV instruction. If this bit is 0 there is
no divider in the implementation and execution of a DIV instruction raises the
UNIMPLEMENTED INSTRUCTION exception.

[49:47] DSP width. The binary number in this field shows the width of the DSP file.
The encoding used to specify this width is according to Table 1.

[55:50] Number of DSP registers. The binary number in this field incremented by
one gives the number of DSP registers in the implementation.

[63:56] Architecture number (high part). This number is used for further differen-
tiation between implementations.

5.2 EXECUTION STATUS

EST
... 1 031 30 ...

Fig. 17: EXECUTION STATUS

The EXECUTION STATUS register (Fig. 17) contains the flags of execution of arithmetic/-
logic instructions. It is automatically updated with the completion of any arithmetic/logic
instruction. However, if the instruction raises a potent exception, this register (and the desti-
nation GPR) are not updated since exception handling is entered. Data transfer and control
instructions do not affect this register. The flags in the register are the following.

0 INVALID OPERATION is set by SB, RB, TB and RVB when the second argu-
ment specifies a bit weight which is greater than the specified machine mode
or greater than the ALU width. Furthermore, it is also set whenever the con-
ditions for raising the FP INVALID OPERATION exception are satisfied (see
Subsection 4.2.10).

1 UNIMPLEMENTED OPERATION is set to 1 when the specified arithmetic/logic
operation is not implemented.

2 DIVISION BY ZERO is set to 1 by DIV and FDIV when the divisor is zero.

3 OVERFLOW is set to 1 by ADD and SUB whenever the computed result cannot
fit to the destination GPR according to the specified machine mode.

4 UNDERFLOW is set to 1 by FP instructions when the result is a tiny, inexact FP
number.

50

https://www.ihp-microelectronics.com

5. SPECIAL REGISTERS

5 EQUAL is set to 1 by all arithmetic/logic instructions with two operands when
the operands are equal.

6 GREATER THAN is set to 1 by all arithmetic/logic instructions with two operands
when the first operand is greater than the second operand.

7 LESS THAN is set to 1 by all arithmetic/logic instructions with two operands
when the first operand is less than the second operand.

8 INEXACT is set to 1 by FP instructions when the produced result is inexact.

9 UNORDERED is set to 1 by FCMP when at least one of the operands is NaN.

10 SIGN is set to 1 if the result of the operation is a negative number (either
integer or FP).

11 ZERO is set to 1 if the result of the operation is zero (either integer or FP).

12 DENORMALIZED is set to 1 if the result of the FP operation is denormalized.

13 INFINITY is set to 1 if the result of the FP operation is infinity.

14 SIGNALING NAN is set to 1 if the result of the FP operation is a signaling NaN.

15 NAN is set to 1 if the result of the FP operation is a NaN.

The bits in the range [31:16] are not used.

5.3 EXCEPTION INSTRUCTION

EXI
... 1 031 30 ...

Fig. 18: EXCEPTION INSTRUCTION

The EXCEPTION INSTRUCTION register (Fig. 18) contains the exceptional instruction that
caused the exception. Furthermore, if a hardware-raised exception or NMI occurred, this
register contains the instruction following the last completed instruction before entering ex-
ception/NMI handling. An impotent exception does not update this register.

5.4 EXCEPTION REGISTER

EXC
... 1 031 30 ...

EXC2
... 33 3263 62 ...

Fig. 19: EXCEPTION REGISTER

The corresponding bit for each raised exception is set to 1 in the EXCEPTION REGISTER
(Fig. 19). The ordering of the bits in this register is as in Table 11. Thus, the bits in the
range [63:22] are reserved for implementation-specific exceptions.

The exception handler should acknowledge the exception by resetting the corresponding bit
to 0 in this register. The NMI handler should acknowledge the NMI by resetting bit 0.

51

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

5.5 EXCEPTION MASKS

EXM
... 1 031 30 ...

EXM2
... 33 3263 62 ...

Fig. 20: EXCEPTION MASKS

The exception masks are defined in the EXCEPTION MASKS register (Fig. 20). Setting the
bit to 1 sets the mask of the corresponding exception and makes it impotent. The ordering
of the bits in this register is as in Table 11. Thus, the bits in the range [63:22] are reserved
for implementation-specific exceptions.

However, bit 0 is for the NMI and is always zero, i.e., it cannot be set to one since the NMI
is not maskable.

5.6 EXCEPTION TABLE BASE ADDRESS

ETB
... 1 031 30 ...

ETB2
... 33 3263 62 ...

Fig. 21: EXCEPTION TABLE BASE ADDRESS

The EXCEPTION TABLE BASE ADDRESS register (Fig. 21) contains the address at which
program execution is transferred upon entering NMI/exception handling. That is, it contains
the base address of the exception handler dispatcher.

5.7 INTERRUPT TABLE BASE ADDRESS

ITB
... 1 031 30 ...

ITB2
... 33 3263 62 ...

Fig. 22: INTERRUPT TABLE BASE ADDRESS

The INTERRUPT TABLE BASE ADDRESS register (Fig. 22) contains the address at which
program execution is transferred upon entering interrupt handling. That is, it contains the
base address of the interrupt handler dispatcher.

52

https://www.ihp-microelectronics.com

5. SPECIAL REGISTERS

5.8 CORE ID

CID
... 1 031 30 ...

Fig. 23: CORE ID

The CORE ID register (Fig. 23) contains the ID of the processing element (core) which is
relevant for multiprocessing environments.

5.9 PROCESS ID

PID
... 1 031 30 ...

PID2
... 33 3263 62 ...

Fig. 24: PROCESS ID

The PROCESS ID register (Fig. 24) contains the high part of the virtual address, or viewed
alternatively, the ID of the currently executing process.

Writing the PROCESS ID register resets the INSTRUCTION COUNTER to zero. The operating system
should take care of jumping to the next instruction on context-switch.

5.10 SYSTEM CONTROL REGISTER

SCR
... 1 031 30 ...

Fig. 25: SYSTEM CONTROL REGISTER

The SYSTEM CONTROL REGISTER (Fig. 25) has several functions that control the behavior
of the system. It is only writable in system mode. The bits and bit-fields of the register are
as follows.

0 SYSTEM MODE. If 1, the system mode is set. If 0, the user mode is set. This
bit is set to 1 after reset, i.e., the system starts in system mode.

1 DEBUG MODE. If 1, the debug mode is set, in which the DEBUG MODE EXCEP-
TION is raised after each executed instruction. For normal operation this bit
should be 0.

2 ENABLE EXCEPTIONS. If 1, the exceptions are enabled. If 0, the exceptions
are disabled.

53

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

3 ENABLE INTERRUPTS. If 1, the interrupts are enabled. If 0, the interrupts are
disabled.

[7:4] GPR BANK. The number of the currently used GPR bank. Theoretically, up to 16
banks can be implemented, but practically two to four banks are implemented.
Specifying a number greater than or equal to the number of implemented banks
raises the UNIMPLEMENTED GPR BANK exception.

The bits in the range [31:8] are not used.

5.11 NMI RETURN POINTER

NRP
... 1 031 30 ...

NRP2
... 33 3263 62 ...

Fig. 26: NMI RETURN POINTER

The NMI RETURN POINTER register (Fig. 26) contains the address of the last executed
instruction before NMI handling was entered. It is automatically written on entering NMI
handling. The RETN instruction uses this pointer to return to the correct place of execution
at the end of the NMI handler.

5.12 EXCEPTION RETURN POINTER

ERP
... 1 031 30 ...

ERP2
... 33 3263 62 ...

Fig. 27: EXCEPTION RETURN POINTER

The EXCEPTION RETURN POINTER register (Fig. 27) contains the address of the last ex-
ecuted instruction before exception handling was entered. It is automatically written on
entering exception handling. The RETE instruction uses this pointer to return to the correct
place of execution at the end of the exception handler.

5.13 USER CONTROL REGISTER

UCR
... 1 031 30 ...

Fig. 28: USER CONTROL REGISTER

54

https://www.ihp-microelectronics.com

5. SPECIAL REGISTERS

The USER CONTROL REGISTER (Fig. 28) adds more functions to the SYSTEM CONTROL
REGISTER (see Subsection 5.10) that control the behavior of the system, but it is also
writable in user mode. The bits and bit-fields of the register are as follows.

0 DONT CACHE INSTRUCTIONS. If 1, the system does not use the instruction
cache. If 0, the system uses the instruction cache.

1 DONT CACHE DATA. If 1, the system does not use the data cache. If 0, the
system uses the data cache.

2 DONT BUFFER INSTRUCTIONS. If 1, the system does not buffer the instruc-
tions. If 0, the system buffers the instructions.

3 DONT BUFFER DATA. If 1, the system does not buffer the data. If 0, the system
buffers the data.

4 SYNC. The state of this bit is reflected on the output sync line used for syn-
chronization purposes in multiprocessing environments.

[11:8] FP ROUNDING MODE:
0000 Nearest – even
0001 Nearest – odd
0010 Nearest – zero away
0011 Nearest – positive infinity
0100 Nearest – negative infinity
0101 Nearest – zero
1010 Zero-away
1011 Positive infinity
1100 Negative infinity
1101 To zero

[14:12] FP PRECISION:
000 Extended
011 Octuple (256-bit)
100 Quadruple (128-bit)
101 Double (64-bit)
110 Single (32-bit)
111 Half (16-bit)

The bits in the ranges [7:5] and [31:15] are not used.

5.14 CALL RETURN POINTER

CRP
... 1 031 30 ...

CRP2
... 33 3263 62 ...

Fig. 29: CALL RETURN POINTER

The CALL RETURN POINTER register (Fig. 29) is automatically written by procedural pro-
gram transfer instructions with the address of the instruction following the procedural program
transfer instruction. Of course, it can be overwritten by inter-register transfer instruction in
order to implement nested procedures. The RET instruction is usually placed at the end of
the procedure and uses this pointer to return to the correct place of execution in the caller
procedure.

55

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

5.15 INTERRUPT RETURN POINTER

IRP
... 1 031 30 ...

IRP2
... 33 3263 62 ...

Fig. 30: INTERRUPT RETURN POINTER

The INTERRUPT RETURN POINTER register (Fig. 30) contains the address of the last exe-
cuted instruction before interrupt handling was entered. It is automatically written on entering
interrupt handling. The RETI instruction uses this pointer to return to the correct place of
execution at the end of the interrupt handler.

5.16 DSP CONFIGURATION REGISTER

DCR
... 1 031 30 ...

DCR2
... 33 3263 62 ...

Fig. 31: DSP CONFIGURATION REGISTER

The DSP CONFIGURATION REGISTER (Fig. 31) is used to configure the DSP unit. The
contents and the functionality of this register are .

56

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

This Section explains in further details all instructions from the PEAKTOP ISA. The instruc-
tion dynamics is also explained, i.e., the changes that are made by executing an instruction,
reading/writing special registers, conditions under which exceptions are triggered, side effects,
etc. The construction of the assembly is also specified.

6.1 Detailed instruction specification

This Subsection gives detailed specification for each native instruction. The description of
each instruction is organized in five paragraphs:

• The binary layout is specifically given for each instruction and its variants.

• The Fields paragraph explains the binary fields of the instruction.

• The Execution paragraph shows the operation of each instruction.

• The Changes paragraph summarizes all the changes that are done by executing the
instruction.

• The Exceptions paragraph summarizes all exceptions that can be raised by the instruc-
tion.

• The Examples paragraph gives examples that illustrate the execution of the instruction.

Table 13 lists the arithmetic/logic operator symbols used to describe the functions of the
instructions.

Table 13: Arithmetic/logic operator symbols

Symbol Operator description
← right to left assignment
++ increment
-- decrement
+ addition
- subtraction
× multiplication
÷ division
% modulo

<< shift left
>> shift right

<<> rotate left
<>> rotate right
& Bitwise AND
&~ Bitwise NAND
| Bitwise OR
∧ Bitwise XOR

<==> compare
== is equal to
! = is not equal to
e() exponent, e.g., xe(y)↔ xy

57

PEAKTOP Instruction Set Architecture Manual

6.1.1 MOV – Move data

1 L MMODE 1 U 0

8

DESTINATION OFFSET12HI BASE OFFSET12LO

6 6 6 6

(a) Memory transfer – Move with displacement addressing

1 L MMODE 0 U 0

8

DESTINATION AUXCODE INDEX

6 4 8 6

(b) Memory transfer – Move with register addressing

1 L MMODE 0 U 0

8

DESTINATION AUXCODE BASE INDEX

6 4 2 6 6

(c) Memory transfer – Move with indexed addressing

1 1 MMODE 0 0 1

8

DESTINATION AUXCODE INDEX

6 4 8 6

(d) Inter-register transfer – Move inter-register

1 1 MMODE 1 U 1

8

DESTINATION IMMEDIATE18

6 18

(e) Load immediate

Fig. 32: Move data (MOV) instructions

The MOV mnemonic which comes from ‘move data’ is used to denote all instructions that
transfer data in a PEAKTOP system:

• memory to register (load)

• register to memory (store)

• between registers within the GPR file

• between a register in the GPR file and a register in another register file

• load of immediate values

The instructions for memory transfer specify one of the three data addressing modes (see
Subsection 2.3.2). The instructions for inter-register transfer simply specify the registers (and
the register files). The load immediate instruction specifies the immediate value to be loaded.
All of them specify the machine mode of the transfer.

A grey field in binary instruction representation like in Fig. 32 is a don’t care field.

Fields

L For memory transfers, L=1 specifies load from memory and L=0
specifies store to memory. For inter-register transfer and load
immediate, this bit is always 1.

58

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

MMODE Specifies the integer machine mode according to Table 1.

U For memory transfers, U=1 specifies the load-locked (L=1) and
store-conditional (L=0) instructions, while U=0 specifies “nor-
mal” load and store. For load immediate, U=0 specifies signed
(sign-extended) immediate, while U=1 specifies unsigned (zero-
extended) immediate. (For inter-register move it is always 0.)

DESTINATION Specifies the destination GPR for load (L=1). For store (L=0) it
specifies the data source GPR which is not changed (except in
atomic store-conditional (U=0) when it is written with 0 or 1).

INDEX In memory transfers with register addressing this field specifies the
GPR containing the memory address, while in indexed addressing
it specifies the GPR containing the index. In inter-register transfer
it specifies the data source GPR.

AUXCODE In memory transfers with register and indexed addressing, this
field specifies whether the index GPR is not changed, or whether it
is pre- or post-incremented/decremented. In inter-register trans-
fers, it specifies the source and destination register files.

BASE In memory transfers with displacement and indexed addressing,
this field specifies the GPR containing the base address.

OFFSET12HI The six MSBs of the 12-bit OFFSET12 used as a signed displace-
ment offset in memory transfers with displacement addressing.

OFFSET12LO The six LSBs of the 12-bit OFFSET12 used as a signed displace-
ment offset in memory transfers with displacement addressing.

IMMEDIATE18 An 18-bit immediate value for Load immediate.

Execution

Table 14 summarizes the execution of the MOV instructions.

Additionally to Table 14, for store-conditional (U=1,L=0), the destination GPR is written
with 1 or 0 in MMODE width, if the load-locked/store-conditional pair of instructions was
successful or not, respectively. That is,

REG[DESTINATION] ← 1, on successful load-locked/store-conditional pair, and

REG[DESTINATION] ← 0, on unsuccessful load-locked/store-conditional pair.

However, if the store-conditional returns 0, it means that writing to memory did not happen.

Changes

Destination register All data transfer instructions except non-atomic store instructions
change the specified destination register. Inter-register transfer
instructions can also change the registers in other register files
(not only in the GPR file), while all other data-transfer instruc-
tions change the registers only in the GPR file. If MMODE specifies
shorter width than the destination register width, only the corre-
sponding lower bits of the destination register are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the desti-
nation register width, the register circularity applies (see Subsec-
tion 2.2.3).

Memory Only store instructions change the memory contents.

Index GPR Memory transfer instructions with register or indexed addressing
have the possibility to pre- or post-increment/decrement the index
GPR according to the specified machine mode.

59

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Table 14: Execution of MOV instructions

L AUXCODE Function
Move with displacement addressing

0 N/A MEM[BASE+OFFSET12] ← REG[DESTINATION]
1 N/A REG[DESTINATION] ← MEM[BASE+OFFSET12]

Move with register addressing

0

0000 MEM[INDEX] ← REG[DESTINATION]
0001 MEM[INDEX++] ← REG[DESTINATION]
0010 MEM[INDEX--] ← REG[DESTINATION]
0101 MEM[++INDEX] ← REG[DESTINATION]
0110 MEM[--INDEX] ← REG[DESTINATION]

1

0000 REG[DESTINATION] ← MEM[INDEX]
0001 REG[DESTINATION] ← MEM[INDEX++]
0010 REG[DESTINATION] ← MEM[INDEX--]
0101 REG[DESTINATION] ← MEM[++INDEX]
0110 REG[DESTINATION] ← MEM[--INDEX]

Move with indexed addressing

0

1000 MEM[BASE+INDEX] ← REG[DESTINATION]
1001 MEM[BASE+(INDEX++)] ← REG[DESTINATION]
1010 MEM[BASE+(INDEX--)] ← REG[DESTINATION]
1101 MEM[BASE+(++INDEX)] ← REG[DESTINATION]
1110 MEM[BASE+(--INDEX)] ← REG[DESTINATION]

1

1000 REG[DESTINATION] ← MEM[BASE+INDEX]
1001 REG[DESTINATION] ← MEM[BASE+(INDEX++)]
1010 REG[DESTINATION] ← MEM[BASE+(INDEX--)]
1101 REG[DESTINATION] ← MEM[BASE+(++INDEX)]
1110 REG[DESTINATION] ← MEM[BASE+(--INDEX)]

Move inter-register

1

0000 REG[DESTINATION] ← REG[INDEX]
0001 REG[DESTINATION] ← SPC[INDEX]
0010 SPC[DESTINATION] ← REG[INDEX]
0011 REG[DESTINATION] ← DSP[INDEX]
0100 DSP[DESTINATION] ← REG[INDEX]
1110 REG[DESTINATION] ← FPR[INDEX]
1111 FPR[DESTINATION] ← REG[INDEX]

Load immediate
1 N/A REG[DESTINATION] ← IMMEDIATE18

Exceptions

SYSTEM INSTRUCTION It is raised when an inter-register transfer instruction executed in
user mode tries to write a special register which is not writable in
user mode (see Subsection 4.2.3 and Table 12).

INVALID OPERATION It is raised when an inter-register transfer instruction executed in
system mode tries to write a non-writable special register (see
Subsection 4.2.7 and Table 12).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6),
as well as the UNIMPLEMENTED GPR BANK exception (see Subsection 4.2.4).

Examples

Example 1: Load halfword from memory with displacement addressing

Instruction in binary format: 11001100 000011 000000 000010 000101

60

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Instruction in hexadecimal format: 0xCC0C0085
Fields:

L 1 (load)
MMODE 001 (halfword)

U 0 (non-atomic)
DESTINATION 000011 (reg3)
OFFSET12HI 000000 (0x0)

BASE 000010 (reg2)
OFFSET12LO 000101 (0x5)

The instruction loads a halfword (16 bits) into the GPR 3 from memory at an effective address
found by addition of the BASE register (here specified as GPR 2) and the OFFSET12. The
concatenation of OFFSET12HI and OFFSET12LO gives OFFSET12 = 0x5. The following
illustration shows an example state of a 32-bit wide GPR file and memory with little-endian
ordering before and after execution of the instruction (0xCC0C0085).

..

.

..

.

GPR file

reg2 0x00000018
reg3 0xFFFFFFFF

..

.

..

.

Memory

0x18
0x1C 0xABCDEF01

..

.

..

.

GPR file

reg2 0x00000018
reg3 0xFFFFCDEFexec. instr.

0xCC0C0085

Thus, the effective address is 0x18 + 0x5 = 0x1D. At address 0x1C the memory content
is 0xABCDEF01, so the 16 bits 0xCDEF starting at 0x1D will be read into the lower half of
GPR 3, while its upper part remains unchanged, i.e., 0xFFFF.

Example 2: Store word in memory with register addressing

Instruction in binary format: 10010000 000011 0000 00000000 000010
Instruction in hexadecimal format: 0x900C0002
Fields:

L 0 (store)
MMODE 010 (word)

U 0 (non-atomic)
DESTINATION 000011 (reg3)

AUXCODE 0000 (no base, no change of the INDEX GPR)
INDEX 000010 (reg2)

The instruction stores a word (32 bits) residing into GPR 3 (specified by the DESTINATION
field) into memory at an effective address contained in the GPR 2 (specified by the INDEX
field). The following illustration shows an example state of a 32-bit wide GPR file and memory
with little-endian ordering before and after execution of the instruction (0x900C0002).

..

.

..

.

GPR file

reg2 0x0000001A
reg3 0xABCDEF01

..

.

..

.

Memory

0x18 0x00000000
0x1C 0x00000000

..

.

..

.

Memory

0x18 0xEF010000
0x1C 0x0000ABCDexec. instr.

0x900C0002

Thus, all 32 bits of GPR 3 are written at address 0x1A taken from GPR 2. Of course, the
GPR file is not changed by a non-atomic store instruction.

Example 3: Load doubleword from memory with indexed addressing

Instruction in binary format: 11011000 000011 1101 00 000010 000001
Instruction in hexadecimal format: 0xD80F4081

61

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Fields:
L 1 (load)

MMODE 011 (doubleword)
U 0 (non-atomic)

DESTINATION 000011 (reg3)
AUXCODE 1101 (use base, pre-increment the INDEX GPR)

BASE 000010 (reg2)
INDEX 000001 (reg1)

The instruction loads a doubleword (64 bits) into the GPR 3 from memory at an effective
address found by addition of the BASE register (here specified as GPR 2) and the INDEX
register GPR 1 which is pre-incremented before forming the address. The following illustration
shows an example state of a 32-bit wide GPR file and memory with little-endian ordering
before and after execution of the instruction (0xD80F4081).

..

.

..

.

GPR file

reg1 0x00000004
reg2 0x00000020
reg3 0x00000000
reg4 0x00000000

..

.

..

.

Memory

0x28
0x2C 0x23456789
0x30 0xABCDEF01
0x34

..

.

..

.

GPR file

reg1 0x0000000C
reg2 0x00000020
reg3 0x23456789
reg4 0xABCDEF01exec. instr.

0xD80F4081

Thus, the INDEX found in GPR 1 (0x4) is incremented by 8 (since a doubleword has 8 bytes)
and its value (0xC) is updated and added to the BASE GPR 2 (0x20) giving the effective
address 0x2C. Since the GPR width is 32 bits, both GPR 3 and GPR 4 are loaded due to the
property of circularity (see Subsection 2.2.3).

Example 4: Inter-register transfer from a GPR to a special register

Instruction in binary format: 11000001 001111 0010 00000000 000011
Instruction in hexadecimal format: 0xC13C8003
Fields:

MMODE 000 (byte)
DESTINATION 001111 (SYSTEM CONTROL REGISTER)

AUXCODE 0010 (copy GPR to special register)
INDEX 000001 (reg3)

The instruction copies a byte from the GPR 3 to the SYSTEM CONTROL REGISTER. The
following illustration shows an example state of a 32-bit wide GPR and special register file
before and after execution of the instruction (0xC13C8003).

..

.

..

.

GPR file

reg3 0x0000000C
..
.

..

.

Special reg. file

spc15 0xFFFF0001
..
.

..

.

Special reg. file

spc15 0xFFFF000Cexec. instr.
0xC13C8003

Thus, by executing this instruction, the user mode is entered, and both the exceptions and
the interrupt line are enabled. Only the lower eight bits are changed in the SYSTEM CONTROL
REGISTER, as the machine mode is byte.

Example 5: Load immediate

Instruction in binary format: 11010101 000011 111111111111111011
Instruction in hexadecimal format: 0xD50FFFFB

62

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Fields:
MMODE 010 (word)

U 0 (signed)
DESTINATION 000011 (reg3)
IMMEDIATE18 111111111111111011 (0x3FFFB)

The instruction loads an immediate word value (32-bit) into GPR 3. The following illustration
shows an example state of a 32-bit wide GPR file before and after execution of the instruction
(0xD50FFFFB).

..

.

..

.

GPR file

reg3 0x00000000
..
.

..

.

GPR file

reg3 0xFFFFFFFBexec. instr.
0xD50FFFFB

Thus, the 18-bit wide immediate value is sign-extended to 32-bits. If now only the U bit is
changed to 1, the instruction (0xD70FFFFB) treats the immediate value as unsigned and its
execution will do the following.

..

.

..

.

GPR file

reg3 0x00000000
..
.

..

.

GPR file

reg3 0x0003FFFBexec. instr.
0xD70FFFFB

63

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.2 ADD – Add

0 0 MMODE 0 U 0

8

DESTINATION 0 0 0 0 SOURCE

6 4 2 6 6

(a) Add register

0 0 MMODE 1 U 0

8

DESTINATION 0 0 0 0 IMMEDIATE14

6 4 14

(b) Add immediate

Fig. 33: Add (ADD) instructions

The ADD instruction specifies integer addition of two operands. The first operand resides in
a GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the addition. The second operand is either in a GPR or is an immediate value
specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for Add
immediate).
1: unsigned operation (including zero-extended immediate for
Add immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Add register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Add
immediate.

Execution

Table 15 summarizes the execution of ADD instructions.

Table 15: Execution of ADD instructions

Add register
REG[DESTINATION] ← REG[DESTINATION] + REG[SOURCE]

Add immediate
REG[DESTINATION] ← REG[DESTINATION] + IMMEDIATE14

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

64

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Exceptions

OVERFLOW It is raised when the result of the operation cannot be represented
in the specified machine mode (see Subsection 4.2.9).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 6: Add register

Instruction in binary format: 00010000 000011 0000 00 000010 000000
Instruction in hexadecimal format: 0x100C0080
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction adds the value of GPR 2 to GPR 3 and writes the computed result back in
GPR 3. The following illustration shows an example state of a 32-bit wide GPR file before
and after execution of the instruction (0x100C0080). It also shows the state of the special
register file after instruction execution.

..

.

..

.

GPR file

reg2 0x012BCD86
reg3 0x000002AB

..

.

..

.

GPR file

reg2 0x012BCD86
reg3 0x012BD031

..

.

..

.

Special reg. file

EST 0x00000080exec. instr.
0x100C0080

Thus, the GPR 3 is overwritten with the computed result in its full 32-bit width since the
operation is in word machine mode.

In the EXECUTION STATUS register (EST), only the LESS THAN flag is set since (before
instruction execution) the first operand in GPR 3 specified by DESTINATION is lesser than
the second operand in GPR 2 specified by SOURCE (see Subsection 5.2).

Example 7: Add immediate

Instruction in binary format: 00001100 000011 0000 00000000000011
Instruction in hexadecimal format: 0x0C0C0003
Fields:

MMODE 001 (halfword)
U 0 (signed)

DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000011 (0x3)

The instruction adds the 14-bit wide, sign-extended IMMEDIATE14 value to the value in
GPR 3, and writes the computed result back in GPR 3. The following illustration shows
an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x0C0C0003). It also shows the state of the special register file after instruction execution.
It is assumed that the OVERFLOW exception is impotent.

65

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

..

.

..

.

GPR file

reg3 0x00007FFF
..
.

..

.

GPR file

reg3 0x00008002
..
.

..

.

Special reg. file

EST 0x00000448
EXI 0x0C0C0003
EXC 0x00000200exec. instr.

0x0C0C0003

Thus, the lower 16 bits of GPR 3 are overwritten with the computed result since the operation
is in halfword machine mode.

This instruction raises the OVERFLOW exception since the computed result overflows the
maximal representable positive integer in halfword mode and becomes a negative number.
The EXCEPTION INSTRUCTION register (EXI) is therefore written with the instruction code,
and the OVERFLOW bit in the EXCEPTION REGISTER (EXC) is set (it is assumed that before
executing the instruction the EXC register was zero). However, since it is assumed that the
OVERFLOW exception is impotent, the result is written back to the DESTINATION GPR 3. If it
was potent, the GPR 3 and the EXECUTION STATUS register (EST) would not be overwritten
and the exception handling would have been started.

In the EXECUTION STATUS register (EST), the OVERFLOW, GREATER THAN and SIGN flags are
set (see Subsection 5.2). The GREATER THAN flag is set since (before instruction execution)
the first operand in GPR 3 specified by DESTINATION is greater than the second operand
specified by IMMEDIATE14. On the other side, the SIGN flag is set since the result (obtained
after instruction execution) is negative in halfword mode.

66

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.3 SUB – Subtract

0 0 MMODE 0 U 0

8

DESTINATION 0 0 0 1 SOURCE

6 4 2 6 6

(a) Subtract register

0 0 MMODE 1 U 0

8

DESTINATION 0 0 0 1 IMMEDIATE14

6 4 14

(b) Subtract immediate

Fig. 34: Subtract (SUB) instructions

The SUB instruction specifies integer subtraction of two operands. The first operand resides
in a GPR in which the result will be written back, i.e., the first operand will be overwritten
with the result of the subtraction. The second operand is either in a GPR or is an immediate
value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for Sub-
tract immediate).
1: unsigned operation (including zero-extended immediate for
Subtract immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Subtract register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Subtract
immediate.

Execution

Table 16 summarizes the execution of SUB instructions.

Table 16: Execution of SUB instructions

Subtract register
REG[DESTINATION] ← REG[DESTINATION] - REG[SOURCE]

Subtract immediate
REG[DESTINATION] ← REG[DESTINATION] - IMMEDIATE14

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

67

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Exceptions

OVERFLOW It is raised when the result of the operation cannot be represented
in the specified machine mode (see Subsection 4.2.9).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 8: Subtract register

Instruction in binary format: 00010000 000011 0001 00 000010 000000
Instruction in hexadecimal format: 0x100C4080
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction subtracts the value in GPR 2 from GPR 3 and writes the computed result
back in GPR 3. The following illustration shows an example state of a 32-bit wide GPR file
before and after execution of the instruction (0x100C4080). It also shows the state of the
special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCADB

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100C4080

Thus, the GPR 3 is overwritten with the computed result in its full 32-bit width since the
operation is in word machine mode.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 9: Subtract immediate

Instruction in binary format: 00010100 000011 0001 11011011101011
Instruction in hexadecimal format: 0x140C76EB
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
IMMEDIATE14 11011011101011 (0x36EB)

The instruction subtracts the 14-bit wide, sign-extended IMMEDIATE14 value from the value
in GPR 3, and writes the computed result back in GPR 3. The following illustration shows
an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x140C76EB). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BD69B
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x140C76EB

Thus, the GPR 3 is overwritten with the computed result in its full 32-bit width since the
operation is in word machine mode.

68

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Since the sign-extended immediate value is actually a negative number (decimal: -2325), this
is actually an addition. If now only the U bit is changed to 1, the instruction (0x160C76EB)
denotes unsigned subtraction and treats the immediate value as unsigned, and its execution
will do the following.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012B969B
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x160C76EB

In both cases, only the GREATER THAN flag is set in the EXECUTION STATUS register (EST)
(see Subsection 5.2).

69

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.4 MUL – Multiply

0 0 MMODE 0 U 0

8

DESTINATION 0 0 1 0 SOURCE

6 4 2 6 6

(a) Multiply register

0 0 MMODE 1 U 0

8

DESTINATION 0 0 1 0 IMMEDIATE14

6 4 14

(b) Multiply immediate

Fig. 35: Multiply (MUL) instructions

The MUL instruction specifies integer multiplication of two operands. The first operand resides
in a GPR in which the result will be written back, i.e., the first operand will be overwritten
with the result of the multiplication. The second operand is either in a GPR or is an immediate
value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for Mul-
tiply immediate).
1: unsigned operation (including zero-extended immediate for
Multiply immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Multiply register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Multiply
immediate.

Execution

Table 17 summarizes the execution of MUL instructions.

Table 17: Execution of MUL instructions

Multiply register
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE]

Multiply immediate
REG[DESTINATION] ← REG[DESTINATION] × IMMEDIATE14

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
However, the MUL instruction always returns a result which is
twice the width of the input operands specified by MMODE. Thus,
depending on the machine mode and the GPR width, subsequent
GPRs may be written according to the property of circularity (see
Subsection 2.2.3) in little-endian ordering. For example, if both

70

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

the GPR width and the MMODE is 32 bits, then the result is 64-
bit wide which will be written in two subsequent GPRs, i.e., the
lower part in the GPR specified by the DESTINATION field, and the
upper part in the subsequent GPR. On the other side, if the GPR
width is 32 bits and MMODE is 16 bits, the result is 32-bit wide,
and will be written in a single register specified by DESTINATION.

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 10: Multiply register (word machine mode)

Instruction in binary format: 00010010 000011 0010 00 000010 000000
Instruction in hexadecimal format: 0x120C8080
Fields:

MMODE 010 (word)
U 1 (unsigned)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction multiplies the value in GPR 2 to the value in GPR 3 and writes the computed
result back in GPR 3 and in GPR 4. Since U = 0, the operation is unsigned, and the operands
in GPR 2 and GPR 3 are considered unsigned. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x120C8080).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x1FDD5482
reg4 0x00000003

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x120C8080

The computed result 0x31FDD5482 is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which is written back into GPR 3 and GPR 4, of which
GPR 4 contains the higher part in significance. In other words, the result is a concatenation
of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 11: Multiply register (halfword machine mode)

Instruction in binary format: 00001000 000011 0010 000010 000000
Instruction in hexadecimal format: 0x080C8080
Fields:

MMODE 001 (halfword)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction multiplies the 16-bit subvalue in GPR 2 to the 16-bit subvalue in GPR 3 and
writes the computed 32-bit result back in GPR 3. The following illustration shows an example

71

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

state of a 32-bit wide GPR file before and after execution of the instruction (0x080C8080).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0xFF795482

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x080C8080

The 16-bit input operand value in GPR 3 (0xCD86) is negative and the input operand value
in GPR 2 is positive (0x02AB), which implies a negative 32-bit wide result (0xFF795482)
which is written back into GPR 3.

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

Example 12: Multiply immediate

Instruction in binary format: 00010100 000011 0010 01100010101100
Instruction in hexadecimal format: 0x140C98AC
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
IMMEDIATE14 01100010101100 (0x18AC)

The instruction multiplies the 14-bit wide, sign-extended IMMEDIATE14 value to the value
in GPR 3, and writes the computed result back in GPR 3. The following illustration shows
an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x140C98AC). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg3 0xE4B2A608
reg4 0x0000001C

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x140C98AC

The computed result 0x1CE4B2A608 is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which is written back into GPR 3 and GPR 4, of which
GPR 4 contains the higher part in significance. In other words, the result is a concatenation
of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

72

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.5 DIV – Divide

0 0 MMODE 0 U 0

8

DESTINATION 0 0 1 1 SOURCE

6 4 2 6 6

(a) Divide register

0 0 MMODE 1 U 0

8

DESTINATION 0 0 1 1 IMMEDIATE14

6 4 14

(b) Divide immediate

Fig. 36: Divide (DIV) instructions

The DIV instruction specifies integer division of two operands. The first operand resides in a
GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the division. The second operand is either in a GPR or is an immediate value
specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for Di-
vide immediate).
1: unsigned operation (including zero-extended immediate for
Divide immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Divide register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Divide
immediate.

Execution

Table 18 summarizes the execution of DIV instructions.

Table 18: Execution of DIV instructions

Divide register
REG[DESTINATION] ← REG[DESTINATION] ÷ REG[SOURCE]
REG[subseq(DESTINATION)] ← REG[DESTINATION] % REG[SOURCE]

Divide immediate
REG[DESTINATION] ← REG[DESTINATION] ÷ IMMEDIATE14
REG[subseq(DESTINATION)] ← REG[DESTINATION] % IMMEDIATE14

The subseq() function gives the subsequent GPR number. For example, for a 32-bit wide GPR
file and a 32-bit machine mode (or lower), subseq(2) = 3. On the other hand, for a 32-bit wide
GPR file and a 64-bit machine mode subseq(2) = 4, etc.

73

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
The DIV instruction returns both the quotient and the remainder
of the integer division in two subsequent registers according to
the circularity property Subsection 2.2.3. In Table 18 the func-
tion subseq() gives the number of the subsequent register that
contains the remainder. However, if the GPR width is lower than
the machine mode of the operation, then accordingly more regis-
ters are used. For example, if the GPR width is 16 bits and the
machine mode is 32 bits, four registers are used: the GPR spec-
ified by the DESTINATION field contains the lower part of the
quotient. The first subsequent register contains the higher part
of the quotient, while the third and fourth subsequent registers
contain the lower and the upper part of the remainder, respec-
tively. In this case, the function subseq() in Table 18 gives the
number of the GPR that contains the lower part of the remainder.

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

DIVISION BY ZERO It is raised when the divisor is zero.

OVERFLOW It is raised on a signed division in which the dividend is the mini-
mal representable number in the specified machine mode and the
divisor is -1.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 13: Divide register (word machine mode)

Instruction in binary format: 00010000 000011 0011 00 000010 000000
Instruction in hexadecimal format: 0x100CC080
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The divisor in GPR 2 divides the dividend in GPR 3. The computed quotient is written back
in GPR 3 while the computed remainder is written back in GPR 4. The following illustration
shows an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x100CC080). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x0000705F
reg4 0x00000011

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100CC080

Thus, the computed quotient 0x0000705F and remainder 0x00000011 are both 32-bit wide,
and occupy GPR 3 and GPR 4, respectively.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

74

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Example 14: Divide register (halfword machine mode)

Instruction in binary format: 00001010 000011 0011 00 000010 000000
Instruction in hexadecimal format: 0x0A0CC080
Fields:

MMODE 001 (halfword)
U 1 (unsigned)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The 16-bit subvalue in GPR 2 is the divisor which divides the 16-bit subvalue dividend in
GPR 3. The computed 16-bit quotient is written back in GPR 3 while the computed 16-bit
remainder is written back in GPR 4. The division is unsigned and both of the 16-bit input
operands are considered unsigned. The following illustration shows an example state of a
32-bit wide GPR file before and after execution of the instruction (0x0A0CC080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86
reg4 0xFFFFFFFF

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012B004D
reg4 0xFFFF0017

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x0A0CC080

Thus, the 16-bit input operand value in GPR 3 (0xCD86) is considered positive integer. After
instruction execution, only the lower 16 bits of GPR 3 and GPR 4 are overwritten with the
16-bit quotient (0x4D) and the 16-bit remainder (0x17), respectively.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 15: Divide immediate

Instruction in binary format: 00000100 000011 0011 11100000111010
Instruction in hexadecimal format: 0x040CF83A
Fields:

MMODE 000 (byte)
U 0 (signed)

DESTINATION 000011 (reg3)
IMMEDIATE14 11100000111010 (0x383A)

The 8-bit subvalue of the 14-bit IMMEDIATE14 is the divisor which divides the 8-bit subvalue
dividend in GPR 3. The computed 8-bit quotient is written back in GPR 3 while the computed
8-bit remainder is written back in GPR 4. The following illustration shows an example state
of a 32-bit wide GPR file before and after execution of the instruction (0x040CF83A). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD56
reg4 0xFFFFFFFF

..

.

..

.

GPR file

reg3 0x012BCD01
reg4 0xFFFFFF1C

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x040CF83A

Thus, the 8-bit divisor given by IMMEDIATE14 (0x3A) divides the 8-bit subvalue dividend in
GPR 3 (0x56). After instruction execution, only the lower 8 bits of GPR 3 and GPR 4 are
overwritten with the 8-bit quotient (0x01) and the 8-bit remainder (0x1C), respectively.

75

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

76

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.6 SL – Shift left

0 0 MMODE 0 U 0

8

DESTINATION 0 1 0 0 SOURCE

6 4 2 6 6

(a) Shift left register

0 0 MMODE 1 U 0

8

DESTINATION 0 1 0 0 IMMEDIATE14

6 4 14

(b) Shift left immediate

Fig. 37: Shift left (SL) instructions

The SL instruction specifies a left shift of the first operand for a number of places specified
by the second operand. The first operand resides in a GPR in which the result will be written
back, i.e., the first operand will be overwritten with the result of the shift. The second
operand is either in a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: Arithmetic left shift – triggers the OVERFLOW exception if the
MSB (according to MMODE) of the destination GPR is changed.
1: Logic left shift – does not trigger exceptions.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Shift left register. That is the number of bits to be shifted left
in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Shift
left immediate. That is the number of bits to be shifted left in
the GPR specified by DESTINATION.

Execution

Table 19 summarizes the execution of SL instructions.

Table 19: Execution of SL instructions

Shift left register
REG[DESTINATION] ← REG[DESTINATION] << REG[SOURCE]

Shift left immediate
REG[DESTINATION] ← REG[DESTINATION] << IMMEDIATE14

The SL instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the

77

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

OVERFLOW It is raised by arithmetic left shift when the MSB of the destination
GPR changes its state. The MSB of the GPR is determined
according to the specified machine mode.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 16: Shift left register

Instruction in binary format: 00010010 000011 0100 00 000010 00000000
Instruction in hexadecimal format: 0x120D0080
Fields:

MMODE 010 (word)
U 1 (logic shift)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The value in GPR 3 is shifted left (logically) for a number of bit places given by GPR 2. The
computed result is written back in GPR 3. The following illustration shows an example state
of a 32-bit wide GPR file before and after execution of the instruction (0x120D0080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000002
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0x00000002
reg3 0x04AF3618

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x120D0080

If the number of bit shifts (here given by GPR 2) is greater or equal than the GPR width (or
the width of the machine mode), the result will be zero.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 17: Shift left immediate

Instruction in binary format: 00000100 000011 0100 00000000000100
Instruction in hexadecimal format: 0x040D0004
Fields:

MMODE 000 (byte)
U 0 (arithmetic shift)

DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000100 (0x4)

The value in GPR 3 is shifted left (arithmetically) for a number of bit places given by
IMMEDIATE14. The computed result is written back in GPR 3. The following illustration
shows an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x040D0004). It also shows the state of the special register file after instruction execution.

78

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BCD60
..
.

..

.

Special reg. file

EST 0x00000048
EXI 0x040D0004
EXC 0x00000200exec. instr.

0x040D0004

Thus, only the lowest byte of GPR 3 is shifted for 4 places.

This instruction raises the OVERFLOW exception since the MSB (in byte width) of GPR 3 is
changed from 1 to 0 after instruction execution. The EXCEPTION INSTRUCTION register
(EXI) is therefore written with the instruction code, and the OVERFLOW bit in the EXCEPTION
REGISTER (EXC) is set (it is assumed that before executing the instruction the EXC register
was zero). However, since it is assumed that the OVERFLOW exception is impotent, the result
is written back to the DESTINATION GPR 3. If it was potent, the GPR 3 and the EXECUTION
STATUS register (EST) would not be overwritten and the exception handling would have been
started.

In the EXECUTION STATUS register (EST), the OVERFLOW and GREATER THAN flags are set
(see Subsection 5.2).

79

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.7 SR – Shift right

0 0 MMODE 0 U 0

8

DESTINATION 0 1 0 1 SOURCE

6 4 2 6 6

(a) Shift right register

0 0 MMODE 1 U 0

8

DESTINATION 0 1 0 1 IMMEDIATE14

6 4 14

(b) Shift right immediate

Fig. 38: Shift right (SR) instructions

The SR instruction specifies a right shift of the first operand for a number of places specified
by the second operand. The first operand resides in a GPR in which the result will be written
back, i.e., the first operand will be overwritten with the result of the shift. The second
operand is either in a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: Arithmetic right shift – pulls the MSB (according to MMODE)
of the destination GPR.
1: Logic right shift – pulls a zero.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Shift right register. That is the number of bits to be shifted
right in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Shift
right immediate. That is the number of bits to be shifted right
in the GPR specified by DESTINATION.

Execution

Table 20 summarizes the execution of SR instructions.

Table 20: Execution of SR instructions

Shift right register
REG[DESTINATION] ← REG[DESTINATION] >> REG[SOURCE]

Shift right immediate
REG[DESTINATION] ← REG[DESTINATION] >> IMMEDIATE14

The SR instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the

80

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 18: Shift right register

Instruction in binary format: 00010010 000011 0101 00 000010 000000
Instruction in hexadecimal format: 0x120D4080
Fields:

MMODE 010 (word)
U 1 (logic shift)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The value in GPR 3 is shifted right (logically) for a number of bit places given by GPR 2.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x120D4080).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000002
reg3 0xF12BCD86

..

.

..

.

GPR file

reg2 0x00000002
reg3 0x3C4AF361

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x120D4080

If the number of bit shifts (here given by GPR 2) is greater or equal than the GPR width (or
the width of the machine mode), the result will be zero.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 19: Shift right immediate

Instruction in binary format: 00000100 000011 0101 00000000000100
Instruction in hexadecimal format: 0x040D4004
Fields:

MMODE 000 (byte)
U 0 (arithmetic shift)

DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000100 (0x4)

The value in GPR 3 is shifted right (arithmetically) for a number of bit places given by
IMMEDIATE14. The computed result is written back in GPR 3. The following illustration
shows an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x040D4004). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BCDF8
..
.

..

.

Special reg. file

EST 0x00000440exec. instr.
0x040D4004

81

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Thus, only the lowest byte of GPR 3 is shifted for 4 places. The MSB in byte width of GPR 3
is preserved and the result remains negative (in byte width).

82

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.8 RL – Rotate left

0 0 MMODE 0 0 0

8

DESTINATION 0 1 1 0 SOURCE

6 4 2 6 6

(a) Rotate left register

0 0 MMODE 1 0 0

8

DESTINATION 0 1 1 0 IMMEDIATE14

6 4 14

(b) Rotate left immediate

Fig. 39: Rotate left (RL) instructions

The RL instruction specifies a left rotation of the first operand for a number of places specified
by the second operand. The first operand resides in a GPR in which the result will be written
back, i.e., the first operand will be overwritten with the result of the rotation. The second
operand is either in a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Rotate left register. That is the number of bits to be rotated
left in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Rotate
left immediate. That is the number of bits to be rotated left in
the GPR specified by DESTINATION.

Execution

Table 21 summarizes the execution of RL instructions.

Table 21: Execution of RL instructions

Rotate left register
REG[DESTINATION] ← REG[DESTINATION] <<> REG[SOURCE]

Rotate left immediate
REG[DESTINATION] ← REG[DESTINATION] <<> IMMEDIATE14

The RL instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

83

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 20: Rotate left register

Instruction in binary format: 00010000 000011 0110 00 000010 000000
Instruction in hexadecimal format: 0x100D8080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is rotated left for a number of bit places given by GPR 2. The computed
result is written back in GPR 3. The following illustration shows an example state of a 32-bit
wide GPR file before and after execution of the instruction (0x100D8080). It also shows the
state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000005
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0x00000005
reg3 0x2579B0C0

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100D8080

Thus, the bits in GPR 3 that go out at the left side are inserted back on the right side.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 21: Rotate left immediate

Instruction in binary format: 00001100 000011 0110 00000000100101
Instruction in hexadecimal format: 0x0C0D8025
Fields:

MMODE 001 (halfword)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000100101 (0x25)

The value in GPR 3 is rotated left for a number of bit places given by IMMEDIATE14. The
computed result is written back in GPR 3. The following illustration shows an example state
of a 32-bit wide GPR file before and after execution of the instruction (0x0C0D8025). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BB0D9
..
.

..

.

Special reg. file

EST 0x00000440exec. instr.
0x0C0D8025

Thus, the bits in GPR 3 that go out at the left side are inserted back on the right side.
Although the number of bit rotations (0x25, or, in decimal format 37) is greater than the
width of the machine mode (16 bits), GPR 3 is rotated anyway. The result will be the same
as if the number of bit rotations is 5, i.e., 37 % 16.

84

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

In the EXECUTION STATUS register (EST), the GREATER THAN and SIGN flags are set (see
Subsection 5.2).

85

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.9 RR – Rotate right

0 0 MMODE 0 1 0

8

DESTINATION 0 1 1 0 SOURCE

6 4 2 6 6

(a) Rotate right register

0 0 MMODE 1 1 0

8

DESTINATION 0 1 1 0 IMMEDIATE14

6 4 14

(b) Rotate right immediate

Fig. 40: Rotate right (RR) instructions

The RR instruction specifies a right rotation of the first operand for a number of places
specified by the second operand. The first operand resides in a GPR in which the result will
be written back, i.e., the first operand will be overwritten with the result of the rotation.
The second operand is either in a GPR or is an immediate value specified by the instruction
itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Rotate right register. That is the number of bits to be rotated
right in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Rotate
right immediate. That is the number of bits to be rotated right
in the GPR specified by DESTINATION.

Execution

Table 22 summarizes the execution of RR instructions.

Table 22: Execution of RR instructions

Rotate right register
REG[DESTINATION] ← REG[DESTINATION] <>> REG[SOURCE]

Rotate right immediate
REG[DESTINATION] ← REG[DESTINATION] <>> IMMEDIATE14

The RR instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see

86

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 22: Rotate right register

Instruction in binary format: 00010010 000011 0110 00 000010 000000
Instruction in hexadecimal format: 0x120D8080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is rotated right for a number of bit places given by GPR 2. The computed
result is written back in GPR 3. The following illustration shows an example state of a 32-bit
wide GPR file before and after execution of the instruction (0x120D8080). It also shows the
state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000005
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0x00000005
reg3 0x30095E6C

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x120D8080

Thus, the bits in GPR 3 that go out at the right side are inserted back on the left side.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 23: Rotate right immediate

Instruction in binary format: 00000110 000011 0110 00000000000001
Instruction in hexadecimal format: 0x060D8001
Fields:

MMODE 000 (byte)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000001 (0x1)

The value in GPR 3 is rotated right for a number of bit places given by IMMEDIATE14. The
computed result is written back in GPR 3. The following illustration shows an example state
of a 32-bit wide GPR file before and after execution of the instruction (0x060D8001). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BCD43
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x060D8001

Thus, the bit in GPR 3 that goes out at the right side is inserted back on the left side.

87

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

88

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.10 AND – AND bitwise

0 0 MMODE 0 0 0

8

DESTINATION 0 1 1 1 SOURCE

6 4 2 6 6

(a) AND bitwise register

0 0 MMODE 1 U 0

8

DESTINATION 0 1 1 1 IMMEDIATE14

6 4 14

(b) AND bitwise immediate

Fig. 41: AND bitwise (AND) instructions

The AND instruction specifies logic ‘AND’ operation between two operands. The operation is
bitwise, i.e., between the corresponding bits of the operands. The first operand resides in a
GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the ‘AND’ operation. The second operand is either in a GPR or is an immediate
value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U Not used by AND bitwise register (it should be always U=0).
For AND bitwise immediate, U=0 specifies sign-extended imme-
diate, while U=1 specifies zero-extended immediate. However,
although zero- or sign-extended, the immediate is still treated as
unsigned.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for AND bitwise register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for AND
bitwise immediate.

Execution

Table 23 summarizes the execution of AND instructions.

Table 23: Execution of AND instructions

AND bitwise register
REG[DESTINATION] ← REG[DESTINATION] & REG[SOURCE]

AND bitwise immediate
REG[DESTINATION] ← REG[DESTINATION] & IMMEDIATE14

The AND instruction always treats both of the input operands as unsigned.

89

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 24: AND bitwise register

Instruction in binary format: 00010000 000011 0111 00 000010 000000
Instruction in hexadecimal format: 0x100DC080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is AND-ed bitwise with the value in GPR 2. The computed result is
written back in GPR 3. The following illustration shows an example state of a 32-bit wide
GPR file before and after execution of the instruction (0x100DC080). It also shows the state
of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0x0020C080

..

.

..

.

Special reg. file

EST 0x00000080exec. instr.
0x100DC080

In the EXECUTION STATUS register (EST), only the LESS THAN flag is set (see Subsec-
tion 5.2). This is because logic operations always treat the operands as unsigned. The U bit
can be used only for the logic operations with immediate values (see Examples 25, 27, 29
and 31) in which it signifies whether the immediate value is sign- or zero-extended, but even
the sign-extended immediate values are treated as unsigned.

Example 25: AND bitwise immediate

Instruction in binary format: 00010100 000011 0111 00111100001111
Instruction in hexadecimal format: 0x140DCF0F
Fields:

MMODE 010 (word)
U 0 (sign-extended immediate)

DESTINATION 000011 (reg3)
IMMEDIATE14 00111100001111 (0xF0F)

The value in GPR 3 is AND-ed bitwise with the sign-extended value given by IMMEDIATE14.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x140DCF0F).
It also shows the state of the special register file after instruction execution.

90

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x00000D06
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x140DCF0F

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

91

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.11 NAND – Negated AND bitwise

0 0 MMODE 0 0 0

8

DESTINATION 1 0 0 0 SOURCE

6 4 2 6 6

(a) Negated AND bitwise register

0 0 MMODE 1 U 0

8

DESTINATION 1 0 0 0 IMMEDIATE14

6 4 14

(b) Negated AND bitwise immediate

Fig. 42: Negated AND bitwise (NAND) instructions

The NAND instruction specifies logic ‘negated AND’ operation between two operands. The
operation is bitwise, i.e., between the corresponding bits of the operands. The first operand
resides in a GPR in which the result will be written back, i.e., the first operand will be
overwritten with the result of the ‘negated AND’ operation. The second operand is either in
a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U Not used by Negated AND bitwise register (it should be always
U=0). For Negated AND bitwise immediate, U=0 specifies sign-
extended immediate, while U=1 specifies zero-extended imme-
diate. However, although zero- or sign-extended, the immediate
is still treated as unsigned.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Negated AND bitwise register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Negated
AND bitwise immediate.

Execution

Table 24 summarizes the execution of NAND instructions.

Table 24: Execution of NAND instructions

Negated AND bitwise register
REG[DESTINATION] ← REG[DESTINATION] &~ REG[SOURCE]

Negated AND bitwise immediate
REG[DESTINATION] ← REG[DESTINATION] &~ IMMEDIATE14

The NAND instruction always treats both of the input operands as unsigned.

92

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 26: NAND bitwise register

Instruction in binary format: 00010000 000011 1000 00 000010 000000
Instruction in hexadecimal format: 0x100E0080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is NAND-ed bitwise with the value in GPR 2. The computed result is
written back in GPR 3. The following illustration shows an example state of a 32-bit wide
GPR file before and after execution of the instruction (0x100E0080). It also shows the state
of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0xFFDF3F7F

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x100E0080

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

Example 27: NAND bitwise immediate

Instruction in binary format: 00010100 000011 1000 11111100001111
Instruction in hexadecimal format: 0x140E3F0F
Fields:

MMODE 010 (word)
U 0 (sign-extended immediate)

DESTINATION 000011 (reg3)
IMMEDIATE14 11111100001111 (0x3F0F)

The value in GPR 3 is NAND-ed bitwise with the sign-extended value given by IMMEDIATE14.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x140E3F0F).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0xFED432F9
..
.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x140E3F0F

93

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

94

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.12 OR – OR bitwise

0 0 MMODE 0 0 0

8

DESTINATION 1 0 0 1 SOURCE

6 4 2 6 6

(a) OR bitwise register

0 0 MMODE 1 U 0

8

DESTINATION 1 0 0 1 IMMEDIATE14

6 4 14

(b) OR bitwise immediate

Fig. 43: OR bitwise (OR) instructions

The OR instruction specifies logic ‘OR’ operation between two operands. The operation is
bitwise, i.e., between the corresponding bits of the operands. The first operand resides in a
GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the ‘OR’ operation. The second operand is either in a GPR or is an immediate
value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U Not used by OR bitwise register (it should be always U=0). For
OR bitwise immediate, U=0 specifies sign-extended immedi-
ate, while U=1 specifies zero-extended immediate. However,
although zero- or sign-extended, the immediate is still treated as
unsigned.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for OR bitwise register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for OR bit-
wise immediate.

Execution

Table 25 summarizes the execution of OR instructions.

Table 25: Execution of OR instructions

OR bitwise register
REG[DESTINATION] ← REG[DESTINATION] | REG[SOURCE]

OR bitwise immediate
REG[DESTINATION] ← REG[DESTINATION] | IMMEDIATE14

The OR instruction always treats both of the input operands as unsigned.

95

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 28: OR bitwise register

Instruction in binary format: 00010000 000011 1001 00 000010 000000
Instruction in hexadecimal format: 0x100E4080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is OR-ed bitwise with the value in GPR 2. The computed result is written
back in GPR 3. The following illustration shows an example state of a 32-bit wide GPR file
before and after execution of the instruction (0x100E4080). It also shows the state of the
special register file after instruction execution.

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0xF1FBFDF6

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x100E4080

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

Example 29: OR bitwise immediate

Instruction in binary format: 00010110 000011 1001 11111100001111
Instruction in hexadecimal format: 0x160E7F0F
Fields:

MMODE 010 (word)
U 1 (zero-extended immediate)

DESTINATION 000011 (reg3)
IMMEDIATE14 11111100001111 (0x3F0F)

The value in GPR 3 is OR-ed bitwise with the zero-extended value given by IMMEDIATE14.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x160E7F0F).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BFF8F
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x160E7F0F

96

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

97

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.13 XOR – Exclusive OR bitwise

0 0 MMODE 0 0 0

8

DESTINATION 1 0 1 0 SOURCE

6 4 2 6 6

(a) Exclusive OR bitwise register

0 0 MMODE 1 U 0

8

DESTINATION 1 0 1 0 IMMEDIATE14

6 4 14

(b) Exclusive OR bitwise immediate

Fig. 44: Exclusive OR bitwise (XOR) instructions

The XOR instruction specifies logic ‘exclusive OR’ operation between two operands. The
operation is bitwise, i.e., between the corresponding bits of the operands. The first operand
resides in a GPR in which the result will be written back, i.e., the first operand will be
overwritten with the result of the ‘exclusive OR’ operation. The second operand is either in
a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U Not used by Exclusive OR bitwise register (it should be always
U=0). For Exclusive OR bitwise immediate, U=0 specifies sign-
extended immediate, while U=1 specifies zero-extended imme-
diate. However, although zero- or sign-extended, the immediate
is still treated as unsigned.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Exclusive OR bitwise register.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Exclusive
OR bitwise immediate.

Execution

Table 26 summarizes the execution of XOR instructions.

Table 26: Execution of XOR instructions

Exclusive OR bitwise register
REG[DESTINATION] ← REG[DESTINATION] ∧ REG[SOURCE]

Exclusive OR bitwise immediate
REG[DESTINATION] ← REG[DESTINATION] ∧ IMMEDIATE14

The XOR instruction always treats both of the input operands as unsigned.

98

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 30: XOR bitwise register

Instruction in binary format: 00010000 000011 1010 00 000010 000000
Instruction in hexadecimal format: 0x100E8080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The value in GPR 3 is XOR-ed bitwise with the value in GPR 2. The computed result is
written back in GPR 3. The following illustration shows an example state of a 32-bit wide
GPR file before and after execution of the instruction (0x100E8080). It also shows the state
of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0x012BCD86

..

.

..

.

GPR file

reg2 0xF0F0F0F0
reg3 0xF1DB3D76

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x100E8080

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

Example 31: XOR bitwise immediate

Instruction in binary format: 00010110 000011 1010 11111100001111
Instruction in hexadecimal format: 0x160EBF0F
Fields:

MMODE 010 (word)
U 1 (zero-extended immediate)

DESTINATION 000011 (reg3)
IMMEDIATE14 11111100001111 (0x3F0F)

The value in GPR 3 is XOR-ed bitwise with the zero-extended value given by IMMEDIATE14.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x160EBF0F).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x012BCD86
..
.

..

.

GPR file

reg3 0x012BF289
..
.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x160EBF0F

99

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

100

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.14 SB – Set bit

0 0 MMODE 0 0 0

8

DESTINATION 1 0 1 1 SOURCE

6 4 2 6 6

(a) Set bit register

0 0 MMODE 1 0 0

8

DESTINATION 1 0 1 1 IMMEDIATE14

6 4 14

(b) Set bit immediate

Fig. 45: Set bit (SB) instructions

The SB instruction sets a bit in the first operand to 1. The number of the bit to be set in
the first operand is specified by the second operand. The first operand resides in a GPR in
which the result will be written back, i.e., the first operand will be overwritten with the result
of the ‘set bit’ operation. The second operand is either in a GPR or is an immediate value
specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Set bit register. That is the number of the bit to be set to 1
in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Set bit
immediate. That is the number of the bit to be set to 1 in the
GPR specified by DESTINATION.

Execution

Table 27 summarizes the execution of SB instructions.

Table 27: Execution of SB instructions

Set bit register
REG[DESTINATION][REG[SOURCE]] ← 1

Set bit immediate
REG[DESTINATION][IMMEDIATE14] ← 1

The SB instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see

101

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

INVALID OPERATION It is raised when the bit number (specified by the second operand)
is greater than the specified machine mode or the ALU width (see
Subsection 4.2.7).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 32: Set bit register

Instruction in binary format: 00010000 000011 1011 00 000010 000000
Instruction in hexadecimal format: 0x100EC080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The bit specified by GPR 2 is set in GPR 3. Bit 0 is the LSB, while bit 31 is the MSB. The
computed result is written back in GPR 3. The following illustration shows an example state
of a 32-bit wide GPR file before and after execution of the instruction (0x100EC080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x00000000

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x00000008

..

.

..

.

Special reg. file

EST 0x00000080exec. instr.
0x100EC080

In the EXECUTION STATUS register (EST), only the LESS THAN flag is set (see Subsec-
tion 5.2).

Example 33: Set bit immediate

Instruction in binary format: 00000100 000011 1011 00000000001000
Instruction in hexadecimal format: 0x040EC008
Fields:

MMODE 000 (byte)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000001000 (0x8)

The bit specified by IMMEDIATE14 is set in GPR 3. Bit 0 is the LSB, while bit 31 is the MSB.
The computed result is written back in GPR 3. However, in this example, the immediate
value specifies a bit number which is beyond the byte machine mode. Therefore, the INVALID
OPERATION exception is raised, and the DESTINATION GPR 3 is not overwritten. The
following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x040EC008). It also shows the state of the special register file
after instruction execution.

102

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

GPR file

reg3 0x00000005
..
.

..

.

GPR file

reg3 0x00000005
..
.

..

.

Special reg. file

EST 0x00000081
EXI 0x040EC008
EXC 0x00000080exec. instr.

0x040EC008

In the EXECUTION STATUS register (EST), the LESS THAN and INVALID OPERATION flags
are set (see Subsection 5.2). The EXCEPTION INSTRUCTION register (EXI) is written with
the instruction code, and the INVALID OPERATION bit in the EXCEPTION REGISTER (EXC)
is set (it is assumed that before executing the instruction the EXC register was zero).

103

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.15 RB – Reset bit

0 0 MMODE 0 1 0

8

DESTINATION 1 0 1 1 SOURCE

6 4 2 6 6

(a) Reset bit register

0 0 MMODE 1 1 0

8

DESTINATION 1 0 1 1 IMMEDIATE14

6 4 14

(b) Reset bit immediate

Fig. 46: Reset bit (RB) instructions

The RB instruction resets a bit in the first operand to 0. The number of the bit to be reset
in the first operand is specified by the second operand. The first operand resides in a GPR
in which the result will be written back, i.e., the first operand will be overwritten with the
result of the ‘reset bit’ operation. The second operand is either in a GPR or is an immediate
value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Reset bit register. That is the number of the bit to be reset
to 0 in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Reset
bit immediate. That is the number of the bit to be reset to 0 in
the GPR specified by DESTINATION.

Execution

Table 28 summarizes the execution of RB instructions.

Table 28: Execution of RB instructions

Reset bit register
REG[DESTINATION][REG[SOURCE]] ← 0

Reset bit immediate
REG[DESTINATION][IMMEDIATE14] ← 0

The RB instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see

104

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

INVALID OPERATION It is raised when the bit number (specified by the second operand)
is greater than the specified machine mode or the ALU width (see
Subsection 4.2.7).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 34: Reset bit register

Instruction in binary format: 00010010 000011 1011 00 000010 000000
Instruction in hexadecimal format: 0x120EC080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The bit specified by GPR 2 is reset in GPR 3. Bit 0 is the LSB, while bit 31 is the MSB.
The computed result is written back in GPR 3. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x120EC080).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000003
reg3 0xFFFFFFFF

..

.

..

.

GPR file

reg2 0x00000003
reg3 0xFFFFFFF7

..

.

..

.

Special reg. file

EST 0x00000440exec. instr.
0x120EC080

In the EXECUTION STATUS register (EST), the GREATER THAN and SIGN flags are set (see
Subsection 5.2).

Example 35: Reset bit immediate

Instruction in binary format: 00000110 000011 1011 00000000000010
Instruction in hexadecimal format: 0x060EC002
Fields:

MMODE 000 (byte)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000010 (0x2)

The bit specified by IMMEDIATE14 is reset in GPR 3. Bit 0 is the LSB, while bit 31 is
the MSB. The computed result is written back in GPR 3. The following illustration shows
an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x060EC002). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0xFFFFFFFF
..
.

..

.

GPR file

reg3 0xFFFFFFFB
..
.

..

.

Special reg. file

EST 0x00000440exec. instr.
0x060EC002

105

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the EXECUTION STATUS register (EST), the GREATER THAN and SIGN flags are set (see
Subsection 5.2).

106

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.16 TB – Test bit

0 0 MMODE 0 0 0

8

DESTINATION 1 1 0 0 SOURCE

6 4 2 6 6

(a) Test bit register

0 0 MMODE 1 0 0

8

DESTINATION 1 1 0 0 IMMEDIATE14

6 4 14

(b) Test bit immediate

Fig. 47: Test bit (TB) instructions

The TB instruction tests a bit in the first operand to determine whether its value is 0 or 1
and overwrites the operand with the found value. The number of the bit to be tested in the
first operand is specified by the second operand. The first operand resides in a GPR in which
the result will be written back, i.e., the first operand will be overwritten with the result of
the ‘test bit’ operation. The second operand is either in a GPR or is an immediate value
specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Test bit register. That is the number of the bit to be tested
in the GPR specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Test bit
immediate. That is the number of the bit to be tested in the GPR
specified by DESTINATION.

Execution

Table 29 summarizes the execution of TB instructions.

Table 29: Execution of TB instructions

Test bit register
REG[DESTINATION] ← REG[DESTINATION][REG[SOURCE]]

Test bit immediate
REG[DESTINATION] ← REG[DESTINATION][IMMEDIATE14]

The TB instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see

107

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

INVALID OPERATION It is raised when the bit number (specified by the second operand)
is greater than the specified machine mode or the ALU width (see
Subsection 4.2.7).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 36: Test bit register

Instruction in binary format: 00010000 000011 1100 00 000010 000000
Instruction in hexadecimal format: 0x100F0080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The bit specified by GPR 2 is checked in GPR 3 whether it is 0 or 1 and GPR 3 is rewritten
with 0 or 1, respectively. Bit 0 is the LSB, while bit 31 is the MSB. The following illustration
shows an example state of a 32-bit wide GPR file before and after execution of the instruction
(0x100F0080). It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x00000008

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x00000001

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100F0080

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 37: Test bit immediate

Instruction in binary format: 00000100 000011 1100 00000000000010
Instruction in hexadecimal format: 0x040F0002
Fields:

MMODE 000 (byte)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000000010 (0x2)

The bit specified by IMMEDIATE14 is checked in GPR 3 whether it is 0 or 1 and GPR 3 is
rewritten with 0 or 1, respectively. Bit 0 is the LSB, while bit 31 is the MSB. The following
illustration shows an example state of a 32-bit wide GPR file before and after execution of the
instruction (0x040F0002). It also shows the state of the special register file after instruction
execution.

..

.

..

.

GPR file

reg3 0x0000000A
..
.

..

.

GPR file

reg3 0x00000000
..
.

..

.

Special reg. file

EST 0x00000840exec. instr.
0x040F0002

108

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

In the EXECUTION STATUS register (EST), the GREATER THAN and ZERO flags are set (see
Subsection 5.2).

109

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.17 RVB – Reverse bits

0 0 MMODE 0 1 0

8

DESTINATION 1 1 0 0 SOURCE

6 4 2 6 6

(a) Reverse bits register

0 0 MMODE 1 1 0

8

DESTINATION 1 1 0 0 IMMEDIATE14

6 4 14

(b) Reverse bits immediate

Fig. 48: Reverse bits (RVB) instructions

The RVB instruction reverses the bits of the first operand. The number of bits to be reversed
in the first operand (starting from bit 0) is specified by the second operand. The first
operand resides in a GPR in which the result will be written back, i.e., the first operand will
be overwritten with the result of the ‘reverse bits’ operation. The second operand is either
in a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand
for Reverse bits register. That is the number of the highest bit
<hi> in the range [<hi>:0] that is to be reversed in the GPR
specified by DESTINATION.

IMMEDIATE14 A 14-bit immediate value supplied as second operand for Reverse
bits immediate. That is the number of the highest bit <hi> in
the range [<hi>:0] that is to be reversed in the GPR specified
by DESTINATION.

Execution

Table 30 summarizes the execution of RVB instructions.

Table 30: Execution of RVB instructions

Reverse bits register
REG[DESTINATION][REG[SOURCE]:0] ← reverse(REG[DESTINATION][REG[SOURCE]:0])

Reverse bits immediate
REG[DESTINATION][IMMEDIATE14:0] ← reverse(REG[DESTINATION][IMMEDIATE14:0])

The reverse() function reverses the bit order in a bit field. For example, reverse(110) = 011,
reverse(0101) = 1010, reverse(00001) = 10000, etc.

110

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

The RVB instruction always treats both of the input operands as unsigned.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

INVALID OPERATION It is raised when the bit number (specified by the second operand)
is greater than the specified machine mode or the ALU width (see
Subsection 4.2.7).

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 38: Reverse bits register

Instruction in binary format: 00010010 000011 1100 00 000010 000000
Instruction in hexadecimal format: 0x120F0080
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

The bits in GPR 3 starting at position zero and up to the bit specified by GPR 2 are reversed.
Bit 0 is the LSB, while bit 31 is the MSB. The computed result is written back in GPR 3.
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x120F0080). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x00000005

..

.

..

.

GPR file

reg2 0x00000003
reg3 0x0000000A

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x120F0080

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 39: Reverse bits immediate

Instruction in binary format: 00010110 000011 1100 00000000001111
Instruction in hexadecimal format: 0x160F000F
Fields:

MMODE 010 (word)
DESTINATION 000011 (reg3)
IMMEDIATE14 00000000001111 (0xF)

The bits in GPR 3 starting at position zero and up to the bit specified by IMMEDIATE14 are
reversed. Bit 0 is the LSB, while bit 31 is the MSB. The computed result is written back in

111

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

GPR 3. The following illustration shows an example state of a 32-bit wide GPR file before
and after execution of the instruction (0x160F000F). It also shows the state of the special
register file after instruction execution.

..

.

..

.

GPR file

reg3 0xAAAAAAAA
..
.

..

.

GPR file

reg3 0xAAAA5555
..
.

..

.

Special reg. file

EST 0x00000440exec. instr.
0x160F000F

In the EXECUTION STATUS register (EST), the GREATER THAN and SIGN flags are set (see
Subsection 5.2).

112

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.18 FADD – FP Add

0 0 0 0 0 0 0 1

8

DESTINATION 0 0 0 0 SOURCE

6 4 2 6 6

Fig. 49: FP Add (FADD) instructions

The FADD instruction specifies FP addition of two operands. The first operand resides in a
GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the addition. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 31 summarizes the execution of FADD instructions.

Table 31: Execution of FADD instructions

FP Add
REG[DESTINATION] ← REG[DESTINATION] + REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when the operands im-
ply addition of infinities with opposite signs, e.g., positive infinity
plus negative infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

113

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 40: FP Add

Instruction in binary format: 00000001 000011 0000 00 000010 000000
Instruction in hexadecimal format: 0x010C0080
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction adds the value of GPR 2 to GPR 3 and writes the computed result back in
GPR 3. The instruction assumes that the input operands are in FP format and outputs the
result also in FP format. In this example, the 32-bit FP format according to the IEEE Std
754-2008 standard is used [3]. This instruction raises the FP DENORMALIZED OPERAND and
the FP INEXACT RESULT exceptions. The following illustration shows an example state of
a 32-bit wide GPR file before and after execution of the instruction (0x010C0080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0xF0000003
reg3 0x00000005

..

.

..

.

GPR file

reg2 0xF0000003
reg3 0xF0000004

..

.

..

.

Special reg. file

EST 0x00001540
EXI 0x010C0080
EXC 0x00008800exec. instr.

0x010C0080

In the EXECUTION STATUS register (EST), the GREATER THAN, the INEXACT, the SIGN and
the DENORMALIZED flags are set.

Because of the raised exceptions, the EXCEPTION INSTRUCTION register (EXI) is written
with the instruction code, and the FP DENORMALIZED OPERAND and FP INEXACT RESULT
bits in the EXCEPTION REGISTER (EXC) are set (assuming that before executing the instruc-
tion the EXC register was zero). However, it is also assumed that the raised exceptions are
impotent. Therefore, the result is written back to the DESTINATION GPR 3. If at least one
of the exceptions was potent, GPR 3 and the EST register would not be overwritten and the
exception handling procedure would have been started.

114

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.19 FSUB – FP Subtract

0 0 0 0 0 0 0 1

8

DESTINATION 0 0 0 1 SOURCE

6 4 2 6 6

Fig. 50: FP Subtract (FSUB) instructions

The FSUB instruction specifies FP subtraction of two operands. The first operand resides in
a GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the subtraction. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 32 summarizes the execution of FSUB instructions.

Table 32: Execution of FSUB instructions

FP Subtract
REG[DESTINATION] ← REG[DESTINATION] - REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when the operands
imply subtraction of infinities with opposite signs, e.g., positive
infinity minus positive infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

115

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 41: FP Subtract

Instruction in binary format: 00000001 000011 0001 00 000010 000000
Instruction in hexadecimal format: 0x010C4080
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction subtracts the value in GPR 2 from GPR 3 and writes the computed result
back in GPR 3. The instruction assumes that the input operands are in FP format and
outputs the result also in FP format. In this example, the 32-bit FP format according to the
IEEE Std 754-2008 standard is used [3]. The following illustration shows an example state of
a 32-bit wide GPR file before and after execution of the instruction (0x010C4080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x404CCCCD
reg3 0x40200000

..

.

..

.

GPR file

reg2 0x404CCCCD
reg3 0xBF333334

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x010C4080

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

116

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.20 FMUL – FP Multiply

0 0 0 0 0 0 0 1

8

DESTINATION 0 0 1 0 SOURCE

6 4 2 6 6

Fig. 51: FP Multiply (FMUL) instructions

The FMUL instruction specifies FP multiplication of two operands. The first operand resides
in a GPR in which the result will be written back, i.e., the first operand will be overwritten
with the result of the multiplication. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 33 summarizes the execution of FMUL instructions.

Table 33: Execution of FMUL instructions

FP Multiply
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when one multiplication
operand is zero and the other is infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

117

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 42: FP Multiply

Instruction in binary format: 00000001 000011 0010 00 000010 000000
Instruction in hexadecimal format: 0x010C8080
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The instruction multiplies the value in GPR 2 to the value in GPR 3 and writes the computed
result back in GPR 3. The instruction assumes that the input operands are in FP format and
outputs the result also in FP format. In this example, the 32-bit FP format according to the
IEEE Std 754-2008 standard is used [3]. The following illustration shows an example state of
a 32-bit wide GPR file before and after execution of the instruction (0x010C8080). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x40600000
reg3 0x40200000

..

.

..

.

GPR file

reg2 0x40600000
reg3 0x410C0000

..

.

..

.

Special reg. file

EST 0x00000080exec. instr.
0x010C8080

In the EXECUTION STATUS register (EST), only the LESS THAN flag is set (see Subsec-
tion 5.2).

118

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.21 FDIV – FP Divide

0 0 0 0 0 0 0 1

8

DESTINATION 0 0 1 1 SOURCE

6 4 2 6 6

Fig. 52: FP Divide (FDIV) instructions

The FDIV instruction specifies FP division of two operands. The first operand resides in a
GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the division. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 34 summarizes the execution of FDIV instructions.

Table 34: Execution of FDIV instructions

FP Divide
REG[DESTINATION] ← REG[DESTINATION] ÷ REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when both operands
are zero or both are infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP DIVISION BY ZERO It is raised when the divisor is zero and the dividend is a finite,
nonzero FP number. See Subsection 4.2.12.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

119

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 43: FP Divide

Instruction in binary format: 00000001 000011 0011 00 000010 000000
Instruction in hexadecimal format: 0x010CC080
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The divisor in GPR 2 divides the dividend in GPR 3. The computed result of the division is
written back in GPR 3. The instruction assumes that the input operands are in FP format
and outputs the result also in FP format. In this example, the 32-bit FP format according
to the IEEE Std 754-2008 standard is used [3]. The following illustration shows an example
state of a 32-bit wide GPR file before and after execution of the instruction (0x010CC080).
It also shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0x4019999A

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0x3F260DD7

..

.

..

.

Special reg. file

EST 0x00000180
EXI 0x010CC080
EXC 0x00008000exec. instr.

0x010CC080

In the EXECUTION STATUS register (EST), the LESS THAN and INEXACT flags are set (see
Subsection 5.2).

Because of the raised FP INEXACT RESULT exception, the EXCEPTION INSTRUCTION reg-
ister (EXI) is written with the instruction code, and the FP INEXACT RESULT bit in the
EXCEPTION REGISTER (EXC) is set (assuming that before executing the instruction the EXC
register was zero). However, it is also assumed that the FP INEXACT RESULT exception is
impotent. Therefore, the result is written back to the DESTINATION GPR 3.

120

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.22 FREM – FP Remainder

0 0 0 0 0 0 0 1

8

DESTINATION 0 1 0 0 SOURCE

6 4 2 6 6

Fig. 53: FP Remainder (FREM) instructions

The FREM instruction specifies FP remainder operation of two operands. The first operand
resides in a GPR in which the result will be written back, i.e., the first operand will be
overwritten with the result of the remainder operation. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 35 summarizes the execution of FREM instructions.

Table 35: Execution of FREM instructions

FP Remainder
REG[DESTINATION] ← REG[DESTINATION] % REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling
NaN, or when the result is NaN. It is also raised when none of
the operands is NaN, and the DESTINATION operand is infinity
or the SOURCE operand is zero. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

121

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Examples

Example 44: FP Remainder

Instruction in binary format: 00000001 000011 0100 00 000010 000000
Instruction in hexadecimal format: 0x010D0080
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

The remainder of the division of GPR 3 by GPR 2 is computed and written back in GPR 3.
The instruction assumes that the input operands are in FP format and outputs the result also
in FP format. In this example, the 32-bit FP format according to the IEEE Std 754-2008
standard is used [3]. The following illustration shows an example state of a 32-bit wide GPR
file before and after execution of the instruction (0x010D0080). It also shows the state of
the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0x4019999A

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0xBFA66666

..

.

..

.

Special reg. file

EST 0x00000480exec. instr.
0x010D0080

In the EXECUTION STATUS register (EST), the LESS THAN and SIGN flags are set (see
Subsection 5.2).

122

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.23 FCMP – FP Compare

0 0 0 0 0 0 0 1

8

DESTINATION 0 1 0 1 SOURCE

6 4 2 6 6

Fig. 54: FP Compare (FCMP) instructions

The FCMP instruction specifies FP comparison of two operands. The first operand resides in
a GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the comparison. The second operand is also in a GPR.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

Execution

Table 36 summarizes the execution of FCMP instructions.

Table 36: Execution of FCMP instructions

FP Compare
REG[DESTINATION] ← REG[DESTINATION] <==> REG[SOURCE]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format, i.e.,
FP machine mode. Only the lower 16-bits of the destination GPR
are changed with the same content as the EXECUTION STATUS
register. Of course, if the destination GPR is shorter than 16 bits,
register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN.
See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 45: FP Compare

Instruction in binary format: 00000001 000011 0101 00 000010 000000
Instruction in hexadecimal format: 0x010D4080

123

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Fields:
DESTINATION 000011 (reg3)

SOURCE 000010 (reg2)

An FP comparison between the floating point numbers in GPR 3 and GPR 2 is made. The
result, i.e., the contents of the EXECUTION STATUS (EST) register is written back in GPR 3.
The instruction assumes that the input operands are in FP format and outputs the result also
in FP format. In this example, the 32-bit FP format according to the IEEE Std 754-2008
standard is used [3]. The following illustration shows an example state of a 32-bit wide GPR
file before and after execution of the instruction (0x010D4080). It also shows the state of
the special register file after instruction execution.

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0x7FA00000

..

.

..

.

GPR file

reg2 0x406CCCCD
reg3 0x7FA0C200

..

.

..

.

Special reg. file

EST 0x0000C200exec. instr.
0x010D4080

Thus, the lower 16 bits of the GPR 3 are rewritten with the bits of the EST register.

In the EST register, the UNORDERED, the SIGNALING NAN and the NAN flags are set.

124

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.24 FSQR – FP Square root

0 0 0 0 0 0 0 1

8

DESTINATION 0 1 1 0

6 4 14

Fig. 55: FP Square root (FSQR) instructions

The FSQR instruction specifies finding the FP square root of an operand. The operand resides
in a GPR in which the result will be written back.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 37 summarizes the execution of FSQR instructions.

Table 37: Execution of FSQR instructions

FP Square root
REG[DESTINATION] ← sqrt(REG[DESTINATION])

The sqrt() function computes the square root of the FP argument and returns the result also in
FP format.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. It is also raised
when the operand is less than zero. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW

125

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 46: FP Square root

Instruction in binary format: 00000001 000011 0110 00000000000000
Instruction in hexadecimal format: 0x010D8000
Fields:

DESTINATION 000011 (reg3)

The square root of the operand in GPR 3 is computed and written back in GPR 3. The
instruction assumes that the input operand is in FP format and outputs the result also in FP
format. In this example, the 32-bit FP format according to the IEEE Std 754-2008 standard
is used [3]. The following illustration shows an example state of a 32-bit wide GPR file before
and after execution of the instruction (0x010D8000). It also shows the state of the special
register file after instruction execution.

..

.

..

.

GPR file

reg3 0x41100000
..
.

..

.

GPR file

reg3 0x40400000
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x010D8000

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

126

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.25 FABS – FP Absolute

0 0 0 0 0 0 0 1

8

DESTINATION 0 1 1 1

6 4 14

Fig. 56: FP Absolute (FABS) instructions

The FABS instruction specifies finding the FP absolute value of an operand. The operand
resides in a GPR in which the result will be written back.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 38 summarizes the execution of FABS instructions.

Table 38: Execution of FABS instructions

FP Absolute
REG[DESTINATION] ← abs(REG[DESTINATION])

The abs() function computes the absolute value of the FP argument and returns the result also
in FP format.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. See Subsec-
tion 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

127

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Examples

Example 47: FP Absolute

Instruction in binary format: 00000001 000011 0111 00000000000000
Instruction in hexadecimal format: 0x010DC000
Fields:

DESTINATION 000011 (reg3)

The absolute value of the operand in GPR 3 is written back in GPR 3. The instruction
assumes that the input operand is in FP format and outputs the result also in FP format. In
this example, the 32-bit FP format according to the IEEE Std 754-2008 standard is used [3].
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x010DC000). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg3 0xC019999A
..
.

..

.

GPR file

reg3 0x4019999A
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x010DC000

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

128

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.26 FNEG – FP Negate

0 0 0 0 0 0 0 1

8

DESTINATION 1 0 0 0

6 4 14

Fig. 57: FP Negate (FNEG) instructions

The FNEG instruction specifies finding the FP negated value of an operand. The operand
resides in a GPR in which the result will be written back.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 39 summarizes the execution of FNEG instructions.

Table 39: Execution of FNEG instructions

FP Negate
REG[DESTINATION] ← -(REG[DESTINATION])

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. See Subsec-
tion 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 48: FP Negate

Instruction in binary format: 00000001 000011 1000 00000000000000
Instruction in hexadecimal format: 0x010E0000
Fields:

DESTINATION 000011 (reg3)

129

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

The negated value of the operand in GPR 3 is written back in GPR 3. The instruction
assumes that the input operand is in FP format and outputs the result also in FP format. In
this example, the 32-bit FP format according to the IEEE Std 754-2008 standard is used [3].
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x010E0000). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg3 0x4019999A
..
.

..

.

GPR file

reg3 0xC019999A
..
.

..

.

Special reg. file

EST 0x00000400exec. instr.
0x010E0000

In the EXECUTION STATUS register (EST), only the SIGN flag is set (see Subsection 5.2).

130

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.27 FRND – FP Round to integer

0 0 0 0 0 0 0 1

8

DESTINATION 1 0 0 1

6 4 14

Fig. 58: FP Round to integer (FRND) instructions

The FRND instruction specifies rounding the FP operand to an integer value (also represented
in FP format). The operand resides in a GPR in which the result will be written back.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 40 summarizes the execution of FRND instructions.

Table 40: Execution of FRND instructions

FP Round to integer
REG[DESTINATION] ← roundint(REG[DESTINATION])

The roundint() function rounds an FP number to integer number in FP format. For example,
roundint(5.32) = 5.0, roundint(5.8) = 6.0, etc. It is also dependent on the FP rounding
mode (see Subsection 5.13).

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. See Subsec-
tion 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

131

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 49: FP Round to integer

Instruction in binary format: 00000001 000011 1001 00000000000000
Instruction in hexadecimal format: 0x010E4000
Fields:

DESTINATION 000011 (reg3)

The FP number supplied by GPR 3 is rounded (in FP format) and written back in GPR 3.
The instruction assumes that the input operand is in FP format and outputs the result also
in FP format. In this example, the 32-bit FP format according to the IEEE Std 754-2008
standard is used [3]. The following illustration shows an example state of a 32-bit wide GPR
file before and after execution of the instruction (0x010E4000). It also shows the state of
the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x4019999A
..
.

..

.

GPR file

reg3 0x40000000
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x010E4000

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

132

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.28 FF2I – FP to integer

0 0 MMODE 0 U 1

8

DESTINATION 1 0 1 0

6 4 14

Fig. 59: FP to integer (FF2I) instructions

The FF2I instruction specifies rounding to integer and conversion of the FP operand to
integer format. The operand resides in a GPR in which the result will be written back.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed integer
1: unsigned integer

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 41 summarizes the execution of FF2I instructions.

Table 41: Execution of FF2I instructions

FP to integer
REG[DESTINATION] ← int(REG[DESTINATION])

The int() function rounds an FP number to integer number in integer format. For example,
int(5.32) = 5, int(5.8) = 6, etc. It is also dependent on the FP rounding mode (see Sub-
section 5.13).

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
If MMODE specifies shorter width than the GPR width, only the
corresponding lower bits of the destination GPR are changed (see
Subsection 2.2.2). If MMODE specifies wider width than the GPR
width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. It is also raised
when the operand is infinity or NaN, or, when the operand is
greater than the maximal representable integer in the specified
machine mode. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

133

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 50: FP to integer

Instruction in binary format: 00010001 000011 1010 00000000000000
Instruction in hexadecimal format: 0x110E8000
Fields:

MMODE 010 (to word integer)
U 0 (to signed integer)

DESTINATION 000011 (reg3)

The FP number supplied by GPR 3 is (rounded and) converted to integer format and is
written back in GPR 3. In this example, the 32-bit FP format according to the IEEE Std
754-2008 standard is used [3]. The following illustration shows an example state of a 32-bit
wide GPR file before and after execution of the instruction (0x110E8000). It also shows the
state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x4019999A
..
.

..

.

GPR file

reg3 0x00000002
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x110E8000

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

134

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.29 FI2F – Integer to FP

0 0 MMODE 0 U 1

8

DESTINATION 1 0 1 1

6 4 14

Fig. 60: Integer to FP (FI2F) instructions

The FI2F instruction specifies conversion of the integer operand to FP format. The operand
resides in a GPR in which the result will be written back.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed integer
1: unsigned integer

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 42 summarizes the execution of FI2F instructions.

Table 42: Execution of FI2F instructions

Integer to FP
REG[DESTINATION] ← fpn(REG[DESTINATION])

The fpn() function converts an integer number in integer format to its representation in FP format.
For example, fpn(5) = 5.0.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION
field. If the FP width is shorter than the GPR width, only the
corresponding lower bits of the GPR are changed (see Subsec-
tion 2.2.2). On the other side, if the FP width is wider than the
GPR width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

135

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Examples

Example 51: Integer to FP

Instruction in binary format: 00010001 000011 1011 00000000000000
Instruction in hexadecimal format: 0x110EC000
Fields:

MMODE 010 (from word integer)
U 0 (from signed integer)

DESTINATION 000011 (reg3)

The number in integer format supplied by GPR 3 is converted to its representation in FP
format and is written back to GPR 3. In this example, the 32-bit FP format according to the
IEEE Std 754-2008 standard is used [3]. The following illustration shows an example state of
a 32-bit wide GPR file before and after execution of the instruction (0x110EC000). It also
shows the state of the special register file after instruction execution.

..

.

..

.

GPR file

reg3 0x0000000F
..
.

..

.

GPR file

reg3 0x41700000
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x110EC000

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

136

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.30 FEXT – Extend FP format

0 0 MMODE 0 0 1

8

DESTINATION 1 1 0 0

6 4 14

Fig. 61: Extend FP format (FEXT) instructions

The FEXT instruction specifies extending the operand’s FP format specified by the machine
mode (MMODE) field to the maximal supported FP format. The operand resides in a GPR in
which the result will be written back.

Fields

MMODE Specifies the FP machine mode. However, here only 16-, 32-, 64-,
128- and 256-bit machine modes, i.e., H/W/D/Q/1 are allowed.
The encoding of the bit field is also according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 43 summarizes the execution of FEXT instructions.

Table 43: Execution of FEXT instructions

Extend FP format
REG[DESTINATION] ← ext(REG[DESTINATION])

The ext() function extends the FP number in a given FP format to the maximal supported FP
format in the implementation.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION
field. If the FP width is shorter than the GPR width, only the
corresponding lower bits of the GPR are changed (see Subsec-
tion 2.2.2). On the other side, if the FP width is wider than the
GPR width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. See Subsec-
tion 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

137

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Examples

Example 52: Extend FP format

Instruction in binary format: 00010001 000011 1100 00000000000000
Instruction in hexadecimal format: 0x110F0000
Fields:

MMODE 010 (from 32-bit FP format)
DESTINATION 000011 (reg3)

The FP number supplied by GPR 3 is extended to the full width of the internal FP format
and is written back to GPR 3. In this example, the format of the input operand is 32-bit
wide according to the specified MMODE, while the internal FP format of the GPR file is 40
bits. Both formats are according to the IEEE Std 754-2008 standard [3].

..

.

..

.

GPR file

reg3 0x004019999A
..
.

..

.

GPR file

reg3 0x401999999A
..
.

..

.

Special reg. file

EST 0x00000000exec. instr.
0x110F0000

Thus, assuming that a 32-bit FP number (with 23-bit wide mantissa) is loaded from memory
to GPR 3, it is then reformatted, i.e., extended by the FEXT instruction (0x110F0000) to
the internal 40-bit width (of which 31 bits are for the mantissa).

The EXECUTION STATUS (EST) register is set to zero (see Subsection 5.2).

138

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.31 FSQZ – Squeeze FP format

0 0 MMODE 0 0 1

8

DESTINATION 1 1 0 1

6 4 14

Fig. 62: Squeeze FP format (FSQZ) instructions

The FSQZ instruction specifies squeezing the operand’s maximal supported FP format to the
FP format specified by the machine mode (MMODE) field. The operand resides in a GPR in
which the result will be written back.

Fields

MMODE Specifies the FP machine mode. However, here only 16-, 32-, 64-,
128- and 256-bit machine modes, i.e., H/W/D/Q/1 are allowed.
The encoding of the bit field is also according to Table 1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

Execution

Table 44 summarizes the execution of FSQZ instructions.

Table 44: Execution of FSQZ instructions

Squeeze FP format
REG[DESTINATION] ← sqz(REG[DESTINATION])

The sqz() function squeezes the FP number in the maximal supported FP format to a shorter FP
format.

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION
field. If the FP width is shorter than the GPR width, only the
corresponding lower bits of the GPR are changed (see Subsec-
tion 2.2.2). On the other side, if the FP width is wider than the
GPR width, the register circularity applies (see Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when the operand is a signaling NaN. See Subsec-
tion 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

139

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 53: Squeeze FP format

Instruction in binary format: 00010001 000011 1101 00000000000000
Instruction in hexadecimal format: 0x110F4000
Fields:

MMODE 010 (to 32-bit FP format)
DESTINATION 000011 (reg3)

The FP number supplied by GPR 3 is squeezed to the FP width specified by MMODE and
is written back to GPR 3. In this example, the internal FP format of the GPR file is 40
bits, while the output format of the result is specified to be 32-bit wide. Both formats are
according to the IEEE Std 754-2008 standard [3].

..

.

..

.

GPR file

reg3 0x401999999A
..
.

..

.

GPR file

reg3 0x004019999A
..
.

..

.

Special reg. file

EST 0x00000100
EXI 0x110F4000
EXC 0x00008000exec. instr.

0x110F4000

Thus, assuming that a 32-bit FP number needs to be stored in memory, the FP number
supplied by GPR 3 is reformatted, i.e., squeezed by the FSQZ instruction (0x110F4000)
from the internal 40-bit width (of which 31 bits are for the mantissa) to the 32-bit FP format
(in which 23 bits are for the mantissa).

In the EXECUTION STATUS register (EST), only the INEXACT flag is set (see Subsection 5.2).

Because of the raised FP INEXACT RESULT exception, the EXCEPTION INSTRUCTION reg-
ister (EXI) is written with the instruction code, and the FP INEXACT RESULT bit in the
EXCEPTION REGISTER (EXC) is set (assuming that before executing the instruction the EXC
register was zero). However, it is also assumed that the FP INEXACT RESULT exception is
impotent. Therefore, the result is written back to the DESTINATION GPR 3.

140

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.32 MAD – Multiply-add

0 0 MMODE 0 U 0

8

DESTINATION 1 1 1 0 SOURCE SOURCE2

6 4 2 6 6

(a) Multiply-add register

0 0 MMODE 1 U 0

8

DESTINATION 1 1 1 0 I8HI SOURCE I8LO

6 4 2 6 6

(b) Multiply-add immediate

Fig. 63: Multiply-add (MAD) instructions

The MAD instruction specifies fused multiplication-addition, i.e., multiplication of two
operands and addition of a third operand to the product. The first operand resides in
a GPR in which the result will be written back, i.e., the first operand will be overwritten with
the result of the fused multiplication-addition. The second operand is also in a GPR. The
third operand is either in a GPR or is an immediate value specified by the instruction itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for
Multiply-add immediate).
1: unsigned operation (including zero-extended immediate for
Multiply-add immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

SOURCE2 Specifies the number of the GPR containing the third operand.

I8HI The two MSBs of the 8-bit IMMEDIATE8.

I8LO The six LSBs of the 8-bit IMMEDIATE8.

Execution

Table 45 summarizes the execution of MAD instructions.

Table 45: Execution of MAD instructions

Multiply-add register
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] + REG[SOURCE2]

Multiply-add immediate
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] + IMMEDIATE8

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
However, the MAD instruction always returns a result which is
twice the width of the input operands specified by MMODE. Thus,
depending on the machine mode and the GPR width, subsequent
GPRs may be written according to the property of circularity (see

141

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Subsection 2.2.3) in little-endian ordering. For example, if both
the GPR width and the MMODE is 32 bits, then the result is 64-
bit wide which will be written in two subsequent GPRs, i.e., the
lower part in the GPR specified by the DESTINATION field, and the
upper part in the subsequent GPR. On the other side, if the GPR
width is 32 bits and MMODE is 16 bits, the result is 32-bit wide,
and will be written in a single register specified by DESTINATION.

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 54: Multiply-add register

Instruction in binary format: 00010000 000011 1110 00 000010 000001
Instruction in hexadecimal format: 0x100F8081
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

SOURCE2 000001 (reg1)

The instruction multiplies the value in GPR 2 to the value in GPR 3, adds the value in GPR 1
to the product, and writes the computed result back in GPR 3 and in GPR 4. The following
illustration shows an example state of a 32-bit wide GPR file before and after execution of the
instruction (0x100F8081). It also shows the state of the special register file after instruction
execution.

..

.

..

.

GPR file

reg1 0x0000101C
reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg1 0x0000101C
reg2 0x000002AB
reg3 0x1FDD649E
reg4 0x00000003

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100F8081

The computed result 0x31FDD649E is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which (updated with the addition of the GPR 1 value) is
written back into GPR 3 and GPR 4, of which GPR 4 contains the higher part in significance.
In other words, the result is a concatenation of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 55: Multiply-add immediate

Instruction in binary format: 00010100 000011 1110 01 000010 100100
Instruction in hexadecimal format: 0x140F90A4
Fields:

142

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)
I8HI 01 (0x1)
I8LO 100100 (0x24)

The instruction multiplies the value in GPR 2 to the value in GPR 3, adds the 8-bit wide
(sign-extended) IMMEDIATE8 value to the product, and writes the computed result back in
GPR 3 and in GPR 4. The concatenation of I8HI and I8LO gives IMMEDIATE8 = 0x64.
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x140F90A4). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x1FDD54E6
reg4 0x00000003

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x140F90A4

The computed result 0x31FDD54E6 is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which (updated with the addition of the GPR 1 value) is
written back into GPR 3 and GPR 4, of which GPR 4 contains the higher part in significance.
In other words, the result is a concatenation of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

143

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.33 MSU – Multiply-subtract

0 0 MMODE 0 U 0

8

DESTINATION 1 1 1 1 SOURCE SOURCE2

6 4 2 6 6

(a) Multiply-subtract register

0 0 MMODE 1 U 0

8

DESTINATION 1 1 1 1 I8HI SOURCE I8LO

6 4 2 6 6

(b) Multiply-subtract immediate

Fig. 64: Multiply-subtract (MSU) instructions

The MSU instruction specifies fused multiplication-subtraction, i.e., multiplication of two
operands and subtraction of a third operand from the product. The first operand resides
in a GPR in which the result will be written back, i.e., the first operand will be overwritten
with the result of the fused multiplication-subtraction. The second operand is also in a GPR.
The third operand is either in a GPR or is an immediate value specified by the instruction
itself.

Fields

MMODE Specifies the integer machine mode according to Table 1.

U 0: signed operation (including sign-extended immediate for
Multiply-subtract immediate).
1: unsigned operation (including zero-extended immediate for
Multiply-subtract immediate). See Subsection 3.2.1.

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

SOURCE2 Specifies the number of the GPR containing the third operand.

I8HI The two MSBs of the 8-bit IMMEDIATE8.

I8LO The six LSBs of the 8-bit IMMEDIATE8.

Execution

Table 46 summarizes the execution of MSU instructions.

Table 46: Execution of MSU instructions

Multiply-subtract register
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] - REG[SOURCE2]

Multiply-subtract immediate
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] - IMMEDIATE8

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
However, the MSU instruction always returns a result which is
twice the width of the input operands specified by MMODE. Thus,
depending on the machine mode and the GPR width, subsequent

144

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

GPRs may be written according to the property of circularity (see
Subsection 2.2.3) in little-endian ordering. For example, if both
the GPR width and the MMODE is 32 bits, then the result is 64-
bit wide which will be written in two subsequent GPRs, i.e., the
lower part in the GPR specified by the DESTINATION field, and the
upper part in the subsequent GPR. On the other side, if the GPR
width is 32 bits and MMODE is 16 bits, the result is 32-bit wide,
and will be written in a single register specified by DESTINATION.

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 56: Multiply-subtract register

Instruction in binary format: 00010000 000011 1111 00 000010 000001
Instruction in hexadecimal format: 0x100FC081
Fields:

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

SOURCE2 000001 (reg1)

The instruction multiplies the value in GPR 2 to the value in GPR 3, subtracts the value
in GPR 1 from the product, and writes the computed result back in GPR 3 and in GPR 4.
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x100FC081). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg1 0x0000101C
reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg1 0x0000101C
reg2 0x000002AB
reg3 0x1FDD4466
reg4 0x00000003

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x100FC081

The computed result 0x31FDD4466 is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which (updated with the subtraction of the GPR 1 value) is
written back into GPR 3 and GPR 4, of which GPR 4 contains the higher part in significance.
In other words, the result is a concatenation of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

Example 57: Multiply-subtract immediate

Instruction in binary format: 00010100 000011 1111 01 000010 100100
Instruction in hexadecimal format: 0x140FD0A4
Fields:

145

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

MMODE 010 (word)
U 0 (signed)

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)
I8HI 01 (0x1)
I8LO 100100 (0x24)

The instruction multiplies the value in GPR 2 to the value in GPR 3, subtracts the 8-bit wide
(sign-extended) IMMEDIATE8 value from the product, and writes the computed result back
in GPR 3 and in GPR 4. The concatenation of I8HI and I8LO gives IMMEDIATE8 = 0x64.
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x140FD0A4). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x012BCD86
reg4 0x00000000

..

.

..

.

GPR file

reg2 0x000002AB
reg3 0x1FDD541E
reg4 0x00000003

..

.

..

.

Special reg. file

EST 0x00000040exec. instr.
0x140FD0A4

The computed result 0x31FDD541E is 64-bit wide since a multiplication of two word-sized
values gives a doubleword result which (updated with the subtraction of the GPR 1 value) is
written back into GPR 3 and GPR 4, of which GPR 4 contains the higher part in significance.
In other words, the result is a concatenation of GPR 4 and GPR 3.

In the EXECUTION STATUS register (EST), only the GREATER THAN flag is set (see Subsec-
tion 5.2).

146

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.34 FMAD – FP Multiply-add

0 0 0 0 0 0 0 1

8

DESTINATION 1 1 1 0 SOURCE SOURCE2

6 4 2 6 6

Fig. 65: FP Multiply-add (FMAD) instructions

The FMAD instruction specifies FP fused multiplication-addition, i.e., multiplication of two
operands and addition of a third operand to the product. The first operand resides in a GPR
in which the result will be written back, i.e., the first operand will be overwritten with the
result of the fused multiplication-addition. The second and the third operands are also in
GPRs.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

SOURCE2 Specifies the number of the GPR containing the third operand.

Execution

Table 47 summarizes the execution of FMAD instructions.

Table 47: Execution of FMAD instructions

FP Multiply-add
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] + REG[SOURCE2]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when the operands im-
ply addition of infinities with opposite signs, e.g., positive infinity
plus negative infinity, or when one multiplication operand is zero
and the other is infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

147

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 58: FP Multiply-add

Instruction in binary format: 00000001 000011 1110 00 000010 000001
Instruction in hexadecimal format: 0x010F8081
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

SOURCE2 000001 (reg1)

The instruction multiplies the value in GPR 2 to the value in GPR 3, adds the product to
the value in GPR 1, and writes the computed result back in GPR 3. The instruction assumes
that the input operands are in FP format and outputs the result also in FP format. In this
example, the 32-bit FP format according to the IEEE Std 754-2008 standard is used [3].
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x010F8081). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg1 0x40DD374C
reg2 0x406CCCCD
reg3 0x4019999A

..

.

..

.

GPR file

reg1 0x40DD374C
reg2 0x406CCCCD
reg3 0x417CB021

..

.

..

.

Special reg. file

EST 0x00000180
EXI 0x010F8081
EXC 0x00008000exec. instr.

0x010F8081

In the EXECUTION STATUS register (EST), the LESS THAN and INEXACT flags are set (see
Subsection 5.2).

Because of the raised FP INEXACT RESULT exception, the EXCEPTION INSTRUCTION reg-
ister (EXI) is written with the instruction code, and the FP INEXACT RESULT bit in the
EXCEPTION REGISTER (EXC) is set (assuming that before executing the instruction the EXC
register was zero). However, it is also assumed that the FP INEXACT RESULT exception is
impotent. Therefore, the result is written back to the DESTINATION GPR 3.

148

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.35 FMSU – FP Multiply-subtract

0 0 0 0 0 0 0 1

8

DESTINATION 1 1 1 1 SOURCE SOURCE2

6 4 2 6 6

Fig. 66: FP Multiply-subtract (FMSU) instructions

The FMSU instruction specifies FP fused multiplication-subtraction, i.e., multiplication of two
operands and subtraction of a third operand from the product. The first operand resides in
a GPR in which the result will be written back, i.e., the first operand will be overwritten
with the result of the fused multiplication-subtraction. The second and the third operands
are also in GPRs.

Fields

DESTINATION Specifies the number of the GPR containing the first operand,
which is also the destination GPR in which the computed re-
sult is written back after instruction completion (the value of the
operand is overwritten).

SOURCE Specifies the number of the GPR containing the second operand.

SOURCE2 Specifies the number of the GPR containing the third operand.

Execution

Table 48 summarizes the execution of FMSU instructions.

Table 48: Execution of FMSU instructions

FP Multiply-subtract
REG[DESTINATION] ← REG[DESTINATION] × REG[SOURCE] - REG[SOURCE2]

Changes

Destination GPR Changes the destination GPR specified by the DESTINATION field.
In this FP instruction the MMODE field is always zero since the
operation is performed using the widest supported FP format,
i.e., FP machine mode. If the FP width is shorter than the GPR
width, only the corresponding lower bits of the GPR are changed
(see Subsection 2.2.2). On the other side, if the FP width is
wider than the GPR width, the register circularity applies (see
Subsection 2.2.3).

EXECUTION STATUS Changes the EXECUTION STATUS special register (see Subsec-
tion 5.2).

Exceptions

FP INVALID
OPERATION

It is raised when (at least) one of the operands is a signaling NaN,
or when the result is NaN. It is also raised when the operands
imply subtraction of infinities with opposite signs, e.g., positive
infinity minus positive infinity, when one multiplication operand
is zero and the other is infinity. See Subsection 4.2.10.

FP DENORMALIZED
OPERAND

It is raised when one or more operands is a denormalized FP
number. However, if the operands are not denormalized but the
operation produces a denormalized result, this exception is not
raised. See Subsection 4.2.11.

149

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

FP OVERFLOW It is raised when the result of the operation exceeds the largest
representable finite number of the destination format. See Sub-
section 4.2.13.

FP UNDERFLOW It is raised when the result is a tiny non-zero number. See Sub-
section 4.2.14.

FP INEXACT RESULT It is raised when the rounded result is not exact. Furthermore,
it is also raised when the result overflows and the FP OVERFLOW
exception is impotent, or, when an inexact result underflows and
the FP UNDERFLOW is impotent. See Subsection 4.2.15.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 59: FP Multiply-subtract

Instruction in binary format: 00000001 000011 1111 00 000010 000001
Instruction in hexadecimal format: 0x010FC081
Fields:

DESTINATION 000011 (reg3)
SOURCE 000010 (reg2)

SOURCE2 000001 (reg1)

The instruction multiplies the value in GPR 2 to the value in GPR 3, subtracts the value in
GPR 1 from the product, and writes the computed result back in GPR 3. The instruction
assumes that the input operands are in FP format and outputs the result also in FP format. In
this example, the 32-bit FP format according to the IEEE Std 754-2008 standard is used [3].
The following illustration shows an example state of a 32-bit wide GPR file before and after
execution of the instruction (0x010FC081). It also shows the state of the special register file
after instruction execution.

..

.

..

.

GPR file

reg1 0x40DD374C
reg2 0x406CCCCD
reg3 0x4019999A

..

.

..

.

GPR file

reg1 0x40DD374C
reg2 0x406CCCCD
reg3 0x3FFBC6A8

..

.

..

.

Special reg. file

EST 0x00000080exec. instr.
0x010FC081

In the EXECUTION STATUS register (EST), only the LESS THAN flag is set (see Subsec-
tion 5.2).

150

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.36 JMP – Jump

0 1 0 0 0 0 A P

8

0 0 0 0 LOCATION

6 4 2 6 6

(a) Jump according to register

0 1 0 0 0 1 A P

8

OFFSET20HI 0 0 0 0 OFFSET20LO

6 4 14

(b) Jump according to offset

Fig. 67: Jump (JMP) instructions

The JMP instruction specifies unconditional program transfer to a location specified by a GPR
or by an implicitly specified offset.

Fields

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET20HI The six MSBs of the 20-bit signed value OFFSET20.

OFFSET20LO The 14 LSBs of the 20-bit signed value OFFSET20.

Execution

Table 49 summarizes the execution of JMP instructions.

Table 49: Execution of JMP instructions

Jump according to register
if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

Jump according to offset
if(A == 1) INSTRUCTION COUNTER ← OFFSET20
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET20
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

Changes

INSTRUCTION COUNTER It is loaded with the given/computed instruction address.

CALL RETURN POINTER If P=1, the incremented value of the INSTRUCTION COUNTER is
written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

151

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Examples

Example 60: Jump relative according to register

Instruction in binary format: 01000000 000000 0000 00 000011 000000
Instruction in hexadecimal format: 0x400000C0
Fields:

A 0 (relative transfer)
P 0 (non-procedural transfer)

LOCATION 000011 (reg3)

The instruction adds the value in GPR 3 to the INSTRUCTION COUNTER. The following
illustration shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x400000C0).

..

.

..

.

GPR file

reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x400000C0

That is, if the jump instruction is the 5-th instruction (at address 0x14), instructions 6 to
11 will be jumped, and the next instruction to be executed is the 12-th (at address 0x30).

If the transfer is procedural, i.e., the P bit is 1 instead of 0, the CALL RETURN POINTER
will be written with the value of the INSTRUCTION COUNTER before instruction execution,
incremented by one (0x00000006).

Example 61: Jump absolute according to register

Instruction in binary format: 01000010 000000 0000 00 000011 000000
Instruction in hexadecimal format: 0x420000C0
Fields:

A 1 (absolute transfer)
P 0 (non-procedural transfer)

LOCATION 000011 (reg3)

The value of GPR 3 is written to the INSTRUCTION COUNTER. The following illustration
shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide INSTRUC-
TION COUNTER before and after execution of the instruction (0x420000C0).

..

.

..

.

GPR file

reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000007

INSTRUCTION
COUNTER

exec. instr.
0x420000C0

That is, if the jump instruction is the 5-th instruction (at address 0x14), instruction 6 will
be jumped, and the next instruction to be executed is the 7-th (at address 0x1C).

If the transfer is procedural, i.e., the P bit is 1 instead of 0, the CALL RETURN POINTER
will be written with the value of the INSTRUCTION COUNTER before instruction execution,
incremented by one (0x00000006).

Example 62: Jump relative according to offset

Instruction in binary format: 01000100 111111 0000 11111111111101
Instruction in hexadecimal format: 0x44FC3FFD

152

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Fields:
A 0 (relative transfer)
P 0 (non-procedural transfer)

OFFSET20HI 111111 (0x3F)
OFFSET20LO 11111111111101 (0x3FFD)

The instruction adds the signed OFFSET20 to the INSTRUCTION COUNTER. The concate-
nation of OFFSET20HI and OFFSET20LO gives OFFSET20 = 0xFFFFD. The following illus-
tration shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x44FC3FFD).

0x00000005

INSTRUCTION
COUNTER

0x00000002

INSTRUCTION
COUNTER

exec. instr.
0x44FC3FFD

That is, if the jump instruction is the 5-th instruction (at address 0x14), the program
execution will be transferred back to instruction 2 (due to the negative OFFSET20 of -3),
jumping instructions 4 and 3. Thus, the next instruction to be executed after the jump is
the 2-nd instruction (at address 0x8).

If the transfer is procedural, i.e., the P bit is 1 instead of 0, the CALL RETURN POINTER
will be written with the value of the INSTRUCTION COUNTER before instruction execution,
incremented by one (0x00000006).

Example 63: Jump absolute according to offset

Instruction in binary format: 01000110 111111 0000 11111111111101
Instruction in hexadecimal format: 0x46FC3FFD
Fields:

A 1 (absolute transfer)
P 0 (non-procedural transfer)

OFFSET20HI 111111 (0x3F)
OFFSET20LO 11111111111101 (0x3FFD)

The signed OFFSET20 value is written to the INSTRUCTION COUNTER. The concatenation
of OFFSET20HI and OFFSET20LO gives OFFSET20 = 0xFFFFD. The following illustration
shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide INSTRUC-
TION COUNTER before and after execution of the instruction (0x46FC3FFD).

0x00000005

INSTRUCTION
COUNTER

0x3FFFFFFD

INSTRUCTION
COUNTER

exec. instr.
0x46FC3FFD

That is, the program will be transferred at instruction 0x3FFFFFFD (obtained by sign-
extending OFFSET20 to the 30-bit width of the INSTRUCTION COUNTER) which resides at
address 0xFFFFFFF4.

If the transfer is procedural, i.e., the P bit is 1 instead of 0, the CALL RETURN POINTER
will be written with the value of the INSTRUCTION COUNTER before instruction execution,
incremented by one (0x00000006).

153

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.37 BZ – Branch if Zero

0 1 MMODE 0 A P

8

ARGUMENT 0 0 0 1 LOCATION

6 4 2 6 6

(a) Branch if Zero according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 0 0 1 OFFSET14

6 4 14

(b) Branch if Zero according to offset

Fig. 68: Branch if Zero (BZ) instructions

The BZ instruction specifies conditional program transfer to a location specified by a GPR or
by an implicitly specified offset. The branch condition is met if all the bits of the argument
GPR are 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 50 summarizes the execution of BZ instructions.

Table 50: Execution of BZ instructions

Branch if Zero according to register
if(REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Zero according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

154

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 64: Branch if Zero according to register

Instruction in binary format: 01000000 000010 0001 00 000011 000000
Instruction in hexadecimal format: 0x400840C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the 8-bit byte of GPR 2 is zero, the instruction adds the value in GPR 3 to the INSTRUC-
TION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one. The following
illustration shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x400840C0).

..

.

..

.

GPR file

reg2 0xFFFFFF00
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x400840C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the 8-bit byte of GPR 2 is zero” is met and the branch is taken, which means that the next
instruction to be executed is the 12-th (at address 0x30), skipping instructions 6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 65: Branch if Zero according to offset

Instruction in binary format: 01010110 000010 0001 00000000001111
Instruction in hexadecimal format: 0x5608400F
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000001111 (0xF)

If the 32-bit word of GPR 2 is zero, the signed OFFSET14 value is written to the INSTRUCTION
COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one. The following il-
lustration shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x5608400F).

155

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

..

.

..

.

GPR file

reg2 0x80000000 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x5608400F

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the 32-bit word of GPR 2 is zero” is not met and the branch is not taken, which means
that the next instruction to be executed is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

156

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.38 BNZ – Branch if Not Zero

0 1 MMODE 0 A P

8

ARGUMENT 0 0 1 0 LOCATION

6 4 2 6 6

(a) Branch if Not Zero according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 0 1 0 OFFSET14

6 4 14

(b) Branch if Not Zero according to offset

Fig. 69: Branch if Not Zero (BNZ) instructions

The BNZ instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if not all the bits of the
argument GPR are 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 51 summarizes the execution of BNZ instructions.

Table 51: Execution of BNZ instructions

Branch if Not Zero according to register
if(REG[ARGUMENT][2e(MMODE+3)-1:0] != 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not Zero according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1:0] != 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

157

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 66: Branch if Not Zero according to register

Instruction in binary format: 01001000 000010 0010 00 000011 000000
Instruction in hexadecimal format: 0x480880C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the 16-bit halfword of GPR 2 is not zero, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x480880C0).

..

.

..

.

GPR file

reg2 0xFFFF0000
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480880C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the 16-bit halfword of GPR 2 is not zero” is not met and the branch is not taken, which
means that the next instruction to be executed is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 67: Branch if Not Zero according to offset

Instruction in binary format: 01010100 000010 0010 00000000011001
Instruction in hexadecimal format: 0x54088019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the 32-bit word of GPR 2 is not zero, the signed OFFSET14 value is added to the INSTRUC-
TION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one. The following
illustration shows an example state of a 32-bit wide GPR file and the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x54088019).

158

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

GPR file

reg2 0x80000000 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x54088019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the 32-bit word of GPR 2 is not zero” is met and the branch is taken, which means that
the next instruction to be executed is the 30-th (at address 0x78), skipping instructions 6 to
29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

159

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.39 BM – Branch if MSB

0 1 MMODE 0 A P

8

ARGUMENT 0 0 1 1 LOCATION

6 4 2 6 6

(a) Branch if MSB according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 0 1 1 OFFSET14

6 4 14

(b) Branch if MSB according to offset

Fig. 70: Branch if MSB (BM) instructions

The BM instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the MSB of the argument
GPR is 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 52 summarizes the execution of BM instructions.

Table 52: Execution of BM instructions

Branch if MSB according to register
if(REG[ARGUMENT][2e(MMODE+3)-1] == 1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if MSB according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1] == 1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

160

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 68: Branch if MSB according to register

Instruction in binary format: 01000000 000010 0011 00 000011 000000
Instruction in hexadecimal format: 0x4008C0C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the MSB of the 8-bit byte of GPR 2 is one, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x4008C0C0).

..

.

..

.

GPR file

reg2 0x000000CD
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x4008C0C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 8-bit byte of GPR 2 is one” is met and the branch is taken, which means
that the next instruction to be executed is the 12-th (at address 0x30), skipping instructions
6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 69: Branch if MSB according to offset

Instruction in binary format: 01010110 000010 0011 00000000011001
Instruction in hexadecimal format: 0x5608C019
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the MSB of the 32-bit word of GPR 2 is one, the signed OFFSET14 value is written to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value

161

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x5608C019).

..

.

..

.

GPR file

reg2 0x80BA0500 0x00000005

INSTRUCTION
COUNTER

0x00000019

INSTRUCTION
COUNTER

exec. instr.
0x5608C019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 32-bit word of GPR 2 is one” is met and the branch is taken, which means
that the next instruction to be executed is the 25-th (at address 0x64), skipping instructions
6 to 24.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

162

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.40 BMZ – Branch if MSB or Zero

0 1 MMODE 0 A P

8

ARGUMENT 0 1 0 0 LOCATION

6 4 2 6 6

(a) Branch if MSB or Zero according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 1 0 0 OFFSET14

6 4 14

(b) Branch if MSB or Zero according to offset

Fig. 71: Branch if MSB or Zero (BMZ) instructions

The BMZ instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the MSB of the argument
GPR is 1, or, if all the bits of the argument GPR are 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 53 summarizes the execution of BMZ instructions.

Table 53: Execution of BMZ instructions

Branch if MSB or Zero according to register
if(REG[ARGUMENT][2e(MMODE+3)-1] == 1 or REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if MSB or Zero according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1] == 1 or REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

163

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 70: Branch if MSB or Zero according to register

Instruction in binary format: 01001000 000010 0100 00 000011 000000
Instruction in hexadecimal format: 0x480900C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the MSB of the 16-bit halfword of GPR 2 is one or the 16-bit halfword is zero, the instruc-
tion adds the value in GPR 3 to the INSTRUCTION COUNTER, otherwise the INSTRUCTION
COUNTER is incremented by one. The following illustration shows an example state of a 32-
bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER before and after
execution of the instruction (0x480900C0).

..

.

..

.

GPR file

reg2 0xFFFF7FFF
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480900C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 16-bit halfword of GPR 2 is one or the 16-bit halfword is zero” is not met
and the branch is not taken, which means that the next instruction to be executed is the 6-th
(at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 71: Branch if MSB or Zero according to offset

Instruction in binary format: 01010100 000010 0100 00000000011001
Instruction in hexadecimal format: 0x54090019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the MSB of the 32-bit word of GPR 2 is one or the 32-bit word is zero, the signed OFFSET14
value is added to the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is
incremented by one. The following illustration shows an example state of a 32-bit wide GPR

164

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

file and the value of the 30-bit wide INSTRUCTION COUNTER before and after execution of
the instruction (0x54090019).

..

.

..

.

GPR file

reg2 0x00000000 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x54090019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 32-bit word of GPR 2 is one or the 32-bit word is zero” is met and the
branch is taken, which means that the next instruction to be executed is the 30-th (at address
0x78), skipping instructions 6 to 29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

165

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.41 BNM – Branch if Not MSB

0 1 MMODE 0 A P

8

ARGUMENT 0 1 0 1 LOCATION

6 4 2 6 6

(a) Branch if Not MSB according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 1 0 1 OFFSET14

6 4 14

(b) Branch if Not MSB according to offset

Fig. 72: Branch if Not MSB (BNM) instructions

The BNM instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the MSB of the argument
GPR is 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 54 summarizes the execution of BNM instructions.

Table 54: Execution of BNM instructions

Branch if Not MSB according to register
if(REG[ARGUMENT][2e(MMODE+3)-1] == 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not MSB according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1] == 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

166

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 72: Branch if Not MSB according to register

Instruction in binary format: 01000000 000010 0101 00 000011 000000
Instruction in hexadecimal format: 0x400940C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the MSB of the 8-bit byte of GPR 2 is zero, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x400940C0).

..

.

..

.

GPR file

reg2 0xF00F0F7F
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x400940C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 8-bit byte of GPR 2 is zero” is met and the branch is taken, which means
that the next instruction to be executed is the 12-th (at address 0x30), skipping instructions
6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 73: Branch if Not MSB according to offset

Instruction in binary format: 01010110 000010 0101 00000000011001
Instruction in hexadecimal format: 0x56094019
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the MSB of the 32-bit word of GPR 2 is zero, the signed OFFSET14 value is written to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value

167

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x56094019).

..

.

..

.

GPR file

reg2 0x68BA0500 0x00000005

INSTRUCTION
COUNTER

0x00000019

INSTRUCTION
COUNTER

exec. instr.
0x56094019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 32-bit word of GPR 2 is zero” is met and the branch is taken, which means
that the next instruction to be executed is the 25-th (at address 0x64), skipping instructions
6 to 24.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

168

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.42 BNMO – Branch if Not MSB or all Ones

0 1 MMODE 0 A P

8

ARGUMENT 0 1 1 0 LOCATION

6 4 2 6 6

(a) Branch if Not MSB or all Ones according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 1 1 0 OFFSET14

6 4 14

(b) Branch if Not MSB or all Ones according to offset

Fig. 73: Branch if Not MSB or all Ones (BNMO) instructions

The BNMO instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the MSB of the argument
GPR is 0, or, if all the bits of the argument GPR are 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 55 summarizes the execution of BNMO instructions.

Table 55: Execution of BNMO instructions

Branch if Not MSB or all Ones according to register
if(REG[ARGUMENT][2e(MMODE+3)-1] == 0 or REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not MSB or all Ones according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1] == 0 or REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

169

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the binary representation of the decimal -1 negative integer, all the bits are one (for any
width), which is used as a shorthand notation in the condition evaluation in Table 55.

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 74: Branch if Not MSB or all Ones according to register

Instruction in binary format: 01001000 000010 0110 00 000011 000000
Instruction in hexadecimal format: 0x480980C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the MSB of the 16-bit halfword of GPR 2 is zero or all bits of the 16-bit halfword are
ones, the instruction adds the value in GPR 3 to the INSTRUCTION COUNTER, otherwise the
INSTRUCTION COUNTER is incremented by one. The following illustration shows an example
state of a 32-bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER
before and after execution of the instruction (0x480980C0).

..

.

..

.

GPR file

reg2 0x00008000
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480980C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 16-bit halfword of GPR 2 is zero or all bits of the 16-bit halfword are ones”
is not met and the branch is not taken, which means that the next instruction to be executed
is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 75: Branch if Not MSB or all Ones according to offset

Instruction in binary format: 01010100 000010 0110 00000000011001
Instruction in hexadecimal format: 0x54098019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

170

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

If the MSB of the 32-bit word of GPR 2 is zero or all bits of the 32-bit word are ones, the
signed OFFSET14 value is added to the INSTRUCTION COUNTER, otherwise the INSTRUC-
TION COUNTER is incremented by one. The following illustration shows an example state of
a 32-bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER before and
after execution of the instruction (0x54098019).

..

.

..

.

GPR file

reg2 0x7FFFFFFF 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x54098019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the MSB of the 32-bit word of GPR 2 is zero or all bits of the 32-bit word are ones” is met
and the branch is taken, which means that the next instruction to be executed is the 30-th
(at address 0x78), skipping instructions 6 to 29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

171

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.43 BL – Branch if LSB

0 1 MMODE 0 A P

8

ARGUMENT 0 1 1 1 LOCATION

6 4 2 6 6

(a) Branch if LSB according to register

0 1 MMODE 1 A P

8

ARGUMENT 0 1 1 1 OFFSET14

6 4 14

(b) Branch if LSB according to offset

Fig. 74: Branch if LSB (BL) instructions

The BL instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the LSB of the argument
GPR is 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 56 summarizes the execution of BL instructions.

Table 56: Execution of BL instructions

Branch if LSB according to register
if(REG[ARGUMENT][0] == 1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if LSB according to offset

if(REG[ARGUMENT][0] == 1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

172

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 76: Branch if LSB according to register

Instruction in binary format: 01000000 000010 0111 00 000011 000000
Instruction in hexadecimal format: 0x4009C0C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the LSB of the 8-bit byte of GPR 2 is one, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x4009C0C0).

..

.

..

.

GPR file

reg2 0x000000CD
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x4009C0C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 8-bit byte of GPR 2 is one” is met and the branch is taken, which means
that the next instruction to be executed is the 12-th (at address 0x30), skipping instructions
6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 77: Branch if LSB according to offset

Instruction in binary format: 01010110 000010 0111 00000000011001
Instruction in hexadecimal format: 0x5609C019
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the LSB of the 32-bit word of GPR 2 is one, the signed OFFSET14 value is written to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value

173

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x5609C019).

..

.

..

.

GPR file

reg2 0x80BA0501 0x00000005

INSTRUCTION
COUNTER

0x00000019

INSTRUCTION
COUNTER

exec. instr.
0x5609C019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 32-bit word of GPR 2 is one” is met and the branch is taken, which means
that the next instruction to be executed is the 25-th (at address 0x64), skipping instructions
6 to 24.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

174

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.44 BLZ – Branch if LSB or Zero

0 1 MMODE 0 A P

8

ARGUMENT 1 0 0 0 LOCATION

6 4 2 6 6

(a) Branch if LSB or Zero according to register

0 1 MMODE 1 A P

8

ARGUMENT 1 0 0 0 OFFSET14

6 4 14

(b) Branch if LSB or Zero according to offset

Fig. 75: Branch if LSB or Zero (BLZ) instructions

The BLZ instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the LSB of the argument
GPR is 1, or, if all the bits of the argument GPR are 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 57 summarizes the execution of BLZ instructions.

Table 57: Execution of BLZ instructions

Branch if LSB or Zero according to register
if(REG[ARGUMENT][0] == 1 or REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if LSB or Zero according to offset

if(REG[ARGUMENT][0] == 1 or REG[ARGUMENT][2e(MMODE+3)-1:0] == 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

175

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 78: Branch if LSB or Zero according to register

Instruction in binary format: 01001000 000010 1000 00 000011 000000
Instruction in hexadecimal format: 0x480A00C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the LSB of the 16-bit halfword of GPR 2 is one or the 16-bit halfword is zero, the instruc-
tion adds the value in GPR 3 to the INSTRUCTION COUNTER, otherwise the INSTRUCTION
COUNTER is incremented by one. The following illustration shows an example state of a 32-
bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER before and after
execution of the instruction (0x480A00C0).

..

.

..

.

GPR file

reg2 0xFFFFFFFE
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480A00C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 16-bit halfword of GPR 2 is one or the 16-bit halfword is zero” is not met
and the branch is not taken, which means that the next instruction to be executed is the 6-th
(at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 79: Branch if LSB or Zero according to offset

Instruction in binary format: 01010100 000010 1000 00000000011001
Instruction in hexadecimal format: 0x540A0019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the LSB of the 32-bit word of GPR 2 is one or the 32-bit word is zero, the signed OFFSET14
value is added to the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is
incremented by one. The following illustration shows an example state of a 32-bit wide GPR

176

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

file and the value of the 30-bit wide INSTRUCTION COUNTER before and after execution of
the instruction (0x540A0019).

..

.

..

.

GPR file

reg2 0x00000000 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x540A0019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 32-bit word of GPR 2 is one or the 32-bit word is zero” is met and the
branch is taken, which means that the next instruction to be executed is the 30-th (at address
0x78), skipping instructions 6 to 29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

177

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.45 BNL – Branch if Not LSB

0 1 MMODE 0 A P

8

ARGUMENT 1 0 0 1 LOCATION

6 4 2 6 6

(a) Branch if Not LSB according to register

0 1 MMODE 1 A P

8

ARGUMENT 1 0 0 1 OFFSET14

6 4 14

(b) Branch if Not LSB according to offset

Fig. 76: Branch if Not LSB (BNL) instructions

The BNL instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the LSB of the argument
GPR is 0 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 58 summarizes the execution of BNL instructions.

Table 58: Execution of BNL instructions

Branch if Not LSB according to register
if(REG[ARGUMENT][0] == 0) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not LSB according to offset

if(REG[ARGUMENT][0] == 0) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

178

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 80: Branch if Not LSB according to register

Instruction in binary format: 01000000 000010 1001 00 000011 000000
Instruction in hexadecimal format: 0x400A40C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the LSB of the 8-bit byte of GPR 2 is zero, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x400A40C0).

..

.

..

.

GPR file

reg2 0xF00F0F7E
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x400A40C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 8-bit byte of GPR 2 is zero” is met and the branch is taken, which means
that the next instruction to be executed is the 12-th (at address 0x30), skipping instructions
6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 81: Branch if Not LSB according to offset

Instruction in binary format: 01010110 000010 1001 00000000011001
Instruction in hexadecimal format: 0x560A4019
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If the LSB of the 32-bit word of GPR 2 is zero, the signed OFFSET14 value is written to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value

179

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x560A4019).

..

.

..

.

GPR file

reg2 0x68BA0502 0x00000005

INSTRUCTION
COUNTER

0x00000019

INSTRUCTION
COUNTER

exec. instr.
0x560A4019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 32-bit word of GPR 2 is zero” is met and the branch is taken, which means
that the next instruction to be executed is the 25-th (at address 0x64), skipping instructions
6 to 24.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

180

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.46 BNLO – Branch if Not LSB or all Ones

0 1 MMODE 0 A P

8

ARGUMENT 1 0 1 0 LOCATION

6 4 2 6 6

(a) Branch if Not LSB or all Ones according to register

0 1 MMODE 1 A P

8

ARGUMENT 1 0 1 0 OFFSET14

6 4 14

(b) Branch if Not LSB or all Ones according to offset

Fig. 77: Branch if Not LSB or all Ones (BNLO) instructions

The BNLO instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if the LSB of the argument
GPR is 0, or, if all the bits of the argument GPR are 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 59 summarizes the execution of BNLO instructions.

Table 59: Execution of BNLO instructions

Branch if Not LSB or all Ones according to register
if(REG[ARGUMENT][0] == 0 or REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not LSB or all Ones according to offset

if(REG[ARGUMENT][0] == 0 or REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

181

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the binary representation of the decimal -1 negative integer, all the bits are one (for any
width), which is used as a shorthand notation in the condition evaluation in Table 59.

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 82: Branch if Not LSB or all Ones according to register

Instruction in binary format: 01001000 000010 1010 00 000011 000000
Instruction in hexadecimal format: 0x480A80C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If the LSB of the 16-bit halfword of GPR 2 is zero or all bits of the 16-bit halfword are
ones, the instruction adds the value in GPR 3 to the INSTRUCTION COUNTER, otherwise the
INSTRUCTION COUNTER is incremented by one. The following illustration shows an example
state of a 32-bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER
before and after execution of the instruction (0x480A80C0).

..

.

..

.

GPR file

reg2 0x00000001
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480A80C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 16-bit halfword of GPR 2 is zero or all bits of the 16-bit halfword are ones”
is not met and the branch is not taken, which means that the next instruction to be executed
is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 83: Branch if Not LSB or all Ones according to offset

Instruction in binary format: 01010100 000010 1010 00000000011001
Instruction in hexadecimal format: 0x540A8019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

182

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

If the LSB of the 32-bit word of GPR 2 is zero or all bits of the 32-bit word are ones, the
signed OFFSET14 value is added to the INSTRUCTION COUNTER, otherwise the INSTRUC-
TION COUNTER is incremented by one. The following illustration shows an example state of
a 32-bit wide GPR file and the value of the 30-bit wide INSTRUCTION COUNTER before and
after execution of the instruction (0x540A8019).

..

.

..

.

GPR file

reg2 0xFFFFFFFE 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x540A8019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if the LSB of the 32-bit word of GPR 2 is zero or all bits of the 32-bit word are ones” is met
and the branch is taken, which means that the next instruction to be executed is the 30-th
(at address 0x78), skipping instructions 6 to 29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

183

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.47 BO – Branch if all Ones

0 1 MMODE 0 A P

8

ARGUMENT 1 0 1 1 LOCATION

6 4 2 6 6

(a) Branch if all Ones according to register

0 1 MMODE 1 A P

8

ARGUMENT 1 0 1 1 OFFSET14

6 4 14

(b) Branch if all Ones according to offset

Fig. 78: Branch if all Ones (BO) instructions

The BO instruction specifies conditional program transfer to a location specified by a GPR or
by an implicitly specified offset. The branch condition is met if all the bits of the argument
GPR are 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 60 summarizes the execution of BO instructions.

Table 60: Execution of BO instructions

Branch if all Ones according to register
if(REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if all Ones according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1:0] == -1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

184

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

In the binary representation of the decimal -1 negative integer, all the bits are one (for any
width), which is used as a shorthand notation in the condition evaluation in Table 60.

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 84: Branch if all Ones according to register

Instruction in binary format: 01000000 000010 1011 00 000011 000000
Instruction in hexadecimal format: 0x400AC0C0
Fields:

MMODE 000 (byte)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If all bits in the 8-bit byte of GPR 2 are ones, the instruction adds the value in GPR 3 to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x400AC0C0).

..

.

..

.

GPR file

reg2 0x000000FF
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x0000000C

INSTRUCTION
COUNTER

exec. instr.
0x400AC0C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if all bits in the 8-bit byte of GPR 2 are ones” is met and the branch is taken, which means
that the next instruction to be executed is the 12-th (at address 0x30), skipping instructions
6 to 11.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 85: Branch if all Ones according to offset

Instruction in binary format: 01010110 000010 1011 00000000001111
Instruction in hexadecimal format: 0x560AC00F
Fields:

MMODE 010 (word)
A 1 (absolute transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000001111 (0xF)

If all bits in the 32-bit word of GPR 2 are ones, the signed OFFSET14 value is written to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.

185

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x560AC00F).

..

.

..

.

GPR file

reg2 0xFFFFFFFE 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x560AC00F

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if all bits in the 32-bit word of GPR 2 are ones” is not met and the branch is not taken, which
means that the next instruction to be executed is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

186

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.1.48 BNO – Branch if Not all Ones

0 1 MMODE 0 A P

8

ARGUMENT 1 1 0 0 LOCATION

6 4 2 6 6

(a) Branch if Not all Ones according to register

0 1 MMODE 1 A P

8

ARGUMENT 1 1 0 0 OFFSET14

6 4 14

(b) Branch if Not all Ones according to offset

Fig. 79: Branch if Not all Ones (BNO) instructions

The BNZ instruction specifies conditional program transfer to a location specified by a GPR
or by an implicitly specified offset. The branch condition is met if not all the bits of the
argument GPR are 1 (in the specified machine mode).

Fields

MMODE Specifies the integer machine mode according to Table 1.

A 0: relative transfer
1: absolute transfer (see Subsection 3.3.1).

P If P=1, a procedural transfer is specified in which the INSTRUC-
TION COUNTER incremented by one is additionally written to the
CALL RETURN POINTER (see Subsection 3.3.1).

ARGUMENT Specifies the number of the GPR containing the argument which
is investigated in order to decide whether to take the branch or
not. MMODE specifies the machine mode, i.e., the integer width of
the argument that is being investigated.

LOCATION Specifies the number of the GPR containing the offset or absolute
location for the transfer.

OFFSET14 A 14-bit signed offset value for branch according to offset.

Execution

Table 61 summarizes the execution of BNO instructions.

Table 61: Execution of BNO instructions

Branch if Not all Ones according to register
if(REG[ARGUMENT][2e(MMODE+3)-1:0] != -1) {

if(A == 1) INSTRUCTION COUNTER ← REG[LOCATION]
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + REG[LOCATION]
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1
Branch if Not all Ones according to offset

if(REG[ARGUMENT][2e(MMODE+3)-1:0] != -1) {
if(A == 1) INSTRUCTION COUNTER ← OFFSET14
else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + OFFSET14
if(P == 1) CALL RETURN POINTER ← INSTRUCTION COUNTER + 1

} else INSTRUCTION COUNTER ← INSTRUCTION COUNTER + 1

187

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

In the binary representation of the decimal -1 negative integer, all the bits are one (for any
width), which is used as a shorthand notation in the condition evaluation in Table 61.

Changes

INSTRUCTION COUNTER If the branch is taken, the INSTRUCTION COUNTER is loaded with
the given/computed instruction address.

CALL RETURN POINTER If the branch is taken and if P=1, the incremented value of the IN-
STRUCTION COUNTER is written to the CALL RETURN POINTER.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 86: Branch if Not all Ones according to register

Instruction in binary format: 01001000 000010 1100 00 000011 000000
Instruction in hexadecimal format: 0x480B00C0
Fields:

MMODE 001 (halfword)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
LOCATION 000011 (reg3)

If not all bits in the 16-bit halfword of GPR 2 are ones, the instruction adds the value in GPR 3
to the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by
one. The following illustration shows an example state of a 32-bit wide GPR file and the
value of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x480B00C0).

..

.

..

.

GPR file

reg2 0x0000FFFF
reg3 0x00000007 0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x480B00C0

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if not all bits in the 16-bit halfword of GPR 2 are ones” is not met and the branch is not
taken, which means that the next instruction to be executed is the 6-th (at address 0x18).

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

Example 87: Branch if Not all Ones according to offset

Instruction in binary format: 01010100 000010 1100 00000000011001
Instruction in hexadecimal format: 0x540B0019
Fields:

MMODE 010 (word)
A 0 (relative transfer)
P 0 (non-procedural transfer)

ARGUMENT 000010 (reg2)
OFFSET14 00000000011001 (0x19)

If not all bits in the 32-bit word of GPR 2 are ones, the signed OFFSET14 value is added to
the INSTRUCTION COUNTER, otherwise the INSTRUCTION COUNTER is incremented by one.
The following illustration shows an example state of a 32-bit wide GPR file and the value

188

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x540B0019).

..

.

..

.

GPR file

reg2 0xFEFFFFFF 0x00000005

INSTRUCTION
COUNTER

0x0000001E

INSTRUCTION
COUNTER

exec. instr.
0x540B0019

Thus, the branch instruction is the 5-th instruction (at address 0x14). The condition “branch
if not all bits in the 32-bit word of GPR 2 are ones” is met and the branch is taken, which
means that the next instruction to be executed is the 30-th (at address 0x78), skipping
instructions 6 to 29.

If the branch is taken and if the transfer is procedural, i.e., the P bit is 1 instead of 0,
the CALL RETURN POINTER will be written with the value of the INSTRUCTION COUNTER
before instruction execution, incremented by one (0x00000006).

189

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.49 RET – Return from procedure

0 1 0 0 0 0 0 P

8

1 1 0 1

6 4 14

Fig. 80: Return from procedure (RET) instructions

The RET instruction specifies return from procedure. The point of return is specified by the
CALL RETURN POINTER.

Fields

P If P=1 the instruction address found in the return pointer is decre-
mented by 1. That is, return to the last instruction before entering
the which was previously executed.

Execution

Table 62 summarizes the execution of RET instructions.

Table 62: Execution of RET instructions

Return from procedure
if(P == 0) INSTRUCTION COUNTER ← CALL RETURN POINTER
else INSTRUCTION COUNTER ← CALL RETURN POINTER - 1

Changes

INSTRUCTION COUNTER It is loaded with the value of the CALL RETURN POINTER. If
P=1, the value of the CALL RETURN POINTER is previously decre-
mented by one.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION exception (see Subsection 4.2.5).

Examples

Example 88: Return from procedure

Instruction in binary format: 01000000 000000 1101 00000000000000
Instruction in hexadecimal format: 0x40034000
Fields:

P 0 (return after the procedure call)

The instruction returns to the place after the procedure call at a location given by the
CALL RETURN POINTER (CRP). The following illustration shows the value of the 30-bit wide
INSTRUCTION COUNTER before and after execution of the instruction (0x40034000).

..

.

..

.

Special reg. file

CRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x40034000

If now only the P bit is changed and set to 1 (0x41034000), a return to the Previous instruc-
tion is specified since the value of the CRP is decremented by one. The following illustration
shows the values of the INSTRUCTION COUNTER in this case.

190

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

Special reg. file

CRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000005

INSTRUCTION
COUNTER

exec. instr.
0x41034000

191

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.50 RETI – Return from interrupt handler

0 1 0 0 1 0 0 P

8

1 1 0 1

6 4 14

Fig. 81: Return from interrupt handler (RETI) instructions

The RETI instruction specifies return from an interrupt handler. The point of return is
specified by the INTERRUPT RETURN POINTER.

Fields

P If P=1 the instruction address found in the return pointer is decre-
mented by 1. That is, return to the last instruction before entering
the which was previously executed.

Execution

Table 63 summarizes the execution of RETI instructions.

Table 63: Execution of RETI instructions

Return from interrupt handler
if(P == 0) INSTRUCTION COUNTER ← INTERRUPT RETURN POINTER
else INSTRUCTION COUNTER ← INTERRUPT RETURN POINTER - 1

The RETI instruction restores the enabled/disabled status of the interrupt line as it was
before interrupt handling was entered. That is, bit 3 (ENABLE INTERRUPTS) of the SYSTEM
CONTROL REGISTER (see Subsection 5.10) is restored to its value before entering interrupt
handling. However, if RETI is executed out of the interrupt handler, i.e., if interrupt handling
was not entered, the SYSTEM CONTROL REGISTER bit is not changed. RETI is not a system
instruction like RETE and RETN, and can be also executed in user mode.

Changes

INSTRUCTION COUNTER It is loaded with the value of the INTERRUPT RETURN POINTER.
If P=1, the value of the INTERRUPT RETURN POINTER is previ-
ously decremented by one.

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION exception (see Subsection 4.2.5).

Examples

Example 89: Return from interrupt handler

Instruction in binary format: 01001000 000000 1101 00000000000000
Instruction in hexadecimal format: 0x48034000
Fields:

P 0 (return after the interrupted instruction)

The instruction returns to the place after the interrupted instruction at a location given by the
INTERRUPT RETURN POINTER (IRP). The following illustration shows the value of the 30-bit
wide INSTRUCTION COUNTER before and after execution of the instruction (0x48034000).

192

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

Special reg. file

IRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x48034000

If now only the P bit is changed and set to 1 (0x49034000), a return to the Previous instruc-
tion is specified since the value of the IRP is decremented by one. The following illustration
shows the values of the INSTRUCTION COUNTER in this case.

..

.

..

.

Special reg. file

IRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000005

INSTRUCTION
COUNTER

exec. instr.
0x49034000

193

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.51 RETE – Return from exception handler

0 1 0 1 0 0 0 P

8

1 1 0 1

6 4 14

Fig. 82: Return from exception handler (RETE) instructions

The RETE instruction specifies return from an exception handler. The point of return is
specified by the EXCEPTION RETURN POINTER.

Fields

P If P=1 the instruction address found in the return pointer is decre-
mented by 1. That is, return to the last instruction before entering
the which was previously executed.

Execution

Table 64 summarizes the execution of RETE instructions.

Table 64: Execution of RETE instructions

Return from exception handler
if(P == 0) INSTRUCTION COUNTER ← EXCEPTION RETURN POINTER
else INSTRUCTION COUNTER ← EXCEPTION RETURN POINTER - 1

The RETE instruction restores the operating mode and the enabled/disabled status of the
exceptions and the interrupt line as they were before exception handling was entered. That
is, bits 0, 2 and 3 (SYSTEM MODE, ENABLE EXCEPTIONS and ENABLE INTERRUPTS) of
the SYSTEM CONTROL REGISTER (see Subsection 5.10) are restored to their values before
entering exception handler. However, if RETE is executed out of the exception handler, i.e., if
exception handling was not entered, the SYSTEM CONTROL REGISTER bits are not changed.
RETE is a system instruction and can be executed only in system mode.

Changes

INSTRUCTION COUNTER It is loaded with the value of the EXCEPTION RETURN POINTER.
If P=1, the value of the EXCEPTION RETURN POINTER is previ-
ously decremented by one.

Exceptions

SYSTEM INSTRUCTION It is raised when an attempt is made to execute the instruction in
user mode.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION exception (see Subsection 4.2.5).

Examples

Example 90: Return from exception handler

Instruction in binary format: 01010000 000000 1101 00000000000000
Instruction in hexadecimal format: 0x50034000
Fields:

P 0 (return after the exceptional instruction)

The instruction returns to the place after the exceptional instruction at a location given by the
EXCEPTION RETURN POINTER (ERP). The following illustration shows the value of the 30-bit
wide INSTRUCTION COUNTER before and after execution of the instruction (0x50034000).

194

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

Special reg. file

ERP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x50034000

If now only the P bit is changed and set to 1 (0x51034000), a return to the Previous instruc-
tion is specified since the value of the ERP is decremented by one. The following illustration
shows the values of the INSTRUCTION COUNTER in this case.

..

.

..

.

Special reg. file

ERP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000005

INSTRUCTION
COUNTER

exec. instr.
0x51034000

195

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.52 RETN – Return from NMI handler

0 1 0 1 1 0 0 P

8

1 1 0 1

6 4 14

Fig. 83: Return from NMI handler (RETN) instructions

The RETN instruction specifies return from an NMI handler. The point of return is specified
by the NMI RETURN POINTER.

Fields

P If P=1 the instruction address found in the return pointer is decre-
mented by 1. That is, return to the last instruction before entering
the which was previously executed.

Execution

Table 65 summarizes the execution of RETN instructions.

Table 65: Execution of RETN instructions

Return from NMI handler
if(P == 0) INSTRUCTION COUNTER ← NMI RETURN POINTER
else INSTRUCTION COUNTER ← NMI RETURN POINTER - 1

The RETN instruction restores the operating mode and the enabled/disabled status of the
exceptions and the interrupt line as they were before NMI handling was entered. That is, bits
0, 2 and 3 (SYSTEM MODE, ENABLE EXCEPTIONS and ENABLE INTERRUPTS) of the SYSTEM
CONTROL REGISTER (see Subsection 5.10) are restored to their values before entering NMI
handler. However, if RETN is executed out of the NMI handler, i.e., if NMI handling was not
entered, the SYSTEM CONTROL REGISTER bits are not changed. RETN is a system instruction
and can be executed only in system mode.

Changes

INSTRUCTION COUNTER It is loaded with the value of the NMI RETURN POINTER. If P=1,
the value of the NMI RETURN POINTER is previously decremented
by one.

Exceptions

SYSTEM INSTRUCTION It is raised when an attempt is made to execute the instruction in
user mode.

Depending on the implementation, this instruction can also raise the UNIMPLEMENTED IN-
STRUCTION exception (see Subsection 4.2.5).

Examples

Example 91: Return from NMI handler

Instruction in binary format: 01011000 000000 1101 00000000000000
Instruction in hexadecimal format: 0x58034000
Fields:

P 0 (return after the interrupted instruction)

The instruction returns to the place after the interrupted instruction at a location given by
the NMI RETURN POINTER (NRP). The following illustration shows the value of the 30-bit
wide INSTRUCTION COUNTER before and after execution of the instruction (0x58034000).

196

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

..

.

..

.

Special reg. file

NRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x58034000

If now only the P bit is changed and set to 1 (0x59034000), a return to the Previous instruc-
tion is specified since the value of the NRP is decremented by one. The following illustration
shows the values of the INSTRUCTION COUNTER in this case.

..

.

..

.

Special reg. file

NRP 0x00000006 0x0000000C

INSTRUCTION
COUNTER

0x00000005

INSTRUCTION
COUNTER

exec. instr.
0x59034000

197

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.1.53 WAIT – Wait

0 1 0 0 0 0 0 0

8

1 1 1 0 LOCATION

6 4 2 6 6

(a) Wait according to register

0 1 0 0 0 1 0 0

8

OFFSET20HI 1 1 1 0 OFFSET20LO

6 4 14

(b) Wait according to offset

Fig. 84: Wait (WAIT) instructions

The WAIT instruction specifies a pause from instruction execution. The specified wait timer
value (by a GPR, or by the OFFSET20 field of the instruction) determines if the pause is
definite or indefinite. If the value is zero, the pause is indefinite, otherwise it is definite. If
the pause is definite, instruction execution is resumed after expiration of the pause period,
i.e., the wait timer reaches zero, or if an NMI or a potent interrupt is raised. On the other
hand, an indefinite pause can be broken only by an NMI or a potent interrupt. Another way
to break a pause is by a system reset.

Fields

LOCATION Specifies the number of the GPR containing the wait timer value.
The WAIT instruction always interprets the wait timer value as
unsigned.

OFFSET20HI The six MSBs of the 20-bit unsigned value OFFSET20.

OFFSET20LO The 14 LSBs of the 20-bit unsigned value OFFSET20.

Execution

Table 66 summarizes the execution of WAIT instructions.

Table 66: Execution of WAIT instructions

Wait according to register
if(REG[LOCATION] == 0)

forever INSTRUCTION COUNTER ← INSTRUCTION COUNTER
else

for(REG[LOCATION]) INSTRUCTION COUNTER ← INSTRUCTION COUNTER
Wait according to immediate

if(OFFSET20 == 0)
forever INSTRUCTION COUNTER ← INSTRUCTION COUNTER

else
for(OFFSET20) INSTRUCTION COUNTER ← INSTRUCTION COUNTER

The for(x) <statements> construct in Table 66 implies that the <statements> are
executed x times, i.e., the INSTRUCTION COUNTER remains unchanged for REG[LOCATION]/
OFFSET20 clock cycles, as the wait timer is decremented on each clock cycle. On the other
hand, the forever construct implies that the statements after are executed infinitely.

Changes

INSTRUCTION COUNTER It is left unchanged (either definitely or indefinitely), i.e., the auto-
increment functionality of the INSTRUCTION COUNTER is paused.

198

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Exceptions

Depending on the implementation, this instruction can raise the UNIMPLEMENTED INSTRUC-
TION and UNIMPLEMENTED REGISTER exceptions (see Subsections 4.2.5 and 4.2.6).

Examples

Example 92: Wait according to register

Instruction in binary format: 01000000 000000 1110 00 000011 000000
Instruction in hexadecimal format: 0x400380C0
Fields:

LOCATION 000011 (reg3)

The execution is paused for a definite or indefinite period, according to the value in GPR 3.
The following illustration shows an example state of a 32-bit wide GPR file and the value
of the 30-bit wide INSTRUCTION COUNTER before and after execution of the instruction
(0x400380C0).

..

.

..

.

GPR file

reg3 0x00000000 0x00000005

INSTRUCTION
COUNTER

0x00000005

INSTRUCTION
COUNTER

exec. instr.
0x400380C0

Thus, the execution is paused indefinitely since the value of GPR 3 is zero. Execution can be
resumed only by an interrupt or NMI. Of course, a system reset also “resumes” execution.

Example 93: Wait according to offset

Instruction in binary format: 01000100 000000 1110 00000111110100
Instruction in hexadecimal format: 0x440381F4
Fields:

OFFSET20HI 000000 (0x0)
OFFSET20LO 00000111110100 (0x1F4)

The execution is paused for a definite or indefinite period, according to the value in OFFSET20.
The concatenation of OFFSET20HI and OFFSET20LO gives OFFSET20 = 0x001F4. The
following illustration shows the value of the 30-bit wide INSTRUCTION COUNTER before and
after execution of the instruction, i.e., after expiration of the pause period. (0x440381F4).

0x00000005

INSTRUCTION
COUNTER

0x00000006

INSTRUCTION
COUNTER

exec. instr.
0x440381F4

Thus, the execution is paused for 500 clock cycles after which execution resumes. That is, the
wait timer value is set to 500 (0x001F4). Execution can be also resumed before expiration
of the defined pause period by an interrupt or NMI.

199

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6.2 System instructions

System instructions are instructions that can be executed only in system mode and are used
for operating system protection. An attempt to execute a system instruction in user mode
raises the SYSTEM INSTRUCTION exception (see Subsection 4.2.3).

Any inter-register transfer instruction in which the destination is a special register that is
non-writable in user mode is a system instruction (see Table 12).

The return from exception and return from NMI handler (RETE and RETN) instructions are
also system instructions.

6.3 Assembly conventions

In assembly language, all PEAKTOP instructions are specified by a mnemonic concatenated
with zero, one, two or three instruction options. An underscore concatenates the mnemonic
with the instruction options. The assembly language is case-insensitive. The instructions
can have zero, one, two or three arguments. Thus, they take one of the the following forms:

1. <mnemonic>

2. <mnemonic> <arg1>

3. <mnemonic> <arg1>, <arg2>

4. <mnemonic> <arg1>, <arg2>, <arg3>

5. <mnemonic>_<option(s)>

6. <mnemonic>_<option(s)> <arg1>

7. <mnemonic>_<option(s)> <arg1>, <arg2>

8. <mnemonic>_<option(s)> <arg1>, <arg2>, <arg3>

For example, an instruction that adds GPR 2 to GPR 1 in byte machine mode is written as:

ADD_B reg1, reg2

which will write the result back to GPR 1. For unsigned addition, where both operands are
considered unsigned, the assembly line will be:

ADD_UB reg1, reg2

Permutation of the option letters is also possible:

ADD_BU reg1, reg2

Thus, the last two instructions translate to the same binary representation.

Note that all instruction mnemonics consist of 2, 3 or 4 letters, while each option is specified by
one letter.

6.3.1 Instruction options

Instructions usually have one or more alternatives, or optional functionalities which are addi-
tionally specified by instruction options. For example, an integer arithmetic instruction can

200

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

be executed either as unsigned or signed (with or without the U option), or, during program
transfer, the instruction may be specified to additionally write the INSTRUCTION COUNTER
to the CALL RETURN POINTER by specifying the P option.

Machine mode options

The large bulk of the instructions in the PEAKTOP ISA can be executed in several machine
modes. The machine mode in which the instruction is executed is specified by the machine
mode options. Table 1 gives the option letters used for each machine mode.

Machine mode options are mutually exclusive, since one instruction cannot be executed in
multiple machine modes simultaneously. Thus, writing ADD_BH reg1, reg2, for example,
is illegal.

An option that specifies the natural machine mode option (one of B H W D Q 1 2 4) can
be omitted in assembly. For instance, in implementations with W natural machine mode
ADD_W reg1, reg2 can be also written as ADD reg1, reg2 .

However, omitting the machine mode option in assembly could affect the portability of programs
between implementations with different natural modes, if the program uses mixed machine modes.

The U option

The U option is used to specify:

• Unsigned data

• Unsigned operation

Specifying the U option for a load immediate instruction sets the U bit to 1. If not specified,
the U bit is set to 0. See Subsection 3.1.3.

The U option also specifies unsigned arithmetic operation. That is, specifying the U option
for the integer arithmetic (ADD, SUB, MUL, DIV) and the fused multiply-add/subtract (MAD,
MSU) instructions, sets their U bit to 1. If the U option is not specified, the U bit for these
instructions is set to 0. See Subsection 3.2.1.

When the second operand of the logic instructions (AND, NAND, OR, XOR) is an immediate
value, the U option can be specified in order to zero-extend the immediate value to the
operation width. If the U option is not specified, the immediate value will be sign-extended.
See Subsection 3.2.1.

Finally, conversions from FP format to integer format (FF2I) or vice versa (FI2F) have the U
option in order to specify that the integer result or source operand, respectively, is unsigned.
See Subsection 3.2.2.

The A option

The A option is used to specify:

• Atomic memory transfer

• Arithmetic shift

• Absolute program transfer

Specifying the A option for a memory transfer instruction sets the U bit to 1. If not specified,
the U bit is set to 0. See Subsection 3.1.1.

Specifying the A option for the shift instructions SL and SR sets the U bit to 0, thus inferring
an arithmetic left/right shift. If the A option is not specified, the U bit is set to 1 inferring a
logic left/right shift. See Subsection 3.2.1.

Specifying the A option for a program transfer instruction sets the A bit to 1. If not specified,
the A bit is set to 0. See Subsection 3.3.1.

201

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

The P option

The P option is used to specify:

• Procedural program transfer

• return from routine to the Previously executed instruction

Specifying the P option for a program transfer instruction (either unconditional or branch),
or for a return from routine instruction, sets the P bit to 1. If not specified, the P bit is set
to 0. See Subsections 3.3.1 and 3.3.2, respectively.

6.3.2 Instruction arguments

All instructions, except the return from routine (RET, RETI, RETE and RETN) instructions
take at least one argument, and maximum three arguments. Instructions taking more than
one argument are comma-separated. Only the fused multiply-add/subtract instructions, both
integer and FP, (i.e., MAD, MSU, FMAD and FMSU) take three arguments. There are three types
of arguments: register, numerical and address arguments.

Register arguments

The register arguments are given as explained in Subsection 2.2.1. That is:

reg<nr> The <nr>-th register from the GPR file.

spc<nr> The <nr>-th special register.

dsp<nr> The <nr>-th DSP register.

For example, copying the IMPLEMENTATION REGISTER spc0 to the fourth GPR is written
as:

MOV reg4, spc0

This form of register naming must be applicable in all implementations. Furthermore, registers
can have user-defined aliases, i.e., additional names, which may resemble the function of the
register. Thus, the spc0 register can have the alias, e.g., IMP, while the reg4 can have the
alias r4. Thus, the previous code line becomes:

MOV r4, IMP

The aliases can differ between implementations. However, it is recommended that the aliases
proposed in this specification are used, simply for the purposes of assembly program com-
patibility. The proposed aliases for the GPR and the DSP registers are r<nr> and d<nr>,
respectively, where <nr> is in the range [0, 63]. The proposed aliases for the special registers
are given in Table 12 on Page 48.

Numerical arguments

Numerical arguments are used to specify immediate values, as well as offsets for data or
program transfer. The WAIT instruction also can take a numerical argument. For example,
loading reg0 with the immediate value of 5 will be:

MOV reg0, 5

The numerical arguments can be specified in five different formats given by Table 67.

That is, 0x and 0b before the number specify that the number is in hexadecimal and binary
format, respectively, while a zero before the number signals the octal format. The exponential
format is useful when FP operations are involved. Furthermore, numeric expressions that
reduce to unambiguous numerical value are also acceptable. However, numeric expressions
are not a subject of this specification.

202

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

Table 67: Formats of numerical arguments

Format Example
hexadecimal 0x1234
decimal 1234
octal 01234
binary 0b1110011

exponential -12.34e56

Address arguments

Address arguments are used by the memory transfer instructions to specify the address ac-
cording to the addressing mode. Angle brackets are used to specify the register containing
the address in register addressing, and to specify the offset and index in displacement and
indexed addressing, respectively. That is

register [reg<nr>]

displacement reg<nr-base-reg>[<offset>]

indexed reg<nr-base-reg>[reg<nr-index-reg>]

For example, loading from memory into reg1 using the register addressing in which the
address is placed in reg3 is written as:

MOV reg1, [reg3]

For displacement addressing with offset 4 in which the base address is in reg2:

MOV reg1, reg2[4]

while, for indexed addressing in which the base address is in reg2 and the index is in reg3:

MOV reg1, reg2[reg3]

On the other hand, storing the value of reg1 to memory using the last three addressing
modes is the same, except that the order of the arguments is swapped, i.e.,

MOV [reg3], reg1 , MOV reg2[4], reg1 and MOV reg2[reg3], reg1 , respec-
tively.

Pre- and post-increment/decrement of the index is specified by adding ++ and -- before and
after the index register, respectively. For example,

MOV reg1, reg2[reg3++]

post-increments the index register reg3, while

MOV reg1, reg2[--reg3]

pre-decrements it. Or, for register addressing without base address

MOV reg1, [++reg3] and MOV reg1, [reg3--]

pre-increment and post-decrement reg3, respectively.

6.3.3 Summary

Table 68 gives the possible option combinations for each instruction, the type and number of
arguments. Note that permutation of the option letters is allowed when there is more than
one option. Furthermore, the natural machine mode option can be omitted.

Table 69 shows the assembly according to the proposed assembly conventions for all examples
in Subsection 6.1.

203

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Table 68: Instruction options and arguments

Instruction Possible option combinations Number and type of arguments
Data transfer instructions

MOV B H W D Q 1 2 4 register, address(memory transfer – load) AB AH AW AD AQ A1 A2 A4
MOV B H W D Q 1 2 4 address, register(memory transfer – store) AB AH AW AD AQ A1 A2 A4
MOV B H W D Q 1 2 4 register, register(inter-register transfer)
MOV B H W D Q 1 2 4 register, numerical(load immediate) UB UH UW UD UQ U1 U2 U4

Arithmetic/logic instructions

ADD, SUB, MUL, DIV B H W D Q 1 2 4 register, register/numericalUB UH UW UD UQ U1 U2 U4

SL, SR B H W D Q 1 2 4 register, register/numericalAB AH AW AD AQ A1 A2 A4
RL, RR B H W D Q 1 2 4 register, register/numerical

AND, NAND, OR, XOR
B H W D Q 1 2 4 register, register
B H W D Q 1 2 4 register, numericalUB UH UW UD UQ U1 U2 U4

SB, RB, TB, RVB B H W D Q 1 2 4 register, register/numerical
FADD, FSUB, FMUL, register, registerFDIV, FREM, FCMP

FSQR, FABS, FNEG, FRND register

FF2I, FI2F B H W D Q 1 2 4 registerUB UH UW UD UQ U1 U2 U4
FEXT, FSQZ H W D Q 1 register

MAD, MSU B H W D Q 1 2 4 register, register, register/numericalUB UH UW UD UQ U1 U2 U4
FMAD, FMSU register, register, register

Control instructions
JMP A P AP register/numerical

BZ, BNZ, BM B H W D Q 1 2 4 AB AH

register, register/numericalBMZ, BNM, BNMO AW AD AQ A1 A2 A4 PB PH
BL, BLZ, BNL PW PD PQ P1 P2 P4 APB APH
BNLO, BO, BNO APW APD APQ AP1 AP2 AP4

RET, RETI, RETE, RETN P
WAIT register/numerical

Table 69: Assembly of the example instructions in Subsection 6.1

Example Page Hexadecimal Assembly
1 60 0xCC0C0085 MOV_H reg3, reg2[5]
2 61 0x900C0002 MOV_W [reg2], reg3
3 61 0xD80F4081 MOV_D reg3, reg2[++reg1]
4 62 0xC13C8003 MOV_B spc15, reg3
5 62 0xD50FFFFB MOV_W reg3, -5
5 62 0xD70FFFFB MOV_UW reg3, -5
6 65 0x100C0080 ADD_W reg3, reg2
7 65 0x0C0C0003 ADD_H reg3, 3
8 68 0x100C4080 SUB_W reg3, reg2

Table 69 continues on next page. . .

204

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

. . . Table 69 continued from previous page
Example Page Hexadecimal Assembly

9 68 0x140C76EB SUB_W reg3, -2325
9 68 0x160C76EB SUB_UW reg3, -2325
10 71 0x120C8080 MUL_UW reg3, reg2
11 71 0x080C8080 MUL_H reg3, reg2
12 72 0x140C98AC MUL_W reg3, 0x18AC
13 74 0x100CC080 DIV_W reg3, reg2
14 75 0x0A0CC080 DIV_UH reg3, reg2
15 75 0x040CF83A DIV_B reg3, 0x383A
16 78 0x120D0080 SL_W reg3, reg2
17 78 0x040D0004 SL_AB reg3, 4
18 81 0x120D4080 SR_W reg3, reg2
19 81 0x040D4004 SR_AB reg3, 4
20 84 0x100D8080 RL_W reg3, reg2
21 84 0x0C0D8025 RL_H reg3, 37
22 87 0x120D8080 RR_W reg3, reg2
23 87 0x060D8001 RR_B reg3, 1
24 90 0x100DC080 AND_W reg3, reg2
25 90 0x140DCF0F AND_W reg3, 3855
26 93 0x100E0080 NAND_W reg3, reg2
27 93 0x140E3F0F NAND_W reg3, -241
28 96 0x100E4080 OR_W reg3, reg2
29 96 0x160E7F0F OR_UW reg3, -241
30 99 0x100E8080 XOR_W reg3, reg2
31 99 0x160EBF0F XOR_UW reg3, -241
32 102 0x100EC080 SB_W reg3, reg2
33 102 0x040EC008 SB_B reg3, 8
34 105 0x120EC080 RB_W reg3, reg2
35 105 0x060EC002 RB_B reg3, 2
36 108 0x100F0080 TB_W reg3, reg2
37 108 0x040F0002 TB_B reg3, 2
38 111 0x120F0080 RVB_W reg3, reg2
39 111 0x160F000F RVB_W reg3, 15
40 114 0x010C0080 FADD reg3, reg2
41 116 0x010C4080 FSUB reg3, reg2
42 118 0x010C8080 FMUL reg3, reg2
43 120 0x010CC080 FDIV reg3, reg2
44 122 0x010D0080 FREM reg3, reg2
45 123 0x010D4080 FCMP reg3, reg2
46 126 0x010D8000 FSQR reg3
47 128 0x010DC000 FABS reg3
48 129 0x010E0000 FNEG reg3
49 132 0x010E4000 FRND reg3
50 134 0x110E8000 FF2I_W reg3
51 136 0x110EC000 FI2F_W reg3
52 138 0x110F0000 FEXT_W reg3

Table 69 continues on next page. . .

205

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

. . . Table 69 continued from previous page
Example Page Hexadecimal Assembly

53 140 0x110F4000 FSQZ_W reg3
54 142 0x100F8081 MAD_W reg3, reg2, reg1
55 142 0x140F90A4 MAD_W reg3, reg2, 100
56 145 0x100FC081 MSU_W reg3, reg2, reg1
57 145 0x140FD0A4 MSU_W reg3, reg2, 100
58 148 0x010F8081 FMAD reg3, reg2, reg1
59 150 0x010FC081 FMSU reg3, reg2, reg1
60 152 0x400000C0 JMP reg3
61 152 0x420000C0 JMP_A reg3
62 152 0x44FC3FFD JMP -3
63 153 0x46FC3FFD JMP_A -3
64 155 0x400840C0 BZ_B reg2, reg3
65 155 0x5608400F BZ_AW reg2, 15
66 158 0x480880C0 BNZ_H reg2, reg3
67 158 0x54088019 BNZ_W reg2, 25
68 161 0x4008C0C0 BM_B reg2, reg3
69 161 0x5608C019 BM_AW reg2, 25
70 164 0x480900C0 BMZ_H reg2, reg3
71 164 0x54090019 BMZ_W reg2, 25
72 167 0x400940C0 BNM_B reg2, reg3
73 167 0x56094019 BNM_AW reg2, 25
74 170 0x480980C0 BNMO_H reg2, reg3
75 170 0x54098019 BNMO_W reg2, 25
76 173 0x4009C0C0 BL_B reg2, reg3
77 173 0x5609C019 BL_AW reg2, 25
78 176 0x480A00C0 BLZ_H reg2, reg3
79 176 0x540A0019 BLZ_W reg2, 25
80 179 0x400A40C0 BNL_B reg2, reg3
81 179 0x560A4019 BNL_AW reg2, 25
82 182 0x480A80C0 BNLO_H reg2, reg3
83 182 0x540A8019 BNLO_W reg2, 25
84 185 0x400AC0C0 BO_B reg2, reg3
85 185 0x560AC00F BO_AW reg2, 15
86 188 0x480B00C0 BNO_H reg2, reg3
87 188 0x540B0019 BNO_W reg2, 25
88 190 0x40034000 RET
88 190 0x41034000 RET_P
89 192 0x48034000 RETI
89 192 0x49034000 RETI_P
90 194 0x50034000 RETE
90 194 0x51034000 RETE_P
91 196 0x58034000 RETN
91 196 0x59034000 RETN_P
92 199 0x400380C0 WAIT reg3
93 199 0x440381F4 WAIT 500

206

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

6.4 Pseudo-instructions

The pseudo-instructions are assembly constructs that translate to one or more native in-
structions. Pseudo-instructions that translate to a single native instruction are called single
pseudo-instructions, while pseudo-instructions that translate to more than one native instruc-
tion are called multiple pseudo-instructions.

An implementation can use the pseudo-instructions defined here (or a subset of them),
but can also define and use implementation-specific pseudo-instructions. Not using pseudo-
instructions is also an option.

The next enumeration gives the pseudo-instruction forms which are similar to the forms of
the native instructions. The enumeration is actually continued from the native instruction
forms in Subsection 6.3 on Page 200.

9. <pseudo-mnemonic>

10. <pseudo-mnemonic> <pseudo-arg1>

11. <pseudo-mnemonic> <pseudo-arg1>, <pseudo-arg2>

12. <pseudo-mnemonic>_<option(s)>

13. <pseudo-mnemonic>_<option(s)> <pseudo-arg1>

14. <pseudo-mnemonic>_<option(s)> <pseudo-arg1>, <pseudo-arg2>

The options, if used, are the same as in the non-pseudo forms (see Subsection 6.3.1). On
the other side, the pseudo-arguments can be either the same as the non-pseudo arguments,
or different. In any case, the specification of the arguments follows the same rules as for the
native instructions (see Subsection 6.3.2). The following tokens are used for the arguments
in Tables 70 and 71.

reg<nr> The <nr>-th GPR.

spc<nr> The <nr>-th special register.

dsp<nr> The <nr>-th DSP register.

<addr> An address argument specified as described in Subsection 6.3.2.

<num> A numerical argument specified as described in Subsection 6.3.2.

SP An alias for a GPR which is used as a stack pointer.

TMP An alias for a GPR which is used as a register for storing temporary content.

6.4.1 Single pseudo-instructions

The purpose of single pseudo-instructions is to simplify the representation of the native
instructions or to stress the operation of the native instructions. Table 70 shows the single
pseudo-instructions and their one-to-one translation to native instructions.

LIMM and CALL <num> become multiple pseudo-instructions if the binary width of the numerical
argument is greater than 18 bits (for LIMM) or 20-bits (for CALL), respectively.

207

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Table 70: Single pseudo-instructions

Pseudo-instruction Translation to native Description
LOAD reg<nr>, <addr> MOV reg<nr>, <addr> Load from memory
STOR <addr>, reg<nr> MOV <addr>, reg<nr> Store in memory
PUSH reg<nr> MOV [--SP], reg<nr> Push on stack
POP reg<nr> MOV reg<nr>, [SP++] Pop from stack
COPY reg<nr>, reg<nr2> MOV reg<nr>, reg<nr2> Copy register (REG<-REG)
COPY reg<nr>, spc<nr2> MOV reg<nr>, spc<nr2> Copy register (REG<-SPC)
COPY spc<nr>, reg<nr2> MOV spc<nr>, reg<nr2> Copy register (SPC<-REG)
COPY reg<nr>, dsp<nr2> MOV reg<nr>, dsp<nr2> Copy register (REG<-DSP)
COPY dsp<nr>, reg<nr2> MOV dsp<nr>, reg<nr2> Copy register (DSP<-REG)
NOP MOV reg0, reg0 No operation
LIMM reg<nr>, <num> MOV reg<nr>, <num> Load immediate
INCR reg<nr> ADD reg<nr>, 1 Increment register
DECR reg<nr> SUB reg<nr>, 1 Decrement register
SQR reg<nr> MUL reg<nr>, reg<nr> Square register
NOT reg<nr> NAND reg<nr>, -1 NOT bitwise register
FCLS reg<nr> FCMP reg<nr>, reg<nr> Classify FP number
CALL reg<nr> JMP_AP reg<nr> Call procedure (register)
CALL <num> JMP_AP <num> Call procedure (immediate)
WAIT WAIT 0 Wait indefinitely

6.4.2 Multiple pseudo-instructions

The purpose of multiple pseudo-instructions is to group several native instructions that per-
form a frequently used operation in order to simplify the assembly. Table 71 shows the
multiple pseudo-instructions and their translation to native instructions.

Table 71: Multiple pseudo-instructions

Pseudo-instruction Translation to natives
MEM <addr>, <addr2> LOAD TMP, <addr2>

STOR <addr>, TMP
LOAD spc<nr>, <addr> LOAD TMP, <addr>

COPY spc<nr>, TMP
LOAD dsp<nr>, <addr> LOAD TMP, <addr>

COPY dsp<nr>, TMP
LOAD reg<nr>, <num> LIMM TMP, <num>

LOAD reg<nr>, [TMP]
STOR <addr>, spc<nr> COPY TMP, spc<nr>

STOR <addr>, TMP
STOR <addr>, dsp<nr> COPY TMP, dsp<nr>

STOR <addr>, TMP
STOR <num>, reg<nr> LIMM TMP, <num>

STOR [TMP], reg<nr>
PUSH spc<nr> COPY TMP, spc<nr>

PUSH TMP
PUSH dsp<nr> COPY TMP, dsp<nr>

PUSH TMP
POP spc<nr> POP TMP

COPY spc<nr>, TMP
POP dsp<nr> POP TMP

COPY dsp<nr>, TMP
COPY spc<nr>, spc<nr2> COPY TMP, spc<nr2>

Table 71 continues on next page. . .

208

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

. . . Table 71 continued from previous page
COPY spc<nr>, TMP

COPY dsp<nr>, dsp<nr2> COPY TMP, dsp<nr2>
COPY dsp<nr>, TMP

LIMM reg<nr>, <num> See remark 7 below.
multi-pseudo only if <num> width
> 18 bits (see remark 8 below)
LIMM spc<nr>, <num> LIMM TMP, <num>

COPY spc<nr>, TMP
LIMM dsp<nr>, <num> LIMM TMP, <num>

COPY dsp<nr>, TMP
SIMM <addr>, <num> LIMM TMP, <num>

STOR <addr>, TMP
NOP <num> <num> times MOV reg0, reg0
NEG reg<nr> BZ reg<nr>, 3

NOT reg<nr>
INCR reg<nr>

ABS reg<nr> BNM reg<nr>, 3
NOT reg<nr>
INCR reg<nr>

<ALU_OP> reg<nr>, <num> LIMM TMP, <num>
multi-pseudo only if <num> width <ALU_OP> reg<nr>, TMP
> 14 bits (see remarks 5 and 8 below)
MAD/MSU reg<nr>, reg<nr2>, <num> LIMM TMP, <num>
multi-pseudo only if <num> width MAD/MSU reg<nr>, reg<nr>, TMP
> 8 bits (see remark 8 below)
TB spc<nr>, reg<nr> COPY TMP, spc<nr>
(see remark 9 below) TB TMP, reg<nr>
TB spc<nr>, <num> COPY TMP, spc<nr>
(see remark 9 below) TB TMP, <num>
SB/RB spc<nr>, reg<nr> COPY TMP, spc<nr>

SB/RB TMP, reg<nr>
COPY spc<nr>, TMP

SB/RB spc<nr>, <num> COPY TMP, spc<nr>
SB/RB TMP, <num>
COPY spc<nr>, TMP

JMP/WAIT <num> LIMM TMP, <num>
multi-pseudo only if <num> width JMP/WAIT TMP
> 20 bits (see remark 8 below)
<BRANCH> reg<nr>, <num> LIMM TMP, <num>
multi-pseudo only if <num> width <BRANCH> reg<nr>, TMP
> 14 bits (see remarks 6 and 8 below)
SYSM SB SCR, 0
USRM RB SCR, 0
DBGM SB SCR, 1
NDBG RB SCR, 1
EE SB SCR, 2
DE RB SCR, 2
EECE LIMM TMP, 0

COPY EXC, TMP
SB SCR, 2

DECE LIMM TMP, 0
COPY EXC, TMP
RB SCR, 2

EI SB SCR, 3
Table 71 continues on next page. . .

209

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

. . . Table 71 continued from previous page
DI RB SCR, 3
SYNC SB UCR, 4
CSYN RB UCR, 4
TEXC reg<nr> TB EXC, reg<nr>
TEXC <num> TB EXC, <num>
EACK reg<nr> RB EXC, reg<nr>
EACK <num> RB EXC, <num>
TEXM reg<nr> TB EXM, reg<nr>
TEXM <num> TB EXM, num
MASK reg<nr> SB EXM, reg<nr>
MASK <num> SB EXM, <num>
ENBL <num> RB EXM, reg<nr>
ENBL <num> RB EXM, <num>
SBNK <num> COPY TMP, SCR

SB/RB TMP, 4
(see remark 10 below) SB/RB TMP, 5

SB/RB TMP, 6
SB/RB TMP, 7
COPY SCR, TMP

Several remarks are in order.

1. Options to pseudo-mnemonics can be also applied (e.g., ABS_B reg3).

2. The numerical argument <num> can be also specified by symbolic names, like the
enumeration type in the C programming language.

3. The aliases of the special registers (see Table 12) are used in Table 71.

4. The Translation to natives column in Table 71 may contain single pseudo-instructions
which are to be firstly translated to native instructions according to Table 70. How-
ever, they are left in the column as pseudo-instructions for the sake of clarity and
compactness.

5. The <ALU_OP> token in Table 71 represents an instruction mnemonic (including any
applicable option) of any arithmetic/logic instruction that uses the IMMEDIATE14 field.

6. The <BRANCH> in Table 71 token represents an instruction mnemonic (including any
applicable option) of any branch instruction.

7. For the LIMM reg<nr>, <num> instruction in which the width of <num> is greater
than 18 bits, a sequence of instructions is computed. For example, assuming a 32-bit
GPR width, LIMM_W reg1, 0xAAAABBBB will be translated to:
MOV_H reg1, 0xAAAA
SL_W reg1, 16
MOV_H reg1, 0xBBBB

8. The instructions in Table 71
LIMM reg<nr>, <num>,
<ALU_OP> reg<nr>, <num>,
MAD/MSU reg<nr>, reg<nr2>, <num>,
JMP/WAIT <num> and
<BRANCH> reg<nr>, <num>
are actually multiple pseudo-instructions only if the binary width of the numerical
argument <num> is greater than the width of the immediate field of the instruction, i.e.,
greater than 18, 14, 8, 20 and 14 bits for IMMEDIATE18, IMMEDIATE14, IMMEDIATE8,
OFFSET20 and OFFSET14, respectively.

210

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

9. The TB pseudo-instructions whose destination pseudo-argument is a special register
can be freely executed in user mode since the translation to natives does not involve
writing to special registers.

10. In the SBNK pseudo-instruction the correct SB or RB instruction for the 4-th, 5-th, 6-th
and 7-th bit is determined according to the bit values of <num> at positions 0, 1, 2
and 3, correspondingly.

11. Some characteristics of the assembly are the following:

• all mnemonics and pseudo-mnemonics have two to four letters;

• only FP instructions begin with F;

• only branch instructions begin with B;

• system instructions can also have a .S suffix added to the mnemonic (or pseudo-
mnemonic) for the purposes of visual differentiation of system instructions, e.g.,
COPY SCR, reg3 could be also written as COPY.S SCR, reg3 . Options are
added behind the suffix, e.g., COPY.S_B SCR, reg3 .

12. The following hint can be used for quick decoding of the meaning of the branch
mnemonics. The letters in the mnemonic denote:

B – Branch if

Z – Zero

N – Not

M – MSB

L – LSB

O – all Ones

Generally, care should be taken when using multiple pseudo-instructions that translate into natives
which use the TMP register since the TMP register may be also used in other program routines.

6.5 Examples

Example 94: Procedural transfer and return from procedure

Listings 1 and 2 show code segments illustrating procedural program transfers and returning
from procedures. BL_P investigates the LSB of reg2 and finds that the branch condition
is met (since previously MOV put 0xF in reg2). Thus, a relative program transfer to the
proced location5 is done, jumping the load immediate instructions at Lines 3 and 4. Under
the assumption that the instruction in Line 1 is at address 0x0, the BL_P instruction will
write the CALL RETURN POINTER with 0x2, i.e., with the address of the second instruction
at address 0x8 (Line 3).

Listing 1: Procedural program transfer and return after the procedure call
1 limm reg2, 0xF //load immediate to reg2 (0xF)
2 bl_p reg2, proced //branch is taken
3 limm reg3, 5 // <- return point
4 limm reg4, 100
5

5 proced is a location label which is replaced by a number and is therefore used directly to branch according
to offset by BL_P.

211

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

6 proced:
7 add reg0, 5 //next instruction executed after bl_p
8 add reg1, 3
9 ret //ret returns according to the CRP value after bl_p

After execution of the add instructions in Lines 7 and 8, the RET instruction is executed,
and the INSTRUCTION COUNTER is written with the value of the CALL RETURN POINTER
(0x2). So, the next executed instruction after RET is the load immediate of reg0 in Line 3.
In other words, the order of executed instructions according to their line numbers in Listing 1
is: 1, 2, 7, 8, 9, 3, 4.

If now the RET instruction is changed to RET_P (only the P bit is changed and set to 1, see
Example 88), a return to the call is done, i.e., to the Previous instruction. In Listing 2, only
the RET instruction is changed to RET_P compared to Listing 1.

Listing 2: Procedural program transfer and return at the procedure call
1 limm reg2, 0xF //load immediate to reg2 (0xF)
2 bl_p reg2, proced //branch is taken, here is also the <- return point
3 limm reg3, 5
4 limm reg4, 100
5

6 proced:
7 add reg0, 5 //next instruction executed after bl_p
8 add reg1, 3
9 ret_p //ret returns according to the CRP value after bl_p

Thus, instead of returning at the load immediate instruction at Line 3, RET_P reduces the
value of the CALL RETURN POINTER by one and returns again to the BL_P instruction. The
order of the executed instructions according to line numbers in Listing 2 will be: 1, 2, 7,
8, 9, 2, 7, 8, 9, 2, 7, 8, 9, . . . That is, a loop consisting of the instructions 2, 7, 8 and 9
is formed. If required, one way to break the loop is to change the LSB of reg2 within the
proced procedure. Thus, the branch condition of BL_P will be false and instructions 3 and
4 will be executed.

Example 95: Exception handling

Listing 3 shows a skeleton of exception handling flow. At the beginning, the EXCEPTION
TABLE BASE ADDRESS register (ETB) is set. The label of the address of the exception
handler dispatcher is EXC_dispatcher, which is shifted by 2 places right (divided by 4)
before it is written to the ETB. This has to be done because the INSTRUCTION COUNTER is
automatically overwritten with the value of the ETB when handling of a potent exception is
entered.

Listing 3: Exception handling
1 limm reg0, EXC_dispatcher >> 2
2 copy etb, reg0 //set EXCEPTION TABLE BASE ADDRESS
3 sb reg1, 2000 //raises INVALID OPERATION exception
4 limm reg3, -1
5 limm reg4, -1
6 add_u reg3, reg4 //raises OVERFLOW exception
7 ee //enable exceptions
8 nop // <- return point from exception handlers
9 /*
10 <CONTINUE PROGRAM HERE>
11 */
12

13 EXC_dispatcher:
14 tb exc, 7 //test if INVALID OPERATION exception
15 bl tmp, invalid_op_hndl // ... and branch if so
16 tb exc, 9 //else test if OVERFLOW exception
17 bl tmp, overflow_hndl // ... and branch if so
18 /*
19 <TEST AND BRANCH TO OTHER HANDLERS HERE (PRIORITY DESCENDING)>
20 */
21 rete //theoretically, this instruction should be never executed

212

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

22

23 invalid_op_hndl:
24 /*
25 <HANDLE INVALID OPERATION EXCEPTION HERE>
26 */
27 rb exc, 7 //acknowledge INVALID OPERATION exception
28 rete
29

30 overflow_hndl:
31 /*
32 <HANDLE OVERFLOW EXCEPTION HERE>
33 */
34 rb exc, 9 //acknowledge OVERFLOW exception
35 rete
36

37 /*
38 <OTHER EXCEPTION HANDLERS HERE>
39 */

Assuming that at the beginning none of the exceptions is masked, but they are all disabled
through the ENABLE EXCEPTIONS bit in the SYSTEM CONTROL REGISTER, the SB instruc-
tion at Line 3 raises the INVALID OPERATION exception which is now impotent. Therefore,
its handling will not be immediate, but postponed. The GPR 1 is not changed by the
SB instruction, however, the EXECUTION STATUS, the EXCEPTION INSTRUCTION and the
EXCEPTION REGISTER are updated accordingly. Afterwards, execution continues at Line 4.

Similarly, the ADD_U instruction at Line 6 will raise the OVERFLOW exception which is also
impotent and its handling will be postponed. The GPR 3 is not changed by the ADD_U
instruction, however, the EXECUTION STATUS, the EXCEPTION INSTRUCTION and the EX-
CEPTION REGISTER are updated accordingly. Afterwards, execution continues at Line 7.

The EE pseudo-instruction is translated to SB SCR, 2 (according to Table 71), which is
also a multiple pseudo-instruction finally translated to the following native instructions:

COPY tmp, scr
SB tmp, 2
COPY scr, tmp

where the COPY single pseudo-instruction is simply replaced by MOV according to Table 70,
and tmp is an alias of a GPR (see Subsection 6.4). Thus, the EE instruction is translated
to these three instructions. As soon as the last one is fully executed (COPY scr, tmp),
the exceptions are enabled and the program is immediately transferred to the address of the
exception handler dispatcher EXC_dispatcher which is pointed by the EXCEPTION TABLE
BASE ADDRESS register.

In EXC_dispatcher, each bit of the EXCEPTION REGISTER is tested with the TB instruction
and if the bit is set, a program transfer to the corresponding handler is made with the BL
instruction. In this example, for simplicity, only the INVALID OPERATION and OVERFLOW
exceptions are shown which are exception 7 and 9 according to Table 11. Each exception
handler after handling the exception, acknowledges it by resetting its corresponding bit in
the EXCEPTION REGISTER with the RB instruction. At the end, the RETE instruction of the
handler returns execution to the NOP instruction at Line 8. Thus, the RETE instruction at
Line 21 in the EXC_dispatcher should be theoretically never executed.

Thus, after handling the INVALID OPERATION exception, the EXC_dispatcher is again re-
entered at Line 14 (NOP at Line 8 is not executed yet) for handling the OVERFLOW exception
since the EXCEPTION REGISTER is still not zero. Then, finally execution is continued at
Line 8.

Now, if the branch instructions BL in EXC_dispatcher are made procedural (BL_P), and all
the RETE instructions in the exception handlers are replaced by RET instructions, an improved
version of exception handling is obtained since the EXC_dispatcher is not re-entered but
all raised exceptions are handled sequentially according to their descending priority order.
Listing 4 shows this version.

213

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

Listing 4: Exception handling (improved flow)
1 limm reg0, EXC_dispatcher >> 2
2 copy etb, reg0 //set EXCEPTION TABLE BASE ADDRESS
3 sb reg1, 2000 //raises INVALID OPERATION exception
4 limm reg3, -1
5 limm reg4, -1
6 add_u reg3, reg4 //raises OVERFLOW exception
7 ee
8 nop // <- return point from EXC_dispatcher
9 /*
10 <CONTINUE PROGRAM HERE>
11 */
12

13 EXC_dispatcher:
14 tb exc, 7 //test if INVALID OPERATION exception
15 bl_p tmp, invalid_op_hndl // ... and branch if so
16 tb exc, 9 //else test if OVERFLOW exception
17 bl_p tmp, overflow_hndl // ... and branch if so
18 /*
19 <TEST AND BRANCH TO OTHER HANDLERS HERE (PRIORITY DESCENDING)>
20 */
21 rete
22

23 invalid_op_hndl:
24 /*
25 <HANDLE INVALID OPERATION EXCEPTION HERE>
26 */
27 rb exc, 7 //acknowledge INVALID OPERATION exception
28 ret
29

30 overflow_hndl:
31 /*
32 <HANDLE OVERFLOW EXCEPTION HERE>
33 */
34 rb exc, 9 //acknowledge OVERFLOW exception
35 ret
36

37 /*
38 <OTHER EXCEPTION HANDLERS HERE>
39 */

Now the RETE instruction at Line 21 is executed after the handlers of all raised exceptions
are executed, and program execution continues at Line 8 (the NOP instruction).

Example 96: Wait (indefinitely) for peripheral interrupts

Listing 5 shows an example where the program waits for an interrupt before continuing
execution. At the beginning, the INTERRUPT TABLE BASE ADDRESS register (ITB) is set.
The label of the address of the interrupt handler dispatcher is IRQ_dispatcher, which is
shifted by 2 places right (divided by 4) before it is written to the ITB. This has to be done
because the INSTRUCTION COUNTER is automatically overwritten with the value of the ITB
when handling of a potent interrupt is entered. Then, after some program-specific system
initialization (in system mode) like configuration of the interrupt controller, the interrupt
line is enabled and the system is switched to user mode. Now, after some program-specific
initialization in user mode, the system is instructed to wait for an interrupt, e.g., from an
external IO device.

Listing 5: Wait and handle a single interrupt
1 limm reg0, IRQ_dispatcher >> 2
2 copy itb, reg0 // set INTERRUPT TABLE BASE ADDRESS
3 /*
4 <CONFIGURE INTERRUPT CONTROLLER>
5 <OTHER SYSTEM INITIALIZATION HERE>
6 */
7 ei // enable the interrupt line
8 usrm // switch to user mode
9 /*

214

https://www.ihp-microelectronics.com

6. INSTRUCTION SET

10 <USER INITIALIZATION HERE>
11 */
12 wait //wait for an interrupt
13 nop //<- return point from IRQ_dispatcher
14 /*
15 <CONTINUE PROGRAM HERE>
16 */
17

18 IRQ_dispatcher:
19 /*
20 <INSPECT THE INTERRUPT CONTROLLER WHICH INTERRUPT(S) WERE RAISED AND
21 JUMP TO THE HIGHEST-PRIORITY INTERRUPT>
22 */
23 call IRQ_handler //jump to the corresponding interrupt handler
24 usrm //return to user mode (<- return point from IRQ_handler)
25 reti //return from interrupt handler
26

27 IRQ_handler:
28 /*
29 <HANDLE INTERRUPT HERE>
30 <ACKNOWLEDGE INTERRUPT HERE>
31 */
32 ret //return to the place of the dispatcher call

Thus, the program execution is paused indefinitely, until a potent interrupt is raised. The dis-
patcher IRQ_dispatcher inspects the interrupt controller and selects the (highest-priority)
interrupt. Under the assumption that the interrupt selected for handling has a handler at
address IRQ_handler, the dispatcher calls (jumps procedurally to) that address. After han-
dling and acknowledging the interrupt, the program is transferred back to the dispatcher
after the CALL (jump) instruction, i.e., at the usrm pseudo-instruction at Line 24. Thus,
user mode is switched back since system mode was automatically switched upon entering
interrupt handling, and, on the other side, RETI does not switch back the mode like RETN
and RETE (see Subsection 4.4). Finally, the RETI instruction returns program execution to
the NOP instruction at Line 13, continuing program execution.

Now, if only the RETI instruction at Line 25 is changed to RETI_P (see Listing 6), a different
program flow is obtained, i.e., the program execution is returned again to the WAIT instruction,
waiting again (indefinitely) for the next interrupt.

Listing 6: Wait and handle interrupts
1 limm reg0, IRQ_dispatcher >> 2
2 copy itb, reg0 // set INTERRUPT TABLE BASE ADDRESS
3 /*
4 <CONFIGURE INTERRUPT CONTROLLER>
5 <OTHER SYSTEM INITIALIZATION HERE>
6 */
7 ei // enable the interrupt line
8 usrm // switch to user mode
9 /*
10 <USER INITIALIZATION HERE>
11 */
12 wait //wait for interrupts here (<- return point from IRQ_dispatcher)
13 nop //this (and after this) instruction will not be executed
14

15 IRQ_dispatcher:
16 /*
17 <INSPECT THE INTERRUPT CONTROLLER WHICH INTERRUPT(S) WERE RAISED AND
18 JUMP TO THE HIGHEST-PRIORITY INTERRUPT>
19 */
20 call IRQ_handler //jump to the corresponding interrupt handler
21 usrm //return to user mode (<- return point from IRQ_handler)
22 reti_p //return from interrupt handler
23

24 IRQ_handler:
25 /*
26 <HANDLE INTERRUPT HERE>
27 <ACKNOWLEDGE INTERRUPT HERE>
28 */
29 ret //return to the place of the dispatcher call

215

https://www.ihp-microelectronics.com

List of Acronyms

ALU Arithmetic/Logic Unit

BTU Brandenburgische Technische Universität

DAAD Deutscher Akademischer Austauschdienst

DSP Digital Signal Processing

FEEIT Faculty of Electrical Engineering and Information Technologies

FFT Fast Fourier Transform

FP Floating Point

FPR Floating Point Register

FPU Floating Point Unit

GPR General-Purpose Register

IO Input/Output

IRQ Interrupt Request

ISA Instruction Set Architecture

LSB Least Significant Bit

MMU Memory Management Unit

MPU Memory Protection Unit

MSB Most Significant Bit

NaN Not a Number

NMI Non-Maskable Interrupt

RISC Reduced Instruction Set Computer

216

List of Figures

1 Graphical representations of registers, instructions and bit-fields 13

2 Registers operating in lower machine modes . 14

3 Read/write of data wider than the register file width 14

4 Read/write of wider data in the last register . 15

5 Register circularity . 15

6 Layout of data transfer instructions . 21

7 Layout of arithmetic/logic instructions . 24

8 Layout of control instructions . 27

9 NMI handling . 33

10 Exception handling . 35

11 Interrupt handling . 43

12 Hierarchy of NMI, exceptions and interrupts . 45

13 Multiple exceptions raised simultaneously . 45

14 Postponed execution of exception and interrupt handlers 46

15 Nesting exceptions and interrupts . 47

16 IMPLEMENTATION REGISTER . 49

17 EXECUTION STATUS . 50

18 EXCEPTION INSTRUCTION . 51

19 EXCEPTION REGISTER . 51

20 EXCEPTION MASKS . 52

21 EXCEPTION TABLE BASE ADDRESS . 52

22 INTERRUPT TABLE BASE ADDRESS . 52

23 CORE ID . 53

24 PROCESS ID . 53

25 SYSTEM CONTROL REGISTER . 53

26 NMI RETURN POINTER . 54

27 EXCEPTION RETURN POINTER . 54

28 USER CONTROL REGISTER . 54

29 CALL RETURN POINTER . 55

30 INTERRUPT RETURN POINTER . 56

31 DSP CONFIGURATION REGISTER . 56

32 Move data (MOV) instructions . 58

33 Add (ADD) instructions . 64

34 Subtract (SUB) instructions . 67

217

PEAKTOP Instruction Set Architecture Manual

35 Multiply (MUL) instructions . 70

36 Divide (DIV) instructions . 73

37 Shift left (SL) instructions . 77

38 Shift right (SR) instructions . 80

39 Rotate left (RL) instructions . 83

40 Rotate right (RR) instructions . 86

41 AND bitwise (AND) instructions . 89

42 Negated AND bitwise (NAND) instructions . 92

43 OR bitwise (OR) instructions . 95

44 Exclusive OR bitwise (XOR) instructions . 98

45 Set bit (SB) instructions . 101

46 Reset bit (RB) instructions . 104

47 Test bit (TB) instructions . 107

48 Reverse bits (RVB) instructions . 110

49 FP Add (FADD) instructions . 113

50 FP Subtract (FSUB) instructions . 115

51 FP Multiply (FMUL) instructions . 117

52 FP Divide (FDIV) instructions . 119

53 FP Remainder (FREM) instructions . 121

54 FP Compare (FCMP) instructions . 123

55 FP Square root (FSQR) instructions . 125

56 FP Absolute (FABS) instructions . 127

57 FP Negate (FNEG) instructions . 129

58 FP Round to integer (FRND) instructions . 131

59 FP to integer (FF2I) instructions . 133

60 Integer to FP (FI2F) instructions . 135

61 Extend FP format (FEXT) instructions . 137

62 Squeeze FP format (FSQZ) instructions . 139

63 Multiply-add (MAD) instructions . 141

64 Multiply-subtract (MSU) instructions . 144

65 FP Multiply-add (FMAD) instructions . 147

66 FP Multiply-subtract (FMSU) instructions . 149

67 Jump (JMP) instructions . 151

68 Branch if Zero (BZ) instructions . 154

69 Branch if Not Zero (BNZ) instructions . 157

70 Branch if MSB (BM) instructions . 160

71 Branch if MSB or Zero (BMZ) instructions . 163

72 Branch if Not MSB (BNM) instructions . 166

218

https://www.ihp-microelectronics.com

List of Figures

73 Branch if Not MSB or all Ones (BNMO) instructions 169

74 Branch if LSB (BL) instructions . 172

75 Branch if LSB or Zero (BLZ) instructions . 175

76 Branch if Not LSB (BNL) instructions . 178

77 Branch if Not LSB or all Ones (BNLO) instructions 181

78 Branch if all Ones (BO) instructions . 184

79 Branch if Not all Ones (BNO) instructions . 187

80 Return from procedure (RET) instructions . 190

81 Return from interrupt handler (RETI) instructions 192

82 Return from exception handler (RETE) instructions 194

83 Return from NMI handler (RETN) instructions 196

84 Wait (WAIT) instructions . 198

219

https://www.ihp-microelectronics.com

List of Tables

1 Machine modes . 12

2 Special registers . 16

3 Bit field description of data transfer instructions 22

4 Sign/zero extension and truncation of an immediate value according to MMODE . 24

5 Bit field description of arithmetic/logic instructions 25

6 Bit field description of control instructions . 27

7 Return pointers used by ‘return from routine’ instructions 28

8 Summary of data transfer (MOV) instructions 30

9 Summary of arithmetic/logic instructions . 31

10 Summary of control instructions . 32

11 Exceptions . 35

12 Recommended register aliases and access permissions in user/system mode of a
32-bit wide special register file . 48

13 Arithmetic/logic operator symbols . 57

14 Execution of MOV instructions . 60

15 Execution of ADD instructions . 64

16 Execution of SUB instructions . 67

17 Execution of MUL instructions . 70

18 Execution of DIV instructions . 73

19 Execution of SL instructions . 77

20 Execution of SR instructions . 80

21 Execution of RL instructions . 83

22 Execution of RR instructions . 86

23 Execution of AND instructions . 89

24 Execution of NAND instructions . 92

25 Execution of OR instructions . 95

26 Execution of XOR instructions . 98

27 Execution of SB instructions . 101

28 Execution of RB instructions . 104

29 Execution of TB instructions . 107

30 Execution of RVB instructions . 110

31 Execution of FADD instructions . 113

32 Execution of FSUB instructions . 115

33 Execution of FMUL instructions . 117

220

List of Tables

34 Execution of FDIV instructions . 119

35 Execution of FREM instructions . 121

36 Execution of FCMP instructions . 123

37 Execution of FSQR instructions . 125

38 Execution of FABS instructions . 127

39 Execution of FNEG instructions . 129

40 Execution of FRND instructions . 131

41 Execution of FF2I instructions . 133

42 Execution of FI2F instructions . 135

43 Execution of FEXT instructions . 137

44 Execution of FSQZ instructions . 139

45 Execution of MAD instructions . 141

46 Execution of MSU instructions . 144

47 Execution of FMAD instructions . 147

48 Execution of FMSU instructions . 149

49 Execution of JMP instructions . 151

50 Execution of BZ instructions . 154

51 Execution of BNZ instructions . 157

52 Execution of BM instructions . 160

53 Execution of BMZ instructions . 163

54 Execution of BNM instructions . 166

55 Execution of BNMO instructions . 169

56 Execution of BL instructions . 172

57 Execution of BLZ instructions . 175

58 Execution of BNL instructions . 178

59 Execution of BNLO instructions . 181

60 Execution of BO instructions . 184

61 Execution of BNO instructions . 187

62 Execution of RET instructions . 190

63 Execution of RETI instructions . 192

64 Execution of RETE instructions . 194

65 Execution of RETN instructions . 196

66 Execution of WAIT instructions . 198

67 Formats of numerical arguments . 203

68 Instruction options and arguments . 204

69 Assembly of the example instructions in Subsection 6.1 204

70 Single pseudo-instructions . 208

71 Multiple pseudo-instructions . 208

221

https://www.ihp-microelectronics.com

List of Examples

1 Load halfword from memory with displacement addressing 60

2 Store word in memory with register addressing 61

3 Load doubleword from memory with indexed addressing 61

4 Inter-register transfer from a GPR to a special register 62

5 Load immediate . 62

6 Add register . 65

7 Add immediate . 65

8 Subtract register . 68

9 Subtract immediate . 68

10 Multiply register (word machine mode) . 71

11 Multiply register (halfword machine mode) . 71

12 Multiply immediate . 72

13 Divide register (word machine mode) . 74

14 Divide register (halfword machine mode) . 75

15 Divide immediate . 75

16 Shift left register . 78

17 Shift left immediate . 78

18 Shift right register . 81

19 Shift right immediate . 81

20 Rotate left register . 84

21 Rotate left immediate . 84

22 Rotate right register . 87

23 Rotate right immediate . 87

24 AND bitwise register . 90

25 AND bitwise immediate . 90

26 NAND bitwise register . 93

27 NAND bitwise immediate . 93

28 OR bitwise register . 96

29 OR bitwise immediate . 96

30 XOR bitwise register . 99

31 XOR bitwise immediate . 99

32 Set bit register . 102

33 Set bit immediate . 102

34 Reset bit register . 105

222

List of Examples

35 Reset bit immediate . 105

36 Test bit register . 108

37 Test bit immediate . 108

38 Reverse bits register . 111

39 Reverse bits immediate . 111

40 FP Add . 114

41 FP Subtract . 116

42 FP Multiply . 118

43 FP Divide . 120

44 FP Remainder . 122

45 FP Compare . 123

46 FP Square root . 126

47 FP Absolute . 128

48 FP Negate . 129

49 FP Round to integer . 132

50 FP to integer . 134

51 Integer to FP . 136

52 Extend FP format . 138

53 Squeeze FP format . 140

54 Multiply-add register . 142

55 Multiply-add immediate . 142

56 Multiply-subtract register . 145

57 Multiply-subtract immediate . 145

58 FP Multiply-add . 148

59 FP Multiply-subtract . 150

60 Jump relative according to register . 152

61 Jump absolute according to register . 152

62 Jump relative according to offset . 152

63 Jump absolute according to offset . 153

64 Branch if Zero according to register . 155

65 Branch if Zero according to offset . 155

66 Branch if Not Zero according to register . 158

67 Branch if Not Zero according to offset . 158

68 Branch if MSB according to register . 161

69 Branch if MSB according to offset . 161

70 Branch if MSB or Zero according to register . 164

71 Branch if MSB or Zero according to offset . 164

72 Branch if Not MSB according to register . 167

223

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

73 Branch if Not MSB according to offset . 167

74 Branch if Not MSB or all Ones according to register 170

75 Branch if Not MSB or all Ones according to offset 170

76 Branch if LSB according to register . 173

77 Branch if LSB according to offset . 173

78 Branch if LSB or Zero according to register . 176

79 Branch if LSB or Zero according to offset . 176

80 Branch if Not LSB according to register . 179

81 Branch if Not LSB according to offset . 179

82 Branch if Not LSB or all Ones according to register 182

83 Branch if Not LSB or all Ones according to offset 182

84 Branch if all Ones according to register . 185

85 Branch if all Ones according to offset . 185

86 Branch if Not all Ones according to register . 188

87 Branch if Not all Ones according to offset . 188

88 Return from procedure . 190

89 Return from interrupt handler . 192

90 Return from exception handler . 194

91 Return from NMI handler . 196

92 Wait according to register . 199

93 Wait according to offset . 199

94 Procedural transfer and return from procedure 211

95 Exception handling . 212

96 Wait (indefinitely) for peripheral interrupts . 214

224

https://www.ihp-microelectronics.com

List of Listings

1 Procedural program transfer and return after the procedure call 211

2 Procedural program transfer and return at the procedure call 212

3 Exception handling . 212

4 Exception handling (improved flow) . 214

5 Wait and handle a single interrupt . 214

6 Wait and handle interrupts . 215

225

References

[1] G. J. Popek and R. P. Goldberg. Formal requirements for virtualizable third generation
architectures. Communications of the ACM, pp. 412-421, 1974

[2] J. H. Anderson and M. Moir. Universal Constructions for Multi-object Operations. Pro-
ceedings of the 14-th Annual ACM Symposium on Principles of Distributed Computing,
pp. 184-193, 1995

[3] IEEE Standard for Floating-Point Arithmetic, IEEE Std 754-2008

226

Index

ABS, 208
ADD, 31, 39, 50, 64, 201, 204, 213
AND, 31, 89, 201, 204
ARGUMENT, 27, 28, 154, 155, 157, 158,

160, 161, 163, 164, 166, 167,
169, 170, 172, 173, 175, 176,
178, 179, 181, 182, 184, 185,
187, 188

AUXCODE, 21–23, 25, 27, 29–32, 58–62
BASE, 22, 58, 59, 61, 62
BLZ, 32, 175, 204
BL, 32, 172, 204, 211–213
BMZ, 28, 32, 163, 204
BM, 32, 160, 204
BNLO, 32, 181, 204
BNL, 32, 178, 204
BNMO, 32, 169, 204
BNM, 32, 166, 204
BNO, 28, 32, 187, 204
BNZ, 28, 32, 157, 187, 204
BO, 28, 32, 184, 204
BZ, 28, 32, 154, 204
CALL RETURN POINTER, 16, 18, 28, 48,

55, 151–190, 201, 211, 212
CALL, 207, 208, 215
COPY, 208, 213
CORE ID, 16, 20, 48, 53
CSYN, 208
D SYSTEM BUS ERROR, 35, 42
DBGM, 208
DEBUG MODE EXCEPTION, 35, 36, 53
DEBUG MODE, 36, 53
DECE, 208
DECR, 208
DENORMALIZED, 51, 114
DESTINATION, 22–25, 31, 58, 59, 61–68,

70–75, 77–81, 83, 84, 86, 87,
89, 90, 92, 93, 95, 96, 98, 99,
101, 102, 104, 105, 107, 108,
110, 111, 113–129, 131–150

DE, 208
DIVISION BY ZERO, 35, 38, 50, 74
DIV, 31, 38, 39, 50, 73, 74, 201, 204
DI, 208
DONT BUFFER DATA, 55
DONT BUFFER INSTRUCTIONS, 55
DONT CACHE DATA, 55
DONT CACHE INSTRUCTIONS, 55
DSP CONFIGURATION REGISTER, 16,

48, 56
DSP EXCEPTION 0, 35, 41

DSP EXCEPTION 1, 35, 41
DSP EXCEPTION 2, 35, 42
DSP EXCEPTION 3, 35, 42
EACK, 208
EECE, 208
EE, 208, 213
EI, 208
ENABLE EXCEPTIONS, 36, 44, 45, 53,

194, 196, 213
ENABLE INTERRUPTS, 43–45, 54, 192,

194, 196
ENBL, 208
EQUAL, 51
EXCEPTION INSTRUCTION, 16, 34,

36–42, 48, 51, 66, 79, 103, 114,
120, 140, 148, 213

EXCEPTION MASKS, 16, 36, 46, 48, 52
EXCEPTION REGISTER, 16, 34–42, 44,

45, 48, 51, 66, 79, 103, 114,
120, 140, 148, 213

EXCEPTION RETURN POINTER, 16, 18,
28, 36, 46, 48, 54, 194

EXCEPTION TABLE BASE ADDRESS, 16,
18, 34, 36, 48, 52, 212, 213

EXECUTION STATUS, 16, 19, 25, 34,
38–41, 48, 50, 64–69, 71, 72,
74–76, 78, 79, 81, 84, 85, 87,
88, 90, 91, 93, 94, 96, 97, 99,
100, 102, 103, 105, 106, 108,
109, 111–140, 142, 143,
145–150, 213

FABS, 31, 127, 204
FADD, 31, 39–41, 113, 204
FCLS, 208
FCMP, 31, 51, 123, 204
FDIV, 31, 39–41, 50, 119, 204
FEXT, 26, 31, 137, 204
FF2I, 26, 31, 39–41, 133, 201, 204
FI2F, 26, 31, 40, 41, 135, 201, 204
FMAD, 26, 31, 39–41, 147, 202, 204
FMSU, 26, 31, 39–41, 149, 202, 204
FMUL, 31, 39–41, 117, 204
FNEG, 31, 129, 204
FP DENORMALIZED OPERAND, 35, 40,

113–115, 117, 119, 121, 123,
125, 127, 129, 131, 133, 137,
139, 147, 149

FP DIVISION BY ZERO, 35, 40, 119
FP INEXACT RESULT, 35, 41, 114, 116,

118, 120, 125, 132, 134, 135,
140, 148, 150

227

PEAKTOP Instruction Set Architecture Manual

FP INVALID OPERATION, 35, 39, 50,
113, 115, 117, 119, 121, 123,
125, 127, 129, 131, 133, 137,
139, 147, 149

FP OVERFLOW, 35, 40, 41, 113–120, 125,
131, 132, 134, 135, 139, 140,
148, 150

FP PRECISION, 55
FP ROUNDING MODE, 55
FP UNDERFLOW, 35, 41, 113–118, 120,

125, 126, 132, 134, 135, 140,
148, 150

FREM, 31, 39, 121, 204
FRND, 31, 40, 41, 131, 204
FSQR, 31, 39, 41, 125, 204
FSQZ, 26, 31, 40, 41, 139, 204
FSUB, 31, 39–41, 115, 204
GPR BANK, 37, 54
GREATER THAN, 51, 66, 68, 69, 71, 72,

74–76, 78, 79, 81, 84, 85, 87,
88, 91, 97, 100, 105, 106, 108,
109, 111, 112, 114, 142, 143,
145, 146

I SYSTEM BUS ERROR, 35, 42
I8HI, 24, 25, 141, 143, 144, 146
I8LO, 24, 25, 141, 143, 144, 146
IMMEDIATE14, 24–26, 64–68, 70, 72, 73,

75, 77, 78, 80, 81, 83, 84, 86,
87, 89, 90, 92, 93, 95, 96, 98,
99, 101, 102, 104, 105, 107,
108, 110, 111, 210

IMMEDIATE18, 21, 22, 24, 58, 59, 63,
210

IMMEDIATE8, 24–26, 141, 143, 144, 146,
210

IMPLEMENTATION REGISTER, 16, 48,
49, 202

INCR, 208
INDEX, 22, 23, 30, 58, 59, 61, 62
INEXACT, 51, 114, 120, 140, 148
INFINITY, 51
INSTRUCTION COUNTER, 17, 18, 28, 34,

36, 43, 53, 151–190, 192–199,
201, 212, 214

INTERRUPT RETURN POINTER, 16, 28,
43, 46, 48, 56, 192

INTERRUPT TABLE BASE ADDRESS, 16,
18, 43, 48, 52, 214

INVALID INSTRUCTION, 35, 37
INVALID OPERATION, 35, 38, 49, 50, 60,

102, 103, 105, 108, 111, 213
JMP, 29, 151, 204
LESS THAN, 51, 65, 72, 90, 93, 94, 96,

99, 102, 103, 116, 118, 120,
122, 148, 150

LIMM, 207, 208
LOAD, 208

LOCATION, 27, 28, 151, 152, 154, 155,
157, 158, 160, 161, 163, 164,
166, 167, 169, 170, 172, 173,
175, 176, 178, 179, 181, 182,
184, 185, 187, 188, 198, 199

MAD, 26, 31, 141, 201, 202, 204
MASK, 208
MEM, 208
MMODE, 12, 21–29, 31, 32, 59, 61–65, 67,

68, 70–75, 77, 78, 80, 81, 83,
84, 86, 87, 89, 90, 92, 93, 95,
96, 98, 99, 101, 102, 104, 105,
107, 108, 110, 111, 113, 115,
117, 119, 121, 123, 125, 127,
129, 131, 133–147, 149, 154,
155, 157, 158, 160, 161, 163,
164, 166, 167, 169, 170, 172,
173, 175, 176, 178, 179, 181,
182, 184, 185, 187, 188

MOV, 29, 30, 37, 38, 45, 58–60, 204, 211,
213

MSU, 26, 31, 144, 201, 202, 204
MUL, 31, 50, 70, 201, 204
NAND, 31, 92, 201, 204
NAN, 51, 124
NDBG, 208
NEG, 208
NMI RETURN POINTER, 16, 28, 34, 48,

54, 196
NOP, 208, 213–215
NOT, 208
OFFSET12HI, 21, 22, 58, 59, 61
OFFSET12LO, 21, 22, 58, 59, 61
OFFSET12, 21, 22, 59, 61
OFFSET14, 27, 28, 32, 154, 155, 157,

158, 160, 161, 163, 164, 166,
167, 169–173, 175, 176, 178,
179, 181–185, 187, 188, 210

OFFSET20HI, 27, 151, 153, 198, 199
OFFSET20LO, 27, 151, 153, 198, 199
OFFSET20, 27, 29, 32, 151, 153, 198,

199, 210
OPCODE, 21
OR, 31, 95, 201, 204
OVERFLOW, 26, 35, 39, 50, 65, 66, 68, 74,

77–79, 213
POP, 208
PROCESS ID, 16, 17, 19, 48, 50, 53
PUSH, 208
RB, 31, 38, 50, 104, 204, 208, 211, 213
RETE, 28, 32, 36, 37, 44, 45, 54, 192,

194, 200, 202, 204, 213–215
RETI, 28, 29, 32, 43–45, 56, 192, 202,

204, 215
RETN, 28, 29, 32–34, 37, 44, 45, 54, 192,

196, 200, 202, 204, 215
RET, 28, 32, 55, 190, 202, 204, 212, 213

228

https://www.ihp-microelectronics.com

Index

RL, 31, 83, 204
RR, 31, 86, 204
RVB, 25, 26, 31, 38, 50, 110, 111, 204
SBNK, 208, 211
SB, 31, 38, 50, 101, 204, 208, 211, 213
SIGNALING NAN, 51, 124
SIGN, 51, 66, 72, 85, 93, 94, 96, 99, 105,

106, 112, 114, 116, 122, 130
SIMM, 208
SL, 26, 31, 39, 77, 201, 204
SOURCE2, 25, 26, 141, 142, 144, 145,

147–150
SOURCE, 25, 31, 64, 65, 67, 68, 70, 71,

73–75, 77, 78, 80, 81, 83, 84,
86, 87, 89, 90, 92, 93, 95, 96,
98, 99, 101, 102, 104, 105, 107,
108, 110, 111, 113–124,
141–150

SQR, 208
SR, 26, 31, 80, 201, 204
STOR, 208
SUB, 31, 39, 50, 67, 201, 204
SYNC, 20, 55, 208
SYSM, 208
SYSTEM CONTROL REGISTER, 16, 19,

36, 37, 43–45, 48, 49, 53, 55,
62, 192, 194, 196, 213

SYSTEM INSTRUCTION, 34, 35, 37, 48,
60, 194, 196, 200

SYSTEM MODE, 44, 49, 53, 194, 196
TB, 31, 38, 50, 107, 204, 208, 211, 213
TEXC, 208
TEXM, 208
UNDERFLOW, 41, 50
UNIMPLEMENTED GPR BANK, 35, 37, 54,

60
UNIMPLEMENTED INSTRUCTION, 22, 25,

35, 37, 50, 60, 65, 68, 71, 74,
78, 81, 84, 87, 90, 93, 96, 99,
102, 105, 108, 111, 114, 116,
118, 120, 121, 123, 126, 127,
129, 132, 134, 135, 137, 140,
142, 145, 148, 150, 151, 155,
158, 161, 164, 167, 170, 173,
176, 179, 182, 185, 188, 190,
192, 194, 196, 199

UNIMPLEMENTED OPERATION, 50
UNIMPLEMENTED REGISTER, 35, 38, 49,

60, 65, 68, 71, 74, 78, 81, 84,
87, 90, 93, 96, 99, 102, 105,
108, 111, 114, 116, 118, 120,
121, 123, 126, 127, 129, 132,
134, 135, 137, 140, 142, 145,
148, 150, 151, 155, 158, 161,
164, 167, 170, 173, 176, 179,
182, 185, 188, 199

UNORDERED, 51, 124

USER CONTROL REGISTER, 16, 20, 48,
54, 55

USRM, 208
WAIT, 19, 29, 32, 198, 202, 204, 208, 215
XOR, 31, 98, 201, 204
ZERO, 51, 109

absolute program transfer, 17, 27, 28,
152, 153, 155, 161, 167, 173,
179, 185, 201

address alignment, 17
address argument, 202–204, 207
address space, 16, 48
address translation, 17, 19
addressing mode, 11, 17–19, 58, 203
ALU, 12, 38, 49, 50, 102, 105, 108, 111
ALU width, 12, 38, 49, 50, 102, 105,

108, 111
argument, 12, 27, 29, 32, 38, 50, 154,

157, 160, 163, 166, 169, 172,
175, 178, 181, 184, 187, 200,
202–204, 207, 210, 211

arithmetic left shift, 26, 31, 39, 77, 78,
201

arithmetic right shift, 26, 31, 80, 81, 201
arithmetic shift, 26, 31, 39, 77, 78, 80,

81, 201
arithmetic/logic instruction, 3, 11, 12,

17, 19, 21, 24, 25, 29, 31, 38,
50, 51, 204, 210

arithmetic/logic operation, 12, 25, 50
arithmetic/logic operator symbols, 57
assembly, 3, 4, 11, 29, 57, 200–202, 207,

208, 211
atomic memory transfer, 19, 22, 23, 59,

201

base address, 17, 48, 52, 59, 203
base exception, 46
base register, 17, 21, 22, 30, 58–60, 203
big-endian, 18
branch, 12, 17, 19, 27, 28, 32, 154, 155,

157, 158, 160, 161, 163, 164,
166, 167, 169, 170, 172, 173,
175, 176, 178, 179, 181, 182,
184, 185, 187, 188, 202, 210,
211, 213

caller procedure, 55
circularity, 11, 14, 15, 48, 59, 62, 64, 67,

70, 74, 78, 81, 83, 87, 90, 93,
96, 99, 102, 105, 108, 111, 133,
141, 145

clock cycle, 29, 198, 199
compiler, 3, 11, 18
conditional program transfer, 17, 27, 28,

32, 154, 157, 160, 163, 166,

229

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

169, 172, 175, 178, 181, 184,
187

context-switch, 53
control instruction, 3, 21, 27–29, 32, 50,

204
control inter-dependency, 18, 19

data address, 17, 20, 21, 23
data addressing mode, 17, 58
data cache, 49, 55
data inter-dependency, 18
data transfer, 3, 12, 21–23, 29, 30, 50,

58, 59
data transfer instruction, 3, 12, 21, 22,

29, 30, 50, 58, 59, 204
data transfer width, 29
debug mode, 36, 37, 53
definite pause, 19, 29, 198, 199
disabled exceptions, 33, 34, 36, 43–46,

53, 194, 196
disabled interrupts, 33, 34, 36, 43–45, 54,

192, 194, 196
dispatcher, 33, 36, 44, 45, 52, 212–215
displacement addressing, 17, 22, 58–60,

203
DSP, 11, 13, 16, 25, 26, 34, 35, 38, 41,

42, 50, 56, 202, 207
DSP file, 13, 16, 38, 50
DSP instruction, 26
DSP register, 23, 26, 50, 202, 207
DSP unit, 11, 25, 26, 34, 35, 41, 42, 56
DSP width, 50

effective address, 20, 61, 62
enabled exceptions, 33, 34, 36, 43, 46,

53, 62, 194, 196, 213
enabled interrupts, 33, 34, 36, 43, 44, 54,

62, 192, 194, 196, 214
endianness, 14, 18, 48, 61, 62, 70, 142,

145
error line, 35, 42, 43
exception, 3, 11, 17–19, 22, 25, 26, 28,

29, 33–54, 57, 60, 65, 66, 68,
71, 74, 77–79, 81, 84, 87, 90,
93, 96, 99, 102, 105, 108, 111,
113–121, 123, 125–127, 129,
131–135, 137, 139, 140, 142,
145, 147–151, 155, 158, 161,
164, 167, 170, 173, 176, 179,
182, 185, 188, 190, 192, 194,
196, 199, 200, 212–214

exception acknowledgement, 36, 44, 51,
213

exception handler, 18, 19, 28, 32, 33, 35,
36, 44–46, 51, 54, 194, 200,
212–214

exception handler dispatcher, 33, 36, 44,
45, 52, 212, 213, 215

exception handling, 3, 17, 18, 29, 34–36,
44–46, 50–52, 66, 79, 114, 194,
212–214

exception nesting, 46, 47
exceptional instruction, 18, 29, 34, 37–42

FFT, 26
flag, 19, 50, 65, 66, 68, 69, 71, 72,

74–76, 78, 79, 81, 84, 85, 87,
88, 90, 91, 93, 94, 96, 97, 99,
100, 102, 103, 105, 106, 108,
109, 111, 112, 114, 116, 118,
120, 122, 124, 130, 140, 142,
143, 145, 146, 148, 150

FP, 12, 15, 16, 26, 35, 38–41, 50, 51,
113–140, 147–150, 201, 202,
211

FP format, 26, 40, 49, 113–132,
134–140, 147–150, 201

FP instruction, 12, 15, 16, 26, 31, 35,
38–41, 50, 51, 202, 211

FP machine mode, 12, 15, 26, 113, 115,
117, 119, 121, 123, 125, 127,
129, 131, 137, 139, 147, 149

FP number, 40, 50, 51, 113, 115, 117,
119, 121, 123, 125, 127, 129,
131–134, 137–140, 147, 149

FP operation, 40, 41, 51, 202
FP precision, 12, 16, 55
FP rounding mode, 40, 55, 131, 133
FP width, 26, 113, 115, 117, 119, 121,

125, 127, 129, 131, 135, 137,
139, 140, 147, 149

FPR, 13, 15, 16
FPR file, 13, 15, 16
FPU, 11, 12, 15, 16, 26, 49
FPU type, 49
frame pointer, 18
fused multiply-add, 25, 26, 31, 141, 142,

147, 148, 201, 202
fused multiply-subtract, 25, 26, 31, 144,

145, 149, 150, 201, 202

GPR, 11–18, 22, 23, 25–29, 34, 37–41,
49, 50, 54, 58, 59, 61–68,
70–75, 77–81, 83, 84, 86, 87,
89, 90, 92, 93, 95, 96, 98, 99,
101, 102, 104, 105, 107, 108,
110–189, 198–200, 202, 207,
210, 213

GPR bank, 37, 54, 60
GPR file, 13, 15, 16, 18, 23, 38, 58, 59,

61–63, 65, 68, 71–75, 78, 81,
84, 87, 90, 93, 96, 99, 102, 105,
108, 111, 112, 114, 116, 118,
120, 122, 124, 126, 128, 130,
132, 134, 136, 138, 140, 142,
143, 145, 146, 148, 150, 152,

230

https://www.ihp-microelectronics.com

Index

153, 155, 158, 161, 164, 165,
167, 170, 171, 173, 176, 177,
179, 182, 183, 185, 186, 188,
199, 202

GPR width, 12, 14–16, 49, 62, 64, 67,
70, 71, 74, 77, 78, 80, 81, 83,
86, 87, 90, 93, 96, 99, 101, 102,
104, 105, 107, 108, 111, 113,
115, 117, 119, 121, 125, 127,
129, 131, 133, 135, 137, 139,
141, 142, 144, 145, 147, 149,
210

hardware-raised exception, 34–36, 41, 42,
51

IEEE Std 754-2008 standard, 26, 39, 114,
116, 118, 120, 122, 124, 126,
128, 130, 132, 134, 136, 138,
140, 148, 150

implementation, 3, 11–13, 15–19, 22, 25,
37, 38, 48–50, 60, 65, 68, 71,
74, 78, 81, 84, 87, 90, 93, 96,
99, 102, 105, 108, 111, 114,
116, 118, 120, 121, 123, 126,
127, 129, 132, 134, 135, 137,
140, 142, 145, 148, 150, 151,
155, 158, 161, 164, 167, 170,
173, 176, 179, 182, 185, 188,
190, 192, 194, 196, 199, 201,
202, 207

implementation-specific, 13, 16, 34, 41,
42, 51, 52, 56, 207

impotent exception, 33–35, 37–43, 45,
51, 52, 65, 66, 79, 114, 116,
118, 120, 126, 132, 134, 135,
140, 148, 150, 213

impotent interrupt, 33
indefinite pause, 19, 29, 198, 199, 214,

215
index register, 17, 21–23, 30, 58–60, 203
indexed addressing, 17, 22, 23, 58–61,

203
inexact result, 114, 116, 118, 120, 126,

132, 134, 135, 140, 148, 150
instruction address, 17, 28, 29, 151, 155,

158, 161, 164, 167, 170, 173,
176, 179, 182, 185, 188, 190,
192, 194, 196

instruction cache, 49, 55
instruction fetch, 18, 28, 29, 42
instruction option, 12, 18, 29, 200–204,

207, 210, 211
instruction-raised exception, 34, 35,

37–41
integer format, 26, 40, 133–136, 201
integer machine mode, 12, 15, 26, 59,

64, 67, 70, 73, 77, 80, 83, 86,

89, 92, 95, 98, 101, 104, 107,
110, 133, 135, 141, 144, 154,
157, 160, 163, 166, 169, 172,
175, 178, 181, 184, 187

integer unit, 26
integer width, 26, 154, 157, 160, 163,

166, 169, 172, 175, 178, 181,
184, 187

inter-dependency, 18, 19
inter-register transfer, 15, 16, 21, 23, 26,

29, 30, 37, 38, 45, 55, 58–60,
62, 200, 204

inter-register transfer instruction, 15, 16,
23, 29, 30, 37, 38, 45, 55,
58–60, 62, 200, 204

interrupt, 3, 11, 17–19, 28, 29, 33, 34,
36, 43–48, 52, 54, 192, 194,
196, 198, 199, 214, 215

interrupt acknowledgement, 43, 44, 215
interrupt controller, 33, 43, 44, 214, 215
interrupt handler, 18, 28, 32, 33, 43–46,

56, 192, 214, 215
interrupt handler dispatcher, 33, 52, 214,

215
interrupt handling, 3, 17, 18, 29, 43–46,

52, 192, 214, 215
interrupt line, 33, 34, 36, 43–45, 192,

194, 196, 214
interrupt nesting, 46, 47
interrupt request, 43
interrupt-requesting device, 43, 44
invalid instruction, 37
IO, 17, 19, 33, 42, 214
IO device, 17, 33, 42, 214
IRQ, 43
ISA, 3, 4, 11–14, 16, 18, 19, 21, 23, 34,

57, 201

little-endian, 14, 18, 48, 61, 62, 70, 142,
145

load from memory, 11, 19, 22, 23, 58–62,
138, 203, 204, 208

load immediate, 17, 21, 22, 24, 30,
58–60, 62, 201, 202, 204, 208,
211, 212

load-locked, 19, 23, 59
logic left shift, 26, 31, 39, 77, 78, 201
logic right shift, 26, 31, 80, 81, 201
logic shift, 26, 31, 39, 77, 78, 80, 81, 201
LSB, 13, 14, 17, 21, 28, 59, 102, 105,

108, 111, 141, 144, 151,
172–183, 198, 211, 212

machine mode, 11–17, 19, 22, 25–28, 38,
39, 49, 50, 58, 59, 62, 64–68,
70, 71, 73–75, 77, 78, 80, 83,
86, 89, 92, 95, 98, 101, 102,
104, 105, 107, 108, 110, 111,

231

https://www.ihp-microelectronics.com

PEAKTOP Instruction Set Architecture Manual

113, 115, 117, 119, 121, 123,
125, 127, 129, 131, 133, 135,
137, 139, 141, 144, 147, 149,
154, 157, 160, 163, 166, 169,
172, 175, 178, 181, 184, 187,
200, 201, 203

masked exception, 33, 36, 37, 46, 52, 213
masked interrupt, 33, 43
maximal FP format, 137, 139
maximal GPR width, 16
maximal integer, 35, 39, 66, 133
maximal number of registers, 13–15
maximal transfer width, 22, 49
memory management unit, 17, 19, 42
memory protection unit, 17, 19, 42
memory transfer, 17, 21–23, 30, 58–60,

201, 203, 204
memory transfer instruction, 17, 22, 30,

58–60, 201, 203, 204
memory-mapped IO, 17
minimal GPR width, 16
minimal integer, 39, 74
MMU, 17, 19, 42
mnemonic, 11, 29–32, 58, 200, 210, 211
MPU, 17, 19, 42
MSB, 13, 21, 22, 24–26, 28, 39, 59,

77–80, 82, 102, 105, 108, 111,
141, 144, 151, 160–171, 198,
211

multiple pseudo-instruction, 207, 208,
210, 211, 213

multiprocessing, 11, 19, 20, 23, 53, 55

NaN, 39, 40, 51, 113, 115, 117, 119, 121,
123, 125, 127, 129, 131, 133,
137, 139, 147, 149

native instruction, 11, 30, 57, 207, 208,
210, 211, 213

natural machine mode, 11–13, 201, 203
nested exception, 46, 47
nested interrupt, 46, 47
nested NMI, 46, 47
nested procedure, 55
nesting, 46
NMI, 17–19, 28, 29, 33–36, 43–47, 51,

52, 196, 198–200
NMI acknowledgement, 34, 51
NMI handler, 18, 28, 32, 34, 44–46, 51,

54, 196, 200
NMI handling, 17, 18, 29, 33, 34, 44, 46,

51, 52, 196
NMI line, 33, 35
non-maskable interrupt, 33
numerical argument, 202–204, 207, 210

operating mode, 19, 34, 36, 38, 43, 48,
53, 194, 196

operating system, 3, 11, 19, 53, 200

orthogonality, 11, 18
out-of-order execution, 19

pause, 19, 27, 29, 32, 198, 199, 214, 215
pause period, 19, 29, 198, 199
PEAKTOP, 3, 4, 11–13, 16, 18, 19, 21,

34, 57, 58, 200, 201
physical address, 17, 48
physical address space, 48
physical address width, 49
portability, 18, 48, 201
post-decrement, 17, 23, 57, 59, 203
post-increment, 17, 23, 57, 59, 203
postponed handling, 45, 46, 213
potent exception, 19, 33–36, 43–46, 50,

66, 79, 114, 212
potent interrupt, 19, 33, 34, 36, 43, 44,

46, 198, 214, 215
pre-decrement, 17, 23, 57, 59, 203
pre-increment, 17, 23, 57, 59, 61, 62, 203
procedural program transfer, 27, 28, 55,

152, 153, 155, 156, 158, 159,
161, 162, 164, 165, 167, 168,
170, 171, 173, 174, 176, 177,
179, 180, 182, 183, 185, 186,
188, 189, 202, 211

procedure, 18, 33, 35, 43, 190, 211, 212
process, 19, 53
processor state, 33, 35, 42, 43
program compatibility, 18, 202
program routine, 33, 35, 43
program transfer, 17, 18, 27, 28, 32, 34,

36, 43, 55, 151–155, 157, 158,
160, 161, 163, 164, 166, 167,
169, 170, 172, 173, 175, 176,
178, 179, 181, 182, 184, 185,
187, 188, 201, 202, 211, 213,
215

programming language, 4, 210
pseudo-argument, 207, 211
pseudo-instruction, 11, 30, 207, 208, 210,

211, 213, 215
pseudo-mnemonic, 29, 30, 210, 211

register addressing, 17, 22, 23, 58–61,
203

register alias, 48, 202, 207, 210
register argument, 202, 204
register circularity, 11, 14, 15, 48, 59, 62,

64, 67, 70, 74, 78, 81, 83, 87,
90, 93, 96, 99, 102, 105, 108,
111, 133, 141, 145

register file, 11, 13–16, 18, 23, 38, 48,
58, 59

register file width, 14
register name, 13, 48, 202
register number, 13–15, 23
register state, 13

232

https://www.ihp-microelectronics.com

Index

regularity, 11, 13, 22
relative program transfer, 17, 28, 152,

155, 158, 161, 164, 167, 170,
173, 176, 179, 182, 185, 188,
211

reset, 18, 19, 29, 35, 36, 43–45, 49, 53,
198, 199

reset state, 49
return from routine, 18, 27–29, 32, 46,

190, 192, 194, 196, 202, 211
return pointer, 16, 18, 28, 29, 34, 36, 43,

46, 48, 54–56, 151, 154, 155,
157, 158, 160, 161, 163, 164,
166, 167, 169, 170, 172, 173,
175, 176, 178, 179, 181, 182,
184, 185, 187, 188, 190, 192,
194, 196, 201

RISC, 11
routine, 18, 20, 27–29, 44, 46, 190, 192,

194, 196, 202, 211

scientific ISA, 11
second complement, 12
sign-extended immediate, 59, 89, 92, 95,

98
single pseudo-instruction, 207, 208, 210,

213
skipped instruction, 34, 35, 37, 38, 40
special register, 11, 16, 17, 19, 20, 33,

37, 38, 48, 49, 57, 60, 62, 64,
67, 71, 74, 78, 81, 84, 87, 90,
93, 96, 99, 102, 105, 108, 111,
113, 115, 117, 119, 121, 123,
125, 127, 129, 131, 133, 135,
137, 139, 142, 145, 147, 149,
200, 202, 207, 210, 211

special register file, 13, 16, 48, 62, 65,
68, 71, 72, 74, 75, 78, 81, 84,

87, 90, 93, 96, 99, 102, 105,
108, 111, 112, 114, 116, 118,
120, 122, 124, 126, 128, 130,
132, 134, 136, 142, 143, 145,
146, 148, 150

special register file width, 48
stack pointer, 18, 207
store in memory, 11, 19, 22, 23, 58, 59,

61, 140, 204, 208
store-conditional, 19, 20, 23, 59
sync line, 20, 55
synchronization, 20, 23, 55
system instruction, 19, 34, 36, 37, 44, 60,

192, 194, 196, 200, 211
system mode, 19, 34, 36, 38, 43, 44, 48,

49, 53, 60, 194, 196, 200, 214,
215

system reset, 18, 49, 198, 199

temporary register, 207, 208, 211
transfer width, 22
two-address machine, 12

unconditional program transfer, 17, 27,
28, 32, 151, 202

undefined execution state, 35, 42
user mode, 19, 34, 37, 44, 48, 49, 53, 55,

60, 62, 192, 194, 196, 200, 211,
214, 215

virtual address, 17, 19, 50, 53
virtual address space, 16
virtual address width, 50

wait timer, 29, 198, 199
wait timer value, 29, 198, 199

zero-extended immediate, 59, 89, 92, 95,
98

233

https://www.ihp-microelectronics.com

	Preface
	Contents
	INTRODUCTION
	ARCHITECTURAL PROPERTIES
	Machine modes
	Natural machine mode
	FP machine mode
	Regularity

	Register files
	Enumeration, labeling and representation
	Registers operating in lower machine modes
	Circularity
	GPR file
	Special register file
	DSP, FPR and implementation-specific register files

	Memory addressing
	Address space
	Data addressing modes
	Instruction addressing
	Address alignment
	Endianness
	Orthogonality

	Program flow
	INSTRUCTION COUNTER
	Data and control inter-dependencies
	Pausing execution

	Operating system support
	Multiprocessing support

	BINARY LAYOUT
	Data transfer instructions
	Memory transfer
	Inter-register transfer
	Load immediate

	Arithmetic/logic instructions
	Integer unit
	Floating point unit
	DSP unit

	Control instructions
	Program transfer
	Return from routine
	Pause instruction execution

	Summary

	EXCEPTIONS AND INTERRUPTS
	Non-Maskable Interrupt (NMI)
	Exceptions
	DEBUG MODE EXCEPTION
	INVALID INSTRUCTION
	SYSTEM INSTRUCTION
	UNIMPLEMENTED GPR BANK
	UNIMPLEMENTED INSTRUCTION
	UNIMPLEMENTED REGISTER
	INVALID OPERATION
	DIVISION BY ZERO
	OVERFLOW
	FP INVALID OPERATION
	FP DENORMALIZED OPERAND
	FP DIVISION BY ZERO
	FP OVERFLOW
	FP UNDERFLOW
	FP INEXACT RESULT
	DSP EXCEPTION 0
	DSP EXCEPTION 1
	DSP EXCEPTION 2
	DSP EXCEPTION 3
	I SYSTEM BUS ERROR
	D SYSTEM BUS ERROR

	Interrupts
	Handling mechanism
	Hierarchy and priority
	Postponed handling
	Nesting

	SPECIAL REGISTERS
	IMPLEMENTATION REGISTER
	EXECUTION STATUS
	EXCEPTION INSTRUCTION
	EXCEPTION REGISTER
	EXCEPTION MASKS
	EXCEPTION TABLE BASE ADDRESS
	INTERRUPT TABLE BASE ADDRESS
	CORE ID
	PROCESS ID
	SYSTEM CONTROL REGISTER
	NMI RETURN POINTER
	EXCEPTION RETURN POINTER
	USER CONTROL REGISTER
	CALL RETURN POINTER
	INTERRUPT RETURN POINTER
	DSP CONFIGURATION REGISTER

	INSTRUCTION SET
	Detailed instruction specification
	MOV – Move data
	ADD – Add
	SUB – Subtract
	MUL – Multiply
	DIV – Divide
	SL – Shift left
	SR – Shift right
	RL – Rotate left
	RR – Rotate right
	AND – AND bitwise
	NAND – Negated AND bitwise
	OR – OR bitwise
	XOR – Exclusive OR bitwise
	SB – Set bit
	RB – Reset bit
	TB – Test bit
	RVB – Reverse bits
	FADD – FP Add
	FSUB – FP Subtract
	FMUL – FP Multiply
	FDIV – FP Divide
	FREM – FP Remainder
	FCMP – FP Compare
	FSQR – FP Square root
	FABS – FP Absolute
	FNEG – FP Negate
	FRND – FP Round to integer
	FF2I – FP to integer
	FI2F – Integer to FP
	FEXT – Extend FP format
	FSQZ – Squeeze FP format
	MAD – Multiply-add
	MSU – Multiply-subtract
	FMAD – FP Multiply-add
	FMSU – FP Multiply-subtract
	JMP – Jump
	BZ – Branch if Zero
	BNZ – Branch if Not Zero
	BM – Branch if MSB
	BMZ – Branch if MSB or Zero
	BNM – Branch if Not MSB
	BNMO – Branch if Not MSB or all Ones
	BL – Branch if LSB
	BLZ – Branch if LSB or Zero
	BNL – Branch if Not LSB
	BNLO – Branch if Not LSB or all Ones
	BO – Branch if all Ones
	BNO – Branch if Not all Ones
	RET – Return from procedure
	RETI – Return from interrupt handler
	RETE – Return from exception handler
	RETN – Return from NMI handler
	WAIT – Wait

	System instructions
	Assembly conventions
	Instruction options
	Instruction arguments
	Summary

	Pseudo-instructions
	Single pseudo-instructions
	Multiple pseudo-instructions

	Examples

	List of Acronyms
	List of Figures
	List of Tables
	List of Examples
	List of Listings
	References
	Index

