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ABSTRACT Chronic Obstructive Pulmonary Disease (COPD) is a life-threatening lung disease and a major
cause of morbidity and mortality worldwide. Although a curative therapy has yet to be found, permanent
monitoring of biomarkers that reflect the disease progression plays a pivotal role for the effective manage-
ment of COPD. The accurate examination of respiratory tract fluids like saliva is a promising approach for
staging disease and predicting its upcoming exacerbations in a Point-of-Care (PoC) environment. However,
the concurrent consideration of patients’ demographic and medical parameters is necessary for achieving
accurate outcomes. Therefore, Machine Learning (ML) tools can play an important role for analyzing
patient data and providing comprehensive results for the recognition of COPD in a PoC setting. As a result,
the objective of this research work was to implement ML tools on data acquired from characterizing saliva
samples of COPD patients and healthy controls as well as their demographic information for PoC recognition
of the disease. For this purpose, a permittivity biosensor was used to characterize dielectric properties
of saliva samples and, subsequently, ML tools were applied on the acquired data for classification. The
XGBoost gradient boosting algorithm provided a high classification accuracy and sensitivity of 91.25%
and 100%, respectively, making it a promising model for COPD evaluation. Integration of this model on a
neuromorphic chip, in the future, will enable the real-time assessment of COPD in PoC, with low cost, low
energy consumption, and high patient privacy. In addition, constant monitoring of COPD in a near-patient
setup will enable the better management of the disease exacerbations.

INDEX TERMS COPD classification, AI in medicine, personalized healthcare, permittivity spectroscopy,
precision diagnostic, saliva characterization, medical machine learning, XGBoost.

I. INTRODUCTION
Chronic Obstructive Pulmonary Disease (COPD) is a life-
threatening lung disease, causing breathing difficulties in
patients due to airflow constraints in lungs [1]. It is a
progressive disease, developing slowly over time, while its
symptoms often worsen. COPD is one of the main lead-
ing causes of death worldwide, affecting millions of people
and causing a considerable economical burden on healthcare
systems [2]. The major cause of COPD is the long-term
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exposure of subjects to either tobacco smoke (being an
active–secondhand smoker) or other lung-irritants such as
air pollution, chemical fumes, or industrial dust. In some
scarce cases, however, a genetic condition called alpha-1
antitrypsin deficiency may also contribute to lung damages
and COPD [1]. The main symptoms of COPD are shortness
of breath, chronic coughs, wheezing, chest tightness, and
abnormal sputum (mucus) production. Although an absolute
cure for reversing caused lung damages has yet to be found,
an early-stage diagnosis has shown to have a pivotal role for
the effective management of COPD [3]. COPD, as one of
the most prevalent lung diseases worldwide, runs a perfidious
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course with an often long-lasting undiagnosed initial phase.
Clinical treatment approaches for COPD result in repeated
clinical visits and extended hospitalization for patients. This
fact, apart from being an economical burden for health-
care infrastructures, drastically impacts patients’ life qual-
ity. To address this issue, contemporary healthcare systems
have encouraged the development of personalized solutions,
through which patients can receive appropriate medical assis-
tance in an outpatient clinic or a home-care environment [4].

The clinical ground truth methodology for diagnosing
COPD is comprehensively reported within the GOLD guide-
lines [5]. Among available screening and detection methods,
spirometry pulmonary function test is the most rudimentary
and systematic method in primary care for the diagnosis
of COPD. Along this test, the lung capacity of patients is
measured during breathing in–out cycles [6]. According to a
study by Haroon et al., COPD is widely under-diagnosed due
to the limited sensitivity of the spirometry test in the range
of 64.5–79.9% [7]. As a result, examining mucin, present in
sputum or saliva samples, provides more reliable information
on the course of the disease which can be affected by bacterial
infections [6]. Sputum and saliva are bothmucosal secretions,
their composition is affected by changes in health conditions
of individuals suffering from inflammatory lung diseases
such as COPD [4], [8]. Alterations in the mucin production
during the course of COPD, which impacts the viscosity of
mucosal secretions, has long been studied [9]. In addition,
the expression of aquaporin-5 has found to be decreased
in some COPD patients, affecting dielectric properties of
their respiratory tract fluids [10]. Main contents of sputum,
produced by lungs, are mucin, water, epithelial cells of the
airway mucosa, and salt (in physiological concentrations).
Salt concentrations in epithelial lining fluid was investigated
by Effros et al., indicating its effect on dielectric properties
of the fluid [11]. However, a direct correlation of dielectric
properties with COPD was not stated in their work [11].
Therefore, investigating dielectric and supramolecular prop-
erties of sputum can provide useful information for stag-
ing COPD [12]. In other words, water content variations,
at different stages of the disease, affects the supramolecu-
lar properties of mucin gels [12]. Upon the entry of water
into mucin’s gels matrix, there is a considerable amount of
proton release resulting from cations exchange (particularly
Ca and Na), which drastically changes the dielectric proper-
ties of mucin samples [12]. In other words, sputum samples
collected from COPD patients are expected to have different
permittivity characteristics compared to samples of Healthy
Controls (HC), which could be used as a biomarker for the
assessment of the disease in a Point-of-Care (PoC) environ-
ment [13], [14]. However, due to complexities of obtaining
sputum samples non-invasively on a daily-basis, saliva could
be an alternative with better patient compliance for PoC
applications [15].

Although the dielectric characterization of saliva samples
can potentially shine a spotlight onto the detection of COPD

in a PoC setting, the comprehensive diagnosis of the disease
requires a sophisticated algorithm by concurrent consider-
ation of all essential parameters related to a patient’s per-
sonal and medical backgrounds [14]. These demographic
parameters include, but are not limited to, age, gender,
weight, cytokine level, pathogen load, and the smoking back-
ground of subjects [14]. Therefore, without analytical insight,
information obtained on one specific parameter has a low
clinical value for the disease diagnosis [16]. As a result,
implementation of Machine Learning (ML) tools is crucial
for the conversion of collected raw data from subjects into
meaningful clinical–diagnostic information [17]–[19]. Fur-
thermore, advanced ML analytics could make the manage-
ment of COPD in PoC applications more efficient. Therefore,
the novel hypothesis of this work was to scrutinize whether
dielectric properties of saliva change upon the development
of a COPD; and whether ML tools, applied on this informa-
tion together with demographic parameters, can identify the
diagnostic status of patients.

Among various ML classifiers, Artificial Neural Networks
(ANNs), Support Vector Machines (SVMs), principal com-
ponent analysis, Logistic Regression (LR), eXtreme Gradient
Boosting (XGBoost) algorithm, and Naïve Bayes (NB) are
among the most common models used for the classification
of medical data [20]–[23]. Although ANNs generally provide
acceptable performance for classifying data, their sensitivity
to outliers— especially in small datasets—causes overfitting
issues, thus degrading their accuracy [24]. On the other hand,
non-perceptron classifiers such as XGBoost or SVM are
less prone to overfitting and less sensitive to outliers, thus
performing notably better in applications with a small-sized
dataset. In addition, unlike ANNs, non-perceptron classifiers
are computationally more efficient since their computational
complexity does not depend on the dimension of the input
space, making them an appropriate tool for edge computing
applications [24]. Therefore, energy–computation efficiency
of non-perceptron classifiers make them a suitable choice for
medical data classifications in PoC applications.

The objective of this work was to apply machine learning
tools on data obtained from characterizing saliva samples
of COPD patients and HC for diagnostic classifications.
This study is the extension of our previous work, which
introduced a neuromorphic-compatible ANN for COPD
pattern recognition using synthesized data [25]. However,
the current study deals with real data collected from COPD
patients and HC in a clinical setting. The high perfor-
mance of the XGBoost algorithm for classifying saliva sam-
ples, with relatively a small number of data points, and its
less susceptibility to overfitting made it an adequate tool
for clinical analytics in this work. Although the presented
research in this work targets the PoC detection of COPD
in a personalized care scheme, introduced ML techniques
can be used in the future for the enhancement of conven-
tional clinical-based standard of care methods available for
diagnosing COPD.

168054 VOLUME 8, 2020



P. Soltani Zarrin et al.: In-Vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using ML Tools

II. METHODS AND MATERIALS
Two groups of saliva samples, 160 for HC and 79 for COPD
patients, were collected in the frame of a joint research
project Exasens at the Research Center Borstel, BioMate-
rialBank Nord (Borstel, Germany). Patient materials were
collected between November 2016 and February 2018 and
were anonymized prior to accessibility. The sampling pro-
cedure of saliva samples was approved by the local ethics
committee of the University of Luebeck under the approval
number AZ-16-167 and a written informed consent was
obtained from all patients. COPD subjects of the study
were patients who had been previously hospitalized in the
pulmonary clinic Borstel (Borstel, Germany) and several
outpatients. Therefore, the inclusion criterion for enrolling
patients into the COPDgroupwas a diagnosed COPDwithout
acute respiratory infection, with respect to the GOLD guide-
lines [5]. Inclusion criteria for the healthy group were the
absence of a diagnosed COPD or asthma affections. Demo-
graphic information—including gender, age, smoking status
(smoker, ex-smoker, and non-smoker), the date of probing,
sampling conditions, and special notes regarding the contam-
ination of saliva with blood—were collected at the recruit-
ment, based on patients’ self-declarations. Saliva sampling
(5 ml) after mouth wash was induced using a chewing gum
(GCCorporation, Leuven, Belgium). Collected samples were
aliquoted and snap frozen in liquid nitrogen immediately
after receipt and were stored at −80 ◦C. To avoid frequent
freeze–thaw cycles, samples were thawed and transferred
onto the sensor immediately before dielectric measurements,
as recommended in standard operating procedures for keep-
ing the integrity of human biospecimens such as saliva [26].
Although effects of freezing and de-freezing of saliva samples
on their dielectric properties have yet to be investigated, all
characterized samples in this work have exactly gone through
a one-freeze–one-thaw cycle. As a result, possible effects
of freezing samples have not been considered as a model
variable for our ML models. Measurements on dielectric
properties of saliva samples were conducted in-vitro at the
Research Center Borstel, Leibniz lung center.

A. DIELECTRIC CHARACTERIZATION OF SALIVA SAMPLES
Prior to measurements, saliva samples of COPD and HC
(40 samples for each group) were defrozen and centrifuged
for removing insoluble matter. The centrifugation process
was conducted using a commercialized centrifuge (Eppen-
dorf centrifuge 5415R, Eppendorf Inc., Hamburg, Germany)
at 4 ◦C and 4000 RPM for a duration of 5 minutes. As shown
in Fig. 1, a previously developed permittivity biosensor (IHP
Microelectronics, Frankfurt Oder, Germany) was used for
the dielectric characterization of saliva samples [13], [14].
The output of the biosensor was extracted into an Excel file
using a user-friendly data acquisition (PLX-DAQ) interface,
as demonstrated in Fig. 1. It is noteworthy that the calibration
inconsistency and the performance degradation, caused by
frequent cleaning cycles, impairs the long-term functioning

FIGURE 1. (a) Measurement setup demonstrating the biosensor output
for real–imaginary parts of the permittivity of saliva samples; (b) the
centrifugation process for saliva samples collected from healthy controls
and COPD patients.

of the developed biosensor, thus restricting the sample popu-
lation size which can be characterized in stable and reliable
circumstances. Consequently, only 80 samples out of the
available 239 were dielectrically characterized in this study.
As extensively reported in the previous work, the developed
biosensor is capable of measuring both real and imaginary
parts of the permittivity of a material-under-test [13], [14].
From a physical point of view, the real part of the permittivity
represents a material’s energy absorption (dielectric proper-
ties) in an interaction with an electromagnetic field; while the
imaginary part of it is an indicator of a material’s energy loss
(conductivity properties). After the sample preparation pro-
cess, a droplet of 5µLwas taken and located over the sensing
area of the device. Upon the presence of a sample droplet,
the output voltage of the biosensor notably drops from its
calibration level, depending on permittivity properties of the
introduced sample. All measurements were conducted in a lab
environment with a controlled room temperature following
a primary cleaning procedure using ethanol and compressed
air for the removal of extraneous particles from the sen-
sor surface. It is noteworthy that temperature fluctuations
can possibly impair the biosensor performance in real-world
applications as part of measurement uncertainties associated
with this system [13], [14]. As a solution, the ambient tem-
perature can be introduced as an input variable into the ML
model [25]. Nonetheless, considering the consistency of the
ambient temperature throughout experiments in this work,
this parameter was not considered in our ML approach. Fur-
thermore, uncertainties associated with the calibration and
cleaning of the biosensor need to be addressed in the future
for performance enhancements in long-term applications.
To obtain reliable results, experiments were repeated three
times for every sample and the average (for the duration of
the sample’s presence over the sensing area) and minimum
values of observed results for each experiment were recorded.
Subsequently, the absolute minimum and overall average of
all three trials were reported for final results of real and
imaginary parts of the permittivity of every sample.While the
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average value of observations represents the overall dielectric
characteristic of a sample, the minimum value could be an
indicator of the presence of some specific suspending par-
ticles inside a sample. Further information on the working
principle of the dielectric biosensor is presented in details in
previous studies [13], [14].

FIGURE 2. Violin plot of dataset attributes used for classifications,
representing the Gaussian standard normal distribution of features with
zero mean and unit variance.

B. MACHINE LEARNING IMPLEMENTATION FOR
CLASSIFICATIONS
1) DATA PREPARATION
As discussed in the previous section, dielectric character-
izations were conducted on only 80 samples out of the
available 239, due to the limited life-cycle of the biosensor.
However, to highlight the important role of demographic
features in COPD detection, analysis were performed on
both datasets with and without dielectric properties. The first
dataset includes information on 80 characterized saliva sam-
ples (40 samples for each group of COPD andHC). Attributes
of this dataset include both demographic features—or more
specifically gender, age, and the smoking status of patients—
and the permittivity properties of saliva samples obtained
through measurements, as shown in Fig. 2. On the other
hand, the second dataset includes only the demographic infor-
mation of all 239 saliva samples with following attributes:
gender, age, and the smoking status of patients. For com-
putational purposes, non-quantitative attributes—diagnosis,
gender, and smoking status—were converted into numerical
values using following labels: diagnosis (COPD (1)–HC (0)),
gender (male (1)–female (0)), smoking status (smoker
(3)–ex-smoker (2)–non-smoker (1)). Sections of the data,
used for analytics in this work, are publicly available at
http://ieee-dataport.org/2361 [27]. To improve the perfor-
mance of ML models, the first and second datasets were
normalized and standardized to the Gaussian standard normal
distribution with zero mean and unit variance, respectively,
as presented in Fig. 2. Standardization of datasets is signif-
icantly important for improving the performance of many
machine learning classifiers, since the objective function of
their learning algorithm considers all attributes of a dataset to

be centered around zero with a variance in a similar order
of magnitude. Data preparations and ML implementations
were performed on the JupyterLab environment using Keras
2.2.5 and Scikit-learn 0.22 libraries of Python [23].

2) ANALYTICAL TOOLS
Non-perceptron machine learning classifiers including Gaus-
sian NB (GNB), SVM, and LR—provided by the Scikit-learn
0.22 library [23]—as well as the powerful decision tree algo-
rithm,XGBoost [21], were used for the classification of saliva
samples of COPD and HC. In addition, a dense ANN with
one hidden-layer and one read-out layer was developed for
the classification of COPD and HC samples. To replicate the
intrinsic structure of a neuromorphic platform, a hidden layer
with 4 neurons and a sigmoid activation function was mod-
eled. The read-out layer, with a sigmoid activation function,
consisted of two neurons for two possible classes of COPD
and HC. A dropout with 20% probability was applied to the
hidden-layer for the overfitting prevention. Adam optimiza-
tion algorithm, with 0.0001 learning rate, and a cross entropy
error function were used for training network in the backend
using Google Colab GPU platform. The simple architec-
ture of the developed ANN was chosen for the integration
compatibility with the intended neuromorphic hardware. For
the proposed SVM model, a radial basis function kernel
was chosen with a gamma and cost parameters of 0.1 and
1000, respectively. For the LR algorithm, a limited-memory
Broyden–Fletcher–Goldfarb–Shanno optimization algorithm
was used for the parameter estimation with amultinomial loss
fit across the entire probability distribution. The XGBoost
model was fine-tuned with a learning rate and random state
values of 0.01 and 1, respectively. In addition, its number
of trees in the forest was chosen as 100 with a maximum
depth of 3 for every tree. A multiclass log loss function
and minimum weighted leaf fraction of 0 were chosen as
recommended in its default instruction [21]. XGBoost is an
optimized distributed gradient boosting decision tree frame-
work, providing high efficiency and flexibility for portable
applications. The parallelization of tree construction in its
algorithm leads to efficiency of compute time and mem-
ory resources, thus making XGBoost an adequate tool for
edge computing applications such as PoC diagnostic devices.
All metrics and models used in this study are available in
details at https://github.com/Pouya-SZ/HCOPD.

Considering the small size of the investigated COPD data
set, k-fold cross-validation method was implemented for the
evaluation of models, thus preventing overfitting circum-
stances. Hence, relevant tools provided at the Scikit-learn
0.22 library were used for the 5-fold cross-validation of mod-
els [23]. The average of five cross-validation iterations was
reported as the 5-fold accuracy (5-fold Acc.) performance of
models, as shown in Tables 1 and 2. Sensitivity (recall), speci-
ficity, and precision measures for models were calculated on
a single-fold iteration with the best accuracy. Since for every
cross-validation iteration, the dataset was split into test–train
subsets with a ratio of 20–80%, the test-fraction, with unseen
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TABLE 1. Performance of ML models for the classification of the first
dataset with 80 saliva samples (64 training and 16 test data).

TABLE 2. Performance of ML models for the classification of the second
dataset with 239 saliva samples (191 training and 48 test data).

data points during model training, was considered as an
external validation dataset for the evaluation of models. The
sensitivity (recall) of amodel was calculated as the proportion
of true positives out of all diseased cases; while the specificity
value shows the number of true negatives over number of true
negatives and false positives. Precision criterion shows the
ratio of true positives over true plus false positives.

FIGURE 3. Hierarchical categorization of collected saliva samples into
extended subgroups with respect to their diagnosis, gender, and smoking
status.

III. RESULTS AND DISCUSSIONS
Fig. 3 demonstrates a hierarchy chart, categorizing col-
lected saliva samples into extended subgroups with respect
to their diagnosis, gender, and smoking status. As reported,
more than two-thirds of COPD diagnosed subjects are male
patients. Although this phenomenon could be explained con-
sidering the fact that smoking tobacco, and consequently
COPD, is more prevalent among men, some studies suggest
a more complex interpretation by taking into account vari-
ous gender-specific factors such as differential susceptibility
to tobacco, anatomic and hormonal differences, behavioral
differences, and differences in response to available ther-
apeutic modalities [28]. In addition, according to observa-
tions reported in Fig. 3, 81% of COPD diagnosed patients

FIGURE 4. Distribution of saliva samples of COPD and HC with respect to
age and the smoking status of subjects.

are holding an ex-smoker status, while only 13% are active
smokers. This could possibly be due to the reason that some
of ex-smoker subjects have already reached a severe stage of
COPD before making a decision to quit smoking. This point
is also noticeable in Fig. 4, which presents the distribution
of saliva samples with respect to age, diagnosis, and the
smoking status of subjects. Furthermore, as shown in Fig. 4,
in most cases, COPD diagnosed patients are middle-aged or
older adults. This observation complies with the fact that,
increasing age means a longer exposure of subjects to risk
factors and, consequently, further damages to their lungs.
Moreover, as the body ages, the recovery process of damaged
lung cells becomes more difficult, making a subject more
susceptible to COPD [29].

FIGURE 5. Results of the biosensor output for the dielectric
characterization (minimum values of the real part of the permittivity) of
saliva samples, providing distributional information including
minimum–maximum, median, and the first–third quartile values.

Fig. 5 presents the results of the biosensor output for the
dielectric characterization of saliva samples (the minimum
values of the real part of the permittivity). The pre-
sented box-plot provides distributional information includ-
ing minimum–maximum, median, and the first–third quartile
values for the obtained results on both categories of COPD
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and HC. Reported results in this figure represent the output
voltage drop of the biosensor, after calibration with respect
to dielectric properties of the surrounding air, representing
dielectric properties of tested samples, as explained in pre-
vious studies [13], [14]. As illustrated in Fig. 5, minimum
values of the real part of the permittivity (dielectric fea-
tures) for HC samples has a greater standard deviation value
(21.86) compared to the COPD group (16.77), making it a
useful feature for clustering data points using ML classifiers.
In contrast, the imaginary part of the permittivity of saliva
has a symmetric distribution for both HC and COPD patients,
as shown in Fig. 2, thus lacking valuable information for data
segregation.

Due to the dependent nature of aforementioned attributes,
implementation of ML methods was crucial for the realistic
classification of samples by concurrent consideration of all
parameters. Tables 1 and 2 present the performance of the
proposed ML models including XGBoost, SVM, GNB, LR,
and ANN for the classification of first and second datasets
with 80 and 239 saliva samples, respectively. These results
indicate the high performance of ML-based analytical tools
for the classification of saliva samples of COPD and HC.
Especially, among introduced methods, the XGBoost deci-
sion tree algorithm provided the best performance in terms of
accuracy, sensitivity, specificity, and precision, thus making
it a suitable model for this work. As reported in Table 1,
XGBoost classifier has exceeded other models by provid-
ing accuracy, sensitivity, specificity, and precision values
of 91.25%, 100%, 88.89%, and 87.5%, respectively, for the
classification of saliva samples with respect to their dielectric
and demographic properties. Acquired results illustrate the
practicality of the concept of applying ML tools for clas-
sifying saliva samples of COPD and HC, which was pro-
posed as a hypothesis for this work. The current study is
an important cornerstone, presenting the fact that dielectric
properties of saliva together with the demographic infor-
mation of respective patients can be analyzed using ML
tools for the discrimination of patients affected by COPD
from healthy controls. Moreover, results presented in Table 2
indicate the superiority of XGBoost performance for the
classification of samples based on merely demographic infor-
mation with accuracy, sensitivity, specificity, and precision
values of 92.05%, 95.24%, 100%, and 100%, respectively.
The remarkable performance of classifiers based on only
demographic attributes—age, gender, and smoking status—
indicates the significant role of demographic information
for the detection of COPD. In contrast to non-perceptron
classifiers, the proposed ANN provided a poor performance
due to its sensitivity to outliers and overfitting in small-sized
datasets.

Figures 6(a) and (b) demonstrate confusion matrices of the
XGBoost algorithm for predicting diagnostic status of unseen
test samples. As shown in these figures, the XGBoost model,
at its best performance (with threshold values of 0.66 and
0.53), was capable to predict the status of unseen test subjects
for the first and second datasets with only one false-positive

FIGURE 6. Confusion matrices of the XGBoost algorithm, presenting the
prediction performance of the model on unseen test samples and the
precision-recall curve, demonstrating the trade-off between precision and
recall for different thresholds: (a) and (c) first dataset with 80 saliva
samples (64 training and 16 test data); (b) and (d) second dataset with
239 saliva samples (191 training and 48 test data).

and one false-negative and accuracies of 93.75% and 97.92%,
respectively. The precision-recall curves for these confusion
matrices are shown in figures 6(c) and (d), demonstrating
the trade-off between precision and recall (sensitivity) for
different thresholds. The XGBoost classifier provided the
best performance for the classification of first and second
datasets at threshold values of 0.66 and 0.53, respectively.
The high accuracy, sensitivity, specificity, and precision of
the XGBoost algorithmmake it an adequate model for COPD
classifications using edge devices [30].

The high accuracy of the proposedMLmodels compared to
the ground truth spirometry method, with a sensitivity range
of 64.5–79.9% [7], make them a promising tool for the man-
agement of COPD in PoC environments. However, this work
has only investigated the practicality of COPD classification
in in-vitro circumstances, whereas, for real-world predictions
on the progression of COPD and its exacerbations, real-time
analysis of dielectric properties of saliva on a daily basis is
required.

Generalizability to a larger population, as the main lim-
itation with any ML study on a small-sized novel dataset,
is a fundamental concern for this study, demanding exten-
sive investigation. Nonetheless, to the best of our knowl-
edge, there is no other comprehensive dataset for the COPD
classification available up to date, which can be used for
training and evaluating introduced ML models in this work.
Therefore, we consider our study as a stepping stone to future
studies in the field, while endorsing the necessity for further
data collections and advanced-analytical implementations for
the COPD management.

Results of this work imply the capability of ML tools
for enhancing the quality of personalized healthcare solu-
tions by facilitating the management of chronic diseases
through performing complex diagnosis. The scope of ML
tools goes far beyond classical statistical analyses performed
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in healthcare. Therefore, ML methods, or the Artificial Intel-
ligence (AI) from a broader scope, is expected to revolution-
ize healthcare in the near future by providing accurate and
real-time predictions on the health status of patients or the
progress of their diseases. Especially, AI will play a pivotal
role in the future for assisting patients in remote locations
with the management of chronic and degenerative condi-
tions, monitoring their rehabilitation progress, and predicting
critical–emergency health conditions. In addition, availability
of numerous health-related data, thanks to advancements in
wearable technologies and biosensors, will facilitate the bet-
ter integration of AI with healthcare devices in PoC envi-
ronments. However, all the astonishing capabilities of ML
tools come at the cost of immense energy consumption
and enormous computational power. In addition, complexi-
ties associated with cloud communications such as robust-
ness against interference, wide bandwidth requirements, low
latency, and data security limit the application of AI in sensi-
tive fields such as medicine. As a result, the trade-off between
mentioned benefits and risks related to securing sensitive
medical data is, still, an on-going challenge. To address
this concern, low-power neuromorphic platforms could be
integrated into medical devices for locally processing of com-
putations required for ML algorithms [31]. Neuromorphic
chips have been successfully implemented in different studies
for matrix-multiplications required for non-perceptron and
perceptron-based ML methods [32], [33]. By bringing the
data post-processing from backend onto a chip, real-time
analysis of data in a less time consuming manner with a
smaller time delay is feasible. Furthermore, sensitive med-
ical data are better protected by being processed locally
on a chip without external communications. In addition,
the energy-efficient neuromorphic platforms offer a large
fault tolerance for sensitive applications such as in health-
care [34]. Therefore, implementation of presented ML mod-
els on a neuromorphic platform, for the on-chip classification
of saliva, is the next goal of this work.

Although the introduced ML model was capable to
accurately classify saliva samples based on a few attributes,
further demographic information on the medical-personal
background of patients’ (such cytokine level, blood pressure
history, or pathogen) could possibly improve the performance
of the model in terms of accuracy and generalizability. How-
ever, accessing such a sensitive medical information is highly
restricted through governmental data protection policies and,
thus, requires an appropriate approval from the ethics com-
mittee, prior to acquisitions. In addition, investigating novel
ML algorithms, such as a few-shot learning, with better per-
formance on small-sized datasets could pave the way towards
more accurate and generalizable models for medical applica-
tions with limited data availability [35].

IV. CONCLUSION AND FUTURE WORK
This work investigated the in-vitro classification of saliva
samples of COPD and HC using machine learning tech-
niques. Saliva samples were initially collected from different

subjects in a clinical setting and their demographic informa-
tion on the age, gender, and smoking status of patients were
recorded. In addition, dielectric characteristics of a smaller
subset of collected samples were measured using a permittiv-
ity biosensor. Various ML tools including XGBoost, SVM,
NB, LR, and ANN were applied for classifying collected
samples into COPD and HC categories. The XGBoost algo-
rithm provided the best performance, among other methods,
for classifying and predicting saliva samples of COPD and
HC with respect to their dielectric and demographic proper-
ties. Although implementation of ML tools enables the fast
and efficient diagnosis of COPD, their existing shortcomings
in terms of data availability, data safety, and computation
cost limit their application in real-world. Therefore, further
data collection is necessary in the future for enhancing the
performance of proposedmodels.Moreover, as a future work,
deployment of the introduced MLmodels on hardware-based
neuromorphic platforms will enable the on-chip recognition
of COPD with low energy consumption and high patient
privacy.

ACKNOWLEDGMENT
The authors thank the BioMaterialBank Nord (BMB Nord),
popgen 2.0 network (P2N), and the German Center for Lung
Research for the collection of saliva samples and the staff at
IHP and FZ Borstel-Leibniz Lung Center for their precious
support with this work, especially Andreas Frey for providing
access to facilities.

REFERENCES
[1] P. J. Barnes, ‘‘Mechanisms in COPD: Differences from asthma,’’ J. Chest,

vol. 117, no. 2, p. 10S–14S, 2000.
[2] C. D. Mathers and D. Loncar, ‘‘Projections of global mortality and burden

of disease from 2002 to 2030,’’ PLoS Med., vol. 3, no. 11, p. e442,
Nov. 2006.

[3] N. G. Csikesz and E. J. Gartman, ‘‘New developments in the assessment
of COPD: Early diagnosis is key,’’ Int. J. Chronic Obstructive Pulmonary
Disease, vol. 9, pp. 277–286, 2014.

[4] T. Dong, S. Santos, Z. Yang, S. Yang, and N. E. Kirkhus, ‘‘Spu-
tum and salivary protein biomarkers and point-of-care biosensors for
the management of COPD,’’ Analyst, vol. 145, no. 5, pp. 1583–1604,
2020.

[5] S. Mirza, R. D. Clay, M. A. Koslow, and P. D. Scanlon, ‘‘COPD guidelines:
A review of the 2018 GOLD report,’’ Mayo Clinic Proc., vol. 93, no. 10,
pp. 1488–1502, Oct. 2018.

[6] D. Price, A. Crockett, M. Arne, B. Garbe, R. Jones, A. Kaplan,
A. Langhammer, S. Williams, and B. Yawn, ‘‘Spirometry in primary care
case-identification, diagnosis and management of COPD,’’ Primary Care
Respiratory J., vol. 18, no. 3, pp. 216–223, Aug. 2009.

[7] S. Haroon, R. Jordan, Y. Takwoingi, and P. Adab, ‘‘Diagnostic accuracy of
screening tests for COPD: A systematic review and meta-analysis,’’ BMJ
Open, vol. 5, no. 10, Oct. 2015, Art. no. e008133.

[8] S. Chiappin, G. Antonelli, R. Gatti, and F. Elio, ‘‘Saliva specimen: A new
laboratory tool for diagnostic and basic investigation,’’ Clinica Chim. acta,
vol. 383, no. 1, pp. 30–40, 2007.

[9] M. C. Rose and J. A. Voynow, ‘‘Respiratory tract mucin genes and mucin
glycoproteins in health and disease,’’ Physiological Rev., vol. 86, no. 1,
pp. 245–278, Jan. 2006.

[10] K. Wang, Y.-L. Feng, F.-Q. Wen, X.-R. Chen, X.-M. Ou, D. Xu, J. Yang,
and Z.-P. Deng, ‘‘Decreased expression of human aquaporin-5 correlated
with mucus overproduction in airways of chronic obstructive pulmonary
disease,’’ Acta Pharmacologica Sinica, vol. 28, no. 8, pp. 1166–1174,
Aug. 2007.

VOLUME 8, 2020 168059



P. Soltani Zarrin et al.: In-Vitro Classification of Saliva Samples of COPD Patients and Healthy Controls Using ML Tools

[11] R. M. Effros, B. Peterson, R. Casaburi, J. Su, M. Dunning, J. Torday,
J. Biller, and R. Shaker, ‘‘Epithelial lining fluid solute concentrations in
chronic obstructive lung disease patients and normal subjects,’’ J. Appl.
Physiol., vol. 99, no. 4, pp. 1286–1292, Oct. 2005.

[12] P. Verdugo, ‘‘Supramolecular dynamics of mucus,’’ Cold Spring Harbor
Perspect. Med., vol. 2, no. 11, 2012, Art. no. a009597.

[13] P. Soltani Zarrin, F. Jamal, S. Guha, J.Wessel, D. Kissinger, andC. Wenger,
‘‘Design and fabrication of a BiCMOS dielectric sensor for viscosity mea-
surements: A possible solution for early detection of COPD,’’ Biosensors,
vol. 8, no. 3, p. 78, Aug. 2018.

[14] P. Zarrin, F. Jamal, N. Roeckendorf, and C. Wenger, ‘‘Development of a
portable dielectric biosensor for rapid detection of viscosity variations and
its in vitro evaluations using saliva samples of COPD patients and healthy
control,’’ Healthcare, vol. 7, no. 1, p. 11, Jan. 2019.

[15] R. Khan, Z. Khurshid, and F. Yahya Ibrahim Asiri, ‘‘Advancing point-
of-care (PoC) testing using human saliva as liquid biopsy,’’ Diagnostics,
vol. 7, no. 3, p. 39, Jul. 2017.

[16] S. B. Baker, W. Xiang, and I. Atkinson, ‘‘Internet of Things for smart
healthcare: Technologies, challenges, and opportunities,’’ IEEE Access,
vol. 5, pp. 26521–26544, 2017.

[17] A. L. Fogel and J. C. Kvedar, ‘‘Artificial intelligence powers digital
medicine,’’ NPJ Digit. Med., vol. 1, no. 1, pp. 1–4, Dec. 2018.

[18] P. S. Zarrin, A. Escoto, R. Xu, R. V. Patel, M. D. Naish, and A. L. Trejos,
‘‘Development of a 2-DOF sensorized surgical grasper for grasping and
axial forcemeasurements,’’ IEEE Sensors J., vol. 18, no. 7, pp. 2816–2826,
Apr. 2018.

[19] P. S. Zarrin, A. Escoto, R. Xu, R. V. Patel, M. D. Naish, and A. L. Trejos,
‘‘Development of an optical fiber-based sensor for grasping and axial
force sensing,’’ in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), Singapore,
May 2017, pp. 939–944.

[20] F. X. Campion, G. Carlsson, and F. Francis, Machine Intelligence for
Healthcare. Scotts Valley, CA, USA: CreateSpace Independent Publishing
Platform. 2017.

[21] T. Chen and C. Guestrin, ‘‘XGBoost: A scalable tree boosting system,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Francisco, CA, USA, Aug. 2016, pp. 785–794.

[22] I. Kononenko, ‘‘Machine learning for medical diagnosis: History, state of
the art and perspective,’’ Artif. Intell. Med., vol. 23, no. 1, pp. 89–109,
Aug. 2001.

[23] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, and B. Thirion,
‘‘Scikit-learn: Machine learning in Python,’’ J. Mach. Learn. Res., vol. 12,
pp. 2825–2830, Oct. 2011.

[24] R. Entezari-Maleki, A. Rezaei, and B. Minaei-Bidgoli, ‘‘Compari-
son of classification methods based on the type of attributes and
sample size,’’ J. Converg. Inf. Technol., vol. 4, no. 3, pp. 94–102,
Sep. 2009.

[25] P. S. Zarrin and C. Wenger, ‘‘Pattern recognition for COPD diagnostics
using an artificial neural network and its potential integration on hardware-
based neuromorphic platforms,’’ in Proc. ICANN, in Lecture Notes in
Computer Science, Munich, Germany: Springer, Sep. 2019, pp. 284–288.

[26] C. Ellervik and J. Vaught, ‘‘Preanalytical variables affecting the integrity
of human biospecimens in biobanking,’’ Clin. Chem., vol. 61, no. 7,
pp. 914–934, Jul. 2015.

[27] P. S. Zarrin, N. Roeckendorf, and C. Wenger, ‘‘Exasens: A novel dataset
for the classification of saliva samples of COPD patients,’’ in Proc. IEEE
Dataport, 2020. Accessed: Sep. 14, 2020, doi: 10.21227/7t0z-pd65.

[28] S. Aryal, E. Diaz-Guzman, and D.M.Mannino, ‘‘COPD and gender differ-
ences: An update,’’ Transl. Res., vol. 162, no. 4, pp. 208–218, Oct. 2013.

[29] C. A. V. Fragoso, ‘‘Epidemiology of chronic obstructive pulmonary disease
(COPD) in aging populations,’’ COPD, J. Chronic Obstructive Pulmonary
Disease, vol. 13, no. 2, pp. 125–129, Mar. 2016.

[30] W. Zhu, N. Zeng, and N. Wang, ‘‘Sensitivity, specificity, accuracy, associ-
ated confidence interval and ROC analysis with practical SAS implemen-
tations,’’ in Proc. NESUG Health Care Life Sci., Baltimore, MD, USA,
vol. 19, 2010, p. 67.

[31] P. S. Zarrin, R. Zimmer, C. Wenger, and T. Masquelier, ‘‘Epileptic seizure
detection using a neuromorphic-compatible deep spiking neural network,’’
in Proc. Int. Work-Conf. Bioinf. Biomed. Eng. (IWBBIO), Granada, Spain,
2020, pp. 389–394.

[32] F. Cai, J. M. Correll, S. H. Lee, Y. Lim, V. Bothra, Z. Zhang, M. P. Flynn,
and W. D. Lu, ‘‘A fully integrated reprogrammable memristor–CMOS
system for efficient multiply–accumulate operations,’’ Nature Electron.,
vol. 2, no. 7, pp. 290–299, Jul. 2019.

[33] C. Wenger, F. Zahari, M. K. Mahadevaiah, E. Perez, I. Beckers,
H. Kohlstedt, and M. Ziegler, ‘‘Inherent stochastic learning in CMOS-
integrated HfO2 arrays for neuromorphic computing,’’ IEEE Electron
Device Lett., vol. 40, no. 4, pp. 639–642, Apr. 2019.

[34] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang, ‘‘Memristors
for energy-efficient new computing paradigms,’’ Adv. Electron. Mater.,
vol. 2, no. 9, 2016, Art. no. 1600090.

[35] P. S. Zarrin and C. Wenger, ‘‘Implementation of Siamese-based few-shot
learning algorithms for the distinction of COPD and asthma subjects,’’ in
Proc. ICANN, in Lecture Notes in Computer Science, Bratislava, Slovakia:
Springer, 2020.

POUYA SOLTANI ZARRIN received the master’s
degree in biomedical engineering from Western
University, Canada, in 2017. Since 2017, he has
been with the IHP Microelectronics, where he is
currently working as a Research Scientist on med-
ical device development andAI integration for pre-
cision diagnostics. He has expertise in the design,
development, and testing of medical mechatronic
systems and biosensors and implementation of
machine learning techniques for medical analytics.

His research interests include medical device design, sensing systems, AI,
machine learning for healthcare, and medical mechatronics and robotics.

NIELS ROECKENDORF received the Diploma
degree in chemistry and the Ph.D. degree
from the Christian-Albrechts University of Kiel,
in 1999 and 2003, respectively. Since 2004, he has
been a Postdoctoral Research Scientist with the
Research Center Borstel–Leibniz Lung Center.
Since 2012, he has been acting as the Deputy
Head of the Division of Mucosal Immunology and
Diagnostics, Research Center Borstel.

CHRISTIAN WENGER received the Diploma
degree in physics from the University of Kon-
stanz, in 1995, and the Ph.D. and Postdoctoral
degrees from the Dresden University of Technol-
ogy (TU Dresden), in 2000 and 2009, respectively.
Since 2002, he has been with the Innovations for
High Performance Microelectronics (IHP), where
he is currently working in the field of functional
devices for medical and space applications. He has
authored or coauthored more than 200 articles and

holds six patents. In 2018, he received the Professorship Microelectron-
ics for Medical Engineering at the Brandenburg Medical School Theodor
Fontane and the Professorship Semiconductor Materials at BTU Cottbus-
Senftenberg, in 2020.

168060 VOLUME 8, 2020

http://dx.doi.org/10.21227/7t0z-pd65

