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Abstract
The continuous progress in the synthesis and characterization of materials in the vast family of
hybrid organic-inorganic metal halide perovskites (HOIPs) has been pushed by their exceptional
properties mainly in optoelectronic applications. These works highlight the peculiar role of lattice
vibrations, which strongly interact with electrons, resulting in coupled states affecting the optical
properties. Among these materials, layered (2D) HOIPs have emerged as a promising material
platform to address some issues of their three-dimensional counterparts, such as ambient stability
and ion migration. Layered HOIPs consist of inorganic layers made of metal halide octahedra
separated by layers composed of organic cations. They have attracted much interest not only for
applications, but also for their rich phenomenology due to their crystal structure tunability. Here,
we give an overview of the main experimental findings achieved via Raman spectroscopy in several
configurations and set-ups, and how they contribute to shedding light on the complex structural
nature of these fascinating materials. We focus on how the phonon spectrum comes from the
interplay of several factors. First, the inorganic and organic parts, whose motions are coupled,
contribute with their typical modes which are very different in energy. Nonetheless, the interaction
between them is relevant, as it results in low-symmetry crystal structures. Then, the role of external
stimuli, such as temperature and pressure, which induce phase transitions affecting the spectrum
through change in symmetry of the lattice, octahedral tilting and arrangement of the molecules.
Finally, the relevant role of the coupling between the charge carriers and optical phonons is
highlighted.

1. Introduction

Hybrid organic-inorganic metal halide perovskites (HOIPs) arrived in 2009 as promising materials for
photovoltaics with a power conversion efficiency of 3.8% [1], which nowadays exceeds 25% [2]. These
materials with already demonstrated extraordinary optoelectronic performance in photovoltaics [3, 4], LEDs
[5] and photodetectors [6], surpass organic electronics in terms of their figures-of-merit and reach values
close to or above Si and semiconductor technology, due to their high optical absorption coefficient, tuneable
band-gap, near-unity photoluminescence (PL) quantum yield, low trap densities and excellent excitonic and
charge carrier mobility, in addition to their low-cost processability and tuneable crystal structure and
composition [3, 4, 7–15]. Nevertheless, continuous efforts are being made to address several challenges
originating from the composition and mixed ionic-electronic conductivity of HOIPs for their successful
application in optoelectronic devices, such as the presence of Pb [16, 17], low ambient stability (thermal
stress, light or oxygen/moisture) [15, 18–20], or ion migration under operation [10, 18, 21–23]. The
development of environmentally friendly Pb-free candidates [10, 24–28] aiming at replacing the toxic Pb
[18] led to the appearance of double HOIPs, which also present better ambient stability. These double HOIPs
emerge from the three-dimensional (3D) HOIPs, with general formula AIBIIX3 (A= small organic or
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inorganic alkaline cation; B=metal cation and X= halide anion), where B= Pb2+, can be replaced by a
combination of trivalent (Bi3+, Sb3+) and monovalent (Ag+, Cu+, Au+, K+) cations [18, 29–34]. Moreover,
the dimensional reduction of the 3D HOIPs by introducing large-size cations in the A-site of the crystal
structure allows accessing the layered (2D) counterparts. Since both materials, 3D and 2D, share the same
inorganic part, their properties and applications are closely related, but the tunability of the crystal structure
of the 2D HOIPs makes them a more rich and flexible material platform [13, 30, 35–38]. Compared to 3D
HOIPs, layered HOIPs offer an enhanced ambient stability together with a more versatile crystal structure
and dimensionality, which facilitates their incorporation in miniaturized and flexible electronic devices and
creates new opportunities for tailor-made materials. The physicochemical properties of layered HOIPs can be
tuned by varying the number of octahedral layers (dimensionality, denoted as n), the metal cation, the
halogen anion and the large organic cation [13, 35–37]. Additionally, since 2D HOIPs consist of anionic
metal halide sheets separated by organic cation layers, this enables their mechanical exfoliation, similarly to
graphene-related materials [39]. They have already demonstrated to be good candidates for optoelectronic
applications [3, 40] in particular, 2D/3D solar cells [3, 18], LEDs [41] and photodetectors [42].

Further development of layered HOIPs and the materials selection require exploring the crystal structure
and lattice dynamics and their effect on optical and electronic properties. For this purpose, Raman
spectroscopy has shown to be a non-destructive, accessible, and sensitive technique for monitoring
simultaneously the structural changes related to the rearrangement of the inorganic cage and A-site cations.
Indeed, in the case of 3D HOIPs, Raman spectroscopy has been used to determine phase transition origin and
temperature onset [11, 43–46], to probe local strain [9, 47], and to check the material’s degradation [48–51],
composition [11, 52–54], and quality in terms of crystallinity and polymorphs [44, 55, 56]. In this review, we
focus our attention on the vibrational properties of 2D HOIPs and how Raman spectroscopy can help to
disentangle the complexity of these materials. We aim to offer a comprehensive assessment of the research
progress made with these materials, which is still in an early stage compared to their 3D counterparts.
Therefore, we will discuss the relevance of using Raman spectroscopy to study the inorganic and organic
Raman modes of 2D HOIPs and their interactions, their phase transitions and their phonon interactions.

2. Raman scattering and experimental setups

The technical advances in optics and electronics have greatly improved the availability of Raman
spectroscopy, which has become a widespread and easy to use technique in the past decades. Its great
advantage is the use of UV-visible-NIR light for the investigation of very low-energy excitations in materials,
occurring in the MIR-FIR range. A typical setup is shown in figure 1(a).

Raman scattering is an inelastic light scattering effect where an incident photon can lose (or gain) energy
by interacting with excitations in a material. Typically, Raman spectroscopy involves interaction with
phonons, i.e. quantized vibrations of solid lattices or molecules. The monochromatic excitation light
interacts with the electrons in the material, and the vibrations modulate the polarizability, producing the
inelastic scattering [57]. In the scattered light, the phonon modes will appear as peaks at a distinct
wavelength from the excitation. Usually, the spectra are reported in terms of ‘Raman shift’, i.e. the energy
separation from the excitation light, in units of inverse cm (cm−1). The experimental set-up needs notch or
bandpass filters to suppress the elastically scattered light, with the requirement of sharp edges for the blocked
region. Recent technical advances in the field allow measurements at ultralow Raman shift (<10 cm−1).
These systems (figure 1(b)) use two or three volume Bragg gratings, which act as spectral and angular filters,
suppressing the elastic (Rayleigh) peak [58, 59].

Raman scattering intensity is controlled by selection rules for the polarization state of incident and
scattered light. These rules are a consequence of the symmetry of the crystal or molecule. The atomic
arrangement in molecules is controlled by the directionality of chemical bonds, resulting in well-defined
symmetries; the symmetry operations that leave the molecule unchanged form a ‘point group’. Similarly, in
crystalline solids the atoms (ions) occupy well-defined positions in a periodic lattice, which therefore has an
associated translational symmetry. To each crystal structure, a space group is assigned; in 3 dimensions, 230
distinct space groups exist. The space groups are classified into 32 crystal classes, according to their
associated point group (i.e. the symmetry operations without translations). For layered perovskites, these
point groups typically include 2- and 4-fold rotations and mirror planes (e.g. point groups D4h, C4h, C2h).
The perfect octahedron, the fundamental element of the inorganic part, is much more symmetric (group
Oh), with 2-, 3-, 4-fold axes. The crystal classes can be classified into seven crystal systems. Typical systems
for layered perovskites are tetragonal, orthorhombic, triclinic and monoclinic, while 3D perovskites are
typically cubic at room temperature [37, 46, 60, 61].

Once the lattice and symmetry are known, the phonon modes (vibrational normal modes) can be
calculated by solving the relevant dynamic equation, yielding the phononic spectrum as a function of
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Figure 1. (a) Scheme of a micro-Raman setup for polarization-resolved measurements. (b) Arrangement of filters for low Raman
shift measurements. (c) Sketch of a diamond anvil for measurement as a function of pressure. (d) Photo of a liquid-nitrogen flow
cryostat with optical access under an optical microscope coupled to a Raman instrument.

crystalline momentum k, energy E (or angular frequency ω) [57, 60, 62]. The modes are classified according
to the point group associated to the value of k and each can be assigned an irreducible representation of the
point group; for phonons at the zone centre (k= 0), the point group coincides with the point group of the
crystal class. Since Raman scattering requires conservation of E and k, and the incoming phonons can be
approximated as having zero momentum, the phonon modes observed in Raman spectroscopy at the 1st
order are those at k= 0, and with an energy different from 0. The symmetry of the vibration (its irreducible
representation) determines the Raman activity of the mode, and its polarization selection rules, i.e. whether
a certain mode has a non-zero intensity in Raman scattering with defined polarization of incident and
scattered light. The selection rules are summarized in the ‘Raman tensor’. The intensity of a mode (I) is
I∝ |eiRes|2, where es, ei are the polarization vectors of the scattered and incident light, and R is the Raman
tensor. The most general Raman tensor, R, has nine components. In case of non-resonant scattering (i.e.
excitation far from an absorption peak), the tensor is symmetric. The number of independent components is
determined by the irreducible representation associated to the mode; these Raman tensors are tabulated in
the literature for each point group [60, 62, 63].

Polarized Raman spectroscopy is thus very effective in the assignment of the symmetry (i.e. irreducible
representation) to the mode, provided that the orientation of the crystal is controlled. The information on
orientation of the crystal and of the polarization vector are often reported in the Porto notation as ki(ei,es)ks,
where the four symbols indicate the direction and of incident and scattered photons, (ki and ks) and their
respective polarization direction (ei and es). In this way, the notation z(yx)y indicates a scattering with light
incoming from z and observed along y, and with incoming polarization along y, and observed with a
polarization along x. The directions xyz usually refer to the crystal axes. For the typical backscattering
geometry of figure 1(a), the direction ks is labelled as z̄ indicating−z; in this way, a configuration may be
z(yx)z̄. The selection of orientation is especially easy and powerful in layered materials, whose cleaving
occurs in the stacking direction [64–66]. The experimental study of the symmetry requires the rotation of the
polarization of the incident and/or the scattered light, and can be obtained in different optical configurations
[67], such as rotating the sample, while keeping fixed polarizers, or rotating the excitation polarization. In
figure 1(a), a set-up is shown including a rotating half-wave (λ/2) plate that rotates both incident and
scattered light; the incoming polarization can be controlled with another waveplate, while the analyser at the
spectrometer is fixed. In these experiments, the intensity of each Raman mode can be measured as a function

3
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Table 1. Summary of Raman spectroscopy studies on 3D HOIPs indicating the compound used, details of the technique and available
information about assignment of modes and phase transitions.

Compounda
Details of Raman
measurement Available information References

MAPbI3 Room temperature MA mode assignment,
comparison with DFT

Quarti et al [80]

MAPbI3 MAPbI3−xBrx
(x = 0–1)

Room temperature Low
frequency

Inorganic peaks, effect of
composition, comparison
with Pb salts

Ledinský et al [48]

MAPbI3 Different excitation laser Deconvolution of modes
associated to organic and
inorganic part; effect of laser
exposure

Pistor et al [50]

MAPbI3 Pressure dependent Phase transition with
pressure

Francisco-López et al [81]

MAPbI3 Temperature-dependent
Polarization

Detailed mode assignment
by comparison with DFT

Pérez-Osorio et al [82]

MAPbI3 Temperature dependent
Polarization angle
dependent

Mode assignment from
polarization dependence

Sharma et al [83]

MAPbX3 (X= I, Br, Cl) Temperature dependent Detailed mode assignment
and effect of halide,
comparison with DFT

Leguy et al [43]

MAPbBr3 CsPbBr3 Low frequency Temperature
dependent

Phase transition Guo et al [84]

FAPbI3 FAPbBr3 Low frequency Detailed mode assignment
and effect of composition,
comparison with DFT

Ibaceta-Jaña et al [52]

Cs2AgBiBr6 Low temperature Mode assignment Zelewski et al [85]
Cs2AgBiBr6 CsPbBr3 Low frequency Temperature

dependent Polarization
angle dependent

Phase transition and mode
symmetry, comparison
single and double
perovskites

Cohen et al [46]

a Organic cations notation: MA=methylammonium; FA= formamidinium. Techniques notation: DFT= density functional theory.

of the rotation angle, for configurations where the laser and the analyser polarization are parallel or
perpendicular. This configuration is preferred as it does not require moving the sample, thus ensuring that
the investigated spot remains the same during the polarization angle-dependent measurement. These
methods have provided interesting information on 2D materials, including crystallographic orientation,
strain status, and inter- and intra-layer interactions in heterostructures such as Moiré patterns [64, 66].

Raman spectroscopy is also often coupled to microscopes for spatially resolved studies with resolution of
hundreds of nanometres. Pressure- and temperature-dependence measurements, which are very relevant in
the study of phase transitions as described in section 4, can be measured in systems with optical access, which
can be easily integrated in spectroscopy setups. These include diamond anvil cells (DACs) and cryostats
(figures 1(c) and (d)). Anvil cells exploit the transparency of diamond to visible light for spectroscopic
access, and can apply uniaxial stress as well as isotropic stress with a pressure transmitting medium, such as
silicone oil [68, 69] or NaCl [70], and calibrate the pressure using ruby [68, 70]. Cryostats with optical access
can be He- or liquid-N2 cooled allowing to reach temperatures in the range 4–350 K.

In tables 1 and 2, we show a summary of the reported works with 3D and layered HOIPs indicating the
technique used and the aim of the study, respectively.

3. Inorganic and organic Raman features

From a qualitative point of view, the vibrational modes in the layered HOIPs can be divided between those
related to the organic part and those related to the inorganic part. The organic cation-related vibrations
typically occur at higher Raman shift (>300 cm−1), and several modes can be expected. These can then be
qualitatively matched to the typical spectra for the molecular species, which can be found in the literature
[71]. In this case, well-established spectroscopy practice identifies the modes related to chemical bonds in
functional groups according to their Raman shift [71]. For the inorganic case, the modes are found at lower
energy, due to the heavier atomic components [62]; typically, these modes can be directly mapped to the 3D
counterparts, and their symmetry matches that of the octahedra. This simple classification assumes a
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Figure 2. (a) Raman spectra of AgBi bromide crystals recorded at 80 K. The prominent mode corresponds to the octahedra
symmetric stretching (A1g mode of the 3D crystal). Layered systems with PA, BA, and PEA organic cations and n= 1 (1L) or
n= 2 (2L) are reported. Below the spectral position of the A1g mode varying the organic cation is shown. Reproduced from [77].
CC BY 4.0. (b) Resonant impulsive-stimulated Raman spectra (RISRS) and continuos-wave (CW) Raman of lead iodide n= 1
crystals with alkyl cation of different length (labelled Cx) Left: spectra from RISRS at 5 K at probe energy 2.45 eV (red) and
2.39 eV (blue). Right: standard, non-resonant CW Raman at 78 K; in (c) the corresponding Raman mode energy vs
alkylammonium chain length noted as number of carbons. Reprinted with permission from [78]. Copyright (2019) American
Chemical Society. (d) Optical phonon energy for (BA)2(MA)n−1PbnI3n+1 compounds as a function of the number of octahedral
layers (n). Reprinted from [90], with the permission of AIP Publishing.

negligible interaction between the molecular cations and the inorganic octahedra, which can be justified
taking into account the localized nature of the vibration of heavy atoms [72, 73], but it does not describe the
real scenario, which is more complex.

Typically, HOIP lattices are much softer than other inorganic semiconductors, i.e. the displacement of
the ions from their equilibrium positions requires little energy. As a result, the lattice dynamics occurs with
large ion displacement, which results in highly anharmonic vibrations, especially at room temperature [73];
for this reason, the phonon propagation is short, and the vibrations occur as localized modes. The localized
nature of the modes almost decouples the motion of the different parts in the complex unit cell, such as the
inorganic cage and the organic moieties. This has been observed in lead-based [74, 75] and in lead-free
compounds [73]. In this sense, the study of Raman spectroscopy provides further insight into the nature of
the modes, especially by identifying their symmetry with polarization selection rules and by analysing
temperature (and pressure) dependence. The effect of localized modes is particularly striking in the 2D
HOIPs, where the vibrations of the inorganic part retain their feature, e.g. in terms of symmetry and Raman
selection rules, even in lower symmetry environment [76]. Additionally, the long organic molecules in the
2D HOIPs ‘enhance’ the relevance of anharmonic effects, as the inorganic layers are more decoupled by each
other. This is relevant in phase transitions and in the study of electron-phonon coupling, as discussed in
sections 4 and 5.

As an example of the interplay between the organic cations and the inorganic lattice, we consider the
double perovskites (figure 2(a)) of the AgBi bromide HOIP family [77], which can be synthetized with n= 1
and 2, being the 3D counterpart Cs2AgBiBr6. While the organic moieties give rise to a variety of peaks, the
stronger feature in the range of inorganic vibration corresponds to the A1g mode of the 3D case, ascribed to a
symmetric stretching of the octahedra in the lattice. In the layered crystals with n= 1, this Raman band is
found to have similar value across samples with different organic cations, comprising the alkylammonium
cations propyl- (PA), butyl- (BA) and decyl-ammonium, as well as the aromatic phenylethylammonium
(PEA). Instead, in the n= 2 structures, the mode’s frequency decreases with increasing alkyl chain length,
while for PEA a value comparable with n= 1 case is found. A comparison with the same symmetric
stretching mode of the 3D Cs2AgBiBr6 indicates that in layered structures the phonon frequency (energy) is
reduced, and that in the n= 1 materials the frequency (energy) is lower than in n= 2. This can be attributed
to the higher stiffness of materials with a larger number of layers.

Systematic studies have explored the effect of the organic cation’s nature and volume on the vibrational
modes of the inorganic layers, in terms of Raman shift and linewidth. For instance, Mauck et al [78] have
studied lead iodide with alkylammonium cations with carbon chains of different lengths, x, (x from 4 to 9),

8
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Figure 3. (a) Polarized and unpolarized low Raman shift spectra for lead iodide crystal ((BA)2PbI4 (blue), (PhE)2PbI4 (green)
(PhE= PEA), and MAPbI3 (red) at selected temperatures. The splitting is clearly visible at 10 K, where the crystal structures are
Pnma, P-1, and Pbca, respectively. Reproduced from [79]. CC BY 4.0. (b) Ultralow-frequency Raman spectra of individual
(PEA)2PbBr4 and (BA)2PbBr4 perovskite flakes recorded at T = 4 K. Reproduced from [94]. CC BY 4.0.

focusing on the monolayer (n= 1) case (figures 2(b) and (c)). These compounds crystallize in the same
monoclinic P21/c space group, except x = 6, which belongs to the orthorhombic Pbca. It is important to note
that the crystal structure may be strongly affected by the organic cation, as seen in figure 3(a), which
compares the 3D lead iodide with methylammonium (MA) to its layered counterparts using BA and PEA as
organic cations [79]. In [78], the Raman modes associated with octahedral vibrations are found to have a
small blue or redshift for increasing chain length, with an approximately linear relation (with deviation for
x = 6). However, the dependence is not the same for all modes, as some of them increase their energy for
longer chains and others decrease it, highlighting that it is not a straightforward relationship, as well as the
sensitivity of Raman spectroscopy to detect these changes.

On the other hand, in the case of an optical mode associated with a twisting of the octahedra in
(BA)2MAPbI4 (figure 2(d)), an increase in the number of octahedra in the lattice reduces the frequency
(energy), with the bulk having the minimum value [90]. Here, this effect is rationalized as the interaction
between octahedra directly bonded to the organic cations, and those that have only inorganic moieties
around them, the latter being associated to lower energy as in the bulk.

Additionally, it is worth noting that the inorganic cage can leave enough space to allow the movement of
the organic A-cation, especially at room temperature, which results in polar fluctuation and, in the spectra,
in a broad zero-energy peak, which is observed in 3D and 2D cases [90, 97]. In some cases, at low
temperature the modes related to the motion of the whole organic cation (translation/libration, spinning)
can be observed at low energy [82]. An effective way to evaluate the effect of the organic cation’s nature and
volume on the vibration modes of the inorganic layers for a specific lattice is to quantify the octahedral
distortion in the crystal structure in terms of the M···X bond length and angle compared to the ideal
octahedron, since both parts are assembled by hydrogen bonding. This can be done using the mean
octahedral quadratic elongation (λoct) and the octahedral angle variance (σ2

oct) [77, 86, 98], following the

equations: λoct =
1
6

6∑
i=1

ℓi
ℓ0
and σ2

oct =
1
11

12∑
i=1

(αi − 90◦)2, where ℓ0 and ℓi are the M···X bond lengths in a regular

octahedron and the studied octahedron, respectively, and αi the X···M···X angles. In this way, a shift towards
lower frequency (energy) values for the octahedra-related modes is generally observed when increasing the
octahedral distortion [77, 86].

As discussed in the previous section, the crystal symmetry of 2D HOIP is typically tetragonal,
orthorhombic, triclinic, or monoclinic. When the lattice symmetry is reduced from cubic or tetragonal in the
3D cases, to orthorhombic or triclinic or monoclinic, a splitting can be expected for each degenerate mode.
Indeed, the appearance of new modes at low energy in layered HOIP can be directly described in these terms.
The splitting is related to the coupling with the molecular cations and can be related to a difference in the
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Figure 4. (a) Polarization angle dependent-Raman in (BA)2PbI4 and MAPbI3 at 10 K in the parallel configuration. Top panel is
obtained by summing over all polarizations. Reproduced from [79]. CC BY 4.0. (b) Angle-resolved polarized micro-Raman
spectroscopy on (BA)2PbBr4 flakes. Upper left: Optical microscope image of an exfoliated flake where the polarized (VV) and
depolarized (HV) configurations are marked. Lower left: Raman spectra at 5 K in (VV) and (HV) configurations in two different
orientations. Right: colour maps of the Raman intensity vs polarization rotation (5 K), for (VV) and (HV) configurations. The
angle is defined with respect to the direction of the vertical (V) polarizer. Reproduced with permission from [76]. © 2022 The
Authors. Small published by Wiley-VCH GmbH CC BY-NC 4.0. (c) Left: low-frequency Raman spectrum at room temperature
(red) and 77 K (blue) for n= 2 (BA)2MAPb2I7, with Raman frequencies and activities predicted from DFT calculations (green).
Right: calculated dispersion according to the Rytov model in the folded Brillouin zone (blue); in red the experimentally measured
frequency. Reprinted from [90], with the permission of AIP Publishing.

stiffness of the organic part. When the cations interact strongly, as in the case of aromatic cations, the stiffer
organics will lead to a less symmetric structure, with the appearance of several Raman active modes. This was
shown by Menahem et al [79], who compared BA, MA and PEA lead iodide with n= 1 (figure 3(a)), and
Dhanabalan et al [94] have shown how PEA and BA have different effects on the spectrum of lead bromide
n= 1 2D HOIP (figure 3(b)). As PEA is stiffer, more modes are observed at low energy with respect to the
softer BA. This was ascribed to a stronger coupling between octahedra due to the rigid PEA.

The symmetry assignment of the Raman modes is based on two complementary methods. The use of
numerical methods such as density functional theory (DFT) allow finding the normal vibrational modes,
including their expected range of frequency (energy), and intensity. Finally, the symmetry of the mode can be
assessed by direct calculation of the Raman tensor as the derivative of the polarizability with respect to the
normal mode [76, 78, 79, 93, 94]. DFT methods predict a large number of vibrational modes in HOIPs, as
expected due to the large number of atoms in the unit cell. In these simulations, the effect of the low
symmetry of the crystal is clearly visible together with the effect of the interaction between the organic and
inorganic parts.

From the experimental side, polarization-resolved Raman spectroscopy measurements allow to identify
the symmetry of each mode, which can be matched with an analysis of the symmetry of the crystal. An
example of the experimental polarization-dependent results is shown in figure 4(a), for BA2PbI4 (layered
HOIP with n= 1) and MAPbI3 (3D). The colour maps highlight the 4-fold symmetry for the vibrational
modes of the inorganic cage, associated with the symmetry of orthorhombic lattices. Interestingly, similar
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symmetry is found in crystals without 4-fold axes, such as the monoclinic (UDA)2PbBr4 [76]. There, the
pattern results from the symmetry of the octahedra, due to the localized nature of the modes. Additionally,
the organic cation can affect the polarization dependence. In [94], a band assigned to Pb–Br scissoring has a
distinct anisotropy with PEA but not with BA, suggesting an effect of the relative orientation of the phenyl
ring and the inorganic octahedral lattice. This anisotropy appears as a band found in depolarized spectrum
of PEA crystal, but not in the corresponding polarized spectrum.

The anisotropic response is even more striking in cases where the plane of inorganic octahedra is very
relevant. This occurs in materials that present the so-called ‘post-perovskite’ structure, which is strikingly
different from Ruddlesden-Popper (RP) and Dion-Jacobson (DJ). Here, the octahedra share a corner in one
direction (y) and share an edge in the orthogonal direction (x). As shown in Selivanov et al [96], Raman
spectra with parallel polarization xx and yy will be different, being stronger in the direction of the corner
sharing octahedra since the vibration amplitude is larger.

The low energy range is particularly interesting as it can host modes associated to a variety of
phenomena, as has been demonstrated for other materials [99]. Global vibrations of nanoparticles, such as
breathing of carbon nanotubes [62] or breathing of 2D CdSe nanomaterials [100–103], can be found here. In
the case of layered structures, such as semiconductor superlattices [104] and 2D HOIPs, vibrations with long
wavelength can be associated to the periodicity of the stack of the layers, in analogy with multi quantum
wells [90]. They arise from the longitudinal acoustic waves of the individual layers, which are folded in the
‘mini Brillouin zone’ of the superlattice, yielding ‘phononic minibranches’. In 2D HOIPs, different elastic
properties of the inorganic and organic parts would give rise to well-separated minibranches. Dahod et al
[90] have analysed the low energy spectrum of (BA)2MAPb2I7 with n= 2 following this model, as shown
in figure 4(c). In particular, they assumed that the velocity of sound in the organic and inorganic parts is
the same as in the bulk and used a continuum approximated model (the Rytov model [104]) to calculate the
zone-folded longitudinal acoustic modes (zf-LA) expected in a superlattice. This result is used to explain the
appearance of a peak at∼25 cm−1, whose experimental high intensity was not predictable by DFT. This
assignment, although not conclusive, is supported by the dependence of this mode on the choice of the
organic moieties and of the number of octahedral layers (n) of the inorganic lattice. Nonetheless, it is
interesting to note that this interpretation of the low-frequency mode is in stark contrast to a motion of the
heavy ion, the latter being typically local, while the former is long-ranged by definition. The difference can be
quite important in the interaction with electrons, as discussed in section 5, because of the relevance of the
lattice distortion generated in the two cases, that can lead to different optical properties. This further
highlights the need for a proper identification of vibrational modes in these materials. Table 3 contains a
summary of the vibrational modes described in the literature for layered HOIPs.

Another important case of modes at low energy is related to soft modes in phase transitions, discussed in
the following section.

4. Phase transitions

The hybrid nature of these materials plays a key role in the phase transition, which results from the coupling
between the structural modulation of the inorganic octahedra layer and the conformational flexibility of the
organic cations, both connected by hydrogen-bonding interactions at the R-NH3

+ moiety. The phase
transitions can occur as related to the order state of the organic moieties [77]; in this case, the discontinuous
nature is clearly evident in the Raman spectrum of the inorganic part as a ‘jump’ in peak position and
linewidth, while in the organic part a transition from ‘solid-like’ (narrow peaks) to ‘liquid-like’ (broad peaks)
is observed. This leads to strong distortion (tilting) of the inorganic octahedra [77, 79], affecting the
optoelectronic properties. This mechanism is slightly different from the case of 3D HOIPs; in that case, it has
been pointed out that octahedral tilting is responsible for the phase transition as well as for the strong
anharmonicity [105]. In this way, the inorganic composition (metal and halide) and the organic cation
nature (R= alkyl chains, aromatic, or more complex molecules) determine the phase transition temperature
of the resulting compound. Therefore, it is possible to establish some general rules. Fixing the metal halide
(e.g. PbI4−, AgBiBr84−) and varying the organic spacer, it has been observed that the phase transition
temperature progressively increases with the number of carbon atoms, x, in alkyl ammonium cations,
CxH2x+1NH3

+, and when using aromatic molecules such as PEA. To cite some examples, in the case of the
most studied lead halide HOIPs, different reports have shown this trend in the transition temperature:
(PA)2PbI4 ∼200–250 K [106] <(BA)2PbI4 ∼ 250–270 K [107, 108]; for x > 4 there is more than one phase
transition [78, 108], whereas (PEA)2PbI4 [87] shows none. Another example is the AgBiBr84− double HOIP:
(PA)4AgBiBr8 ∼ 172 K < (BA)4AgBiBr8 ∼ 282 K and (PEA)4AgBiBr8 does not present phase transition at
least up to 330 K [77] (figure 5(a)). Both examples highlight the relevance of the nature of the organic cation.
While the alkylammonium chains show a higher conformational and motional freedom, the arrangement of

11



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Ta
bl
e
3.
R
am

an
m
od

es
as
si
gn
m
en
t
to

th
e
co
rr
es
po

n
di
n
g
in
or
ga
n
ic
la
tt
ic
e
an
d
or
ga
n
ic
ca
ti
on

s
in

la
ye
re
d
H
O
IP
s
de
te
rm

in
ed

co
m
bi
n
in
g
ex
p
er
im

en
ts
an
d
th
eo
ri
ca
lc
al
cu
la
ti
on

s.

C
om

po
u
n
da

Ty
p
e
of

p
er
ov
sk
it
e

In
or
ga
n
ic
m
od

es
O
rg
an
ic
m
od

es
R
ef
er
en
ce

(B
A
) 2
P
bI

4

(E
D
B
E
) 2
P
bI

4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
99

cm
−
1
P
b-
I
st
re
tc
h
in
g
A
m
m
on

iu
m

m
oi
et
ie
s
co
u
pl
ed

w
it
h
th
e

in
or
ga
n
ic
pa
rt
:(
B
A
) 2
P
bI

4
–1
16

cm
−
1
lib

ra
ti
on

m
od

e;
18
3
cm

−
1

to
rs
io
n
al
m
od

e
//
(E
D
B
E
) 2
P
bI

4–
13
6
cm

−
1
lib

ra
ti
on

m
od

e

R
an
ge

30
0–
15
00

cm
−
1
(B
A
) 2
P
bI

4
pr
es
en
ts

th
e
u
su
al
m
od

es
.I
n
co
n
tr
as
t,
(E
D
B
E
) 2
P
bI

4

sh
ow

s
ad
di
ti
on

al
m
od

es
du

e
to

th
e
gr
ea
te
r

in
te
ra
ct
io
n
w
it
h
th
e
in
or
ga
n
ic
ca
ge
.

C
or
te
cc
h
ia
et
al
[8
6]

(B
A
) 2
P
bI

4

(P
E
A
) 2
P
bI

4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
(B
A
) 2
P
bI

4

72
.3
2
cm

−
1
(A

g
)
in
-p
h
as
e
P
b-
I
(a
pi
ca
l)
st
re
tc
h
in
g
+

oc
ta
h
ed
ra
l

ro
ta
ti
on

88
.9
cm

−
1
(A

g
)
in
-p
h
as
e
P
b-
I
(a
pi
ca
l)
st
re
tc
h
in
g
+

oc
ta
h
ed
ra
l

ro
ta
ti
on

99
.6
3
cm

−
1
(A

g
)
ou

t
of

ph
as
e
P
b-
I
(e
qu

at
or
ia
l)
st
re
tc
h
in
g

11
4
cm

−
1
(B

1g
)
in
-p
h
as
e
P
b-
I
(e
qu

at
or
ia
l)
st
re
tc
h
in
g
+

P
bI
4

br
ea
th
in
g

(P
E
A
) 2
P
bI

4

78
.3
cm

−
1
(A

g
)
in
-p
h
as
e
P
b-
I
st
re
tc
h
in
g
+

oc
ta
h
ed
ra
lr
ot
at
io
n

(B
A
) 2
P
bI

4

12
7.
5
cm

−
1
(B

3g
)
or
ga
n
ic
to
rs
io
n
al

14
6.
5
cm

−
1
,1
54

cm
−
1
(A

g
)/
(B

1g
)
or
ga
n
ic

to
rs
io
n
al

16
9
cm

−
1
,1
78
.2
cm

−
1
(B

3g
)/
(A

g
)
or
ga
n
ic

to
rs
io
n
al

23
9.
1
cm

−
1
,2
43

cm
−
1
(A

g
)
to
rs
io
n
al
of

H
–N

–C
–C

an
gl
e:
in
vo
lv
ed

H
-b
on

di
n
g

(P
E
A
) 2
P
bI

4

10
6.
2
cm

−
1
(A

g
)
π
−
π
vi
br
at
io
n
of

P
E
A

13
4.
6
cm

−
1
(A

g
)
π
−
π
vi
br
at
io
n
of

P
E
A

13
9.
3
cm

−
1
(A

g
)
π
−
π
vi
br
at
io
n
of

P
E
A

D
ra
go
m
ir
et
al
[8
7]

(B
A
) 2
P
bI

4
R
u
dd

le
sd
en
-P
op

p
er

n
=

1
—

R
am

an
m
od

es
re
la
te
d
to

B
A
ca
ti
on

:
25
0–
37
0
cm

−
1
C
C
N
tw
is
ti
n
g/
N
H

3
+

de
fo
rm

at
io
n

34
1
an
d
40
0
cm

−
1
C
C
N
w
ag
gi
n
g

41
9
cm

−
1
C
–N

de
fo
rm

at
io
n

47
6
cm

−
1
N
H

3
+
tw
is
ti
n
g/
C
C
N

de
fo
rm

at
io
n

M
or
al
et
al
[8
9]

(C
on

ti
n
u
ed
.)

12



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Ta
bl
e
3.
(C

on
ti
n
u
ed
.)

C
om

po
u
n
da

Ty
p
e
of

p
er
ov
sk
it
e

In
or
ga
n
ic
m
od

es
O
rg
an
ic
m
od

es
R
ef
er
en
ce

(B
A
) 2
P
bI

4

(P
E
A
) 2
P
bI

4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
(B
A
) 2
P
bI

4—
T
=

10
K

24
.8
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

25
.6
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

36
.0
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e
+

tw
is
ti
n
g
ou

t-
of
-p
la
n
e

42
.2
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

47
.4
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
&
P
b-
I
w
ag
gi
n
g
in
-p
la
n
e

49
.9
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

52
.5
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
&
P
b-
I
sc
is
so
ri
n
g
in
-p
la
n
e

58
.9
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

&
P
b-
I
ti
lt
in
g
in
-p
la
n
e
+

P
b-
I

sc
is
so
ri
n
g
in
-p
la
n
e

68
.8
cm

−
1
(B

1g
)
P
b-
I
sy
m
m
et
ri
c
st
re
tc
h
sc
is
so
ri
n
g
in
-p
la
n
e

72
.3
cm

−
1
(A

g
)
P
b-
I
sy
m
m
et
ri
c
st
re
tc
h
in
g

81
.5
cm

−
1
,8
5.
4
cm

−
1
(B

1g
)
P
b-
I
sy
m
m
et
ri
c
st
re
tc
h
in
g

88
.5
cm

−
1
(A

g
)
P
b-
I
sy
m
m
et
ri
c
st
re
tc
h
in
g
+

an
ti
sy
m
m
et
ri
c

st
re
tc
h
in
g
in
-p
la
n
e

94
.4
cm

−
1
(B

1g
)
P
b-
I
co
n
tr
ac
ti
on

98
.4
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
+

P
b-
I
an
ti
sy
m
m
et
ri
c
st
re
tc
h
in
g

in
-p
la
n
e

99
.3
cm

−
1
(B

1g
)
P
b-
I
co
n
tr
ac
ti
on

+
P
b-
I
sy
m
m
et
ri
c
st
re
tc
h
in
g

11
2.
6
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

11
4.
8
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e

11
6.
4
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e
&
ou

t-
of
-p
la
n
e

12
7.
0
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
+

sc
is
so
ri
n
g
in
-p
la
n
e

14
6.
3
cm

−
1
(B

1g
)
oc
ta
h
ed
ra

ti
lt
in
g
+

P
b-
I
sc
is
so
ri
n
g
in
-p
la
n
e

15
3.
5
cm

−
1
(A

g
)
oc
ta
h
ed
ra

ti
lt
in
g
in
-p
la
n
e
+

tw
is
ti
n
g

ou
t-
of
-p
la
n
e

—
M
en
ah
em

et
al
[7
9]

(C
on

ti
n
u
ed
.)

13



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Ta
bl
e
3.
(C

on
ti
n
u
ed
.)

C
om

po
u
n
da

Ty
p
e
of

p
er
ov
sk
it
e

In
or
ga
n
ic
m
od

es
O
rg
an
ic
m
od

es
R
ef
er
en
ce

(C
x
H

2x
+
1
N
H

3
) 2
P
bI

4

(x
=

4–
9)

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
O
bs
er
ve
d
m
od

es
:

x
=

4–
24
.3
(B

3g
),
33
.7
,3
8.
9
(B

3g
),
48
.7
(A

g
),
53
.9
(B

3g
),
85
.4
&

93
.2
(B

3g
)
cm

−
1

x
=

5–
24
.4
,2
8.
8,
38
,4
7.
5,
54
.3
,5
7,
89

&
94
.4
cm

−
1

x
=

6–
24
.6
,3
5.
8,
38
.2
,4
4.
2,
46
.4
,6
1,
68
.6
&
79
.1
cm

−
1

x
=

7–
25
.8
,3
6.
4,
44
.4
,4
9.
3,
55
,6
1,
86
.1
&
94
.5
cm

−
1

x
=

8–
25
.6
(B

g
),
40
,4
3.
7(
B
g
),
49
.5
(A

g
),
55
.3
(A

g
),
61
(B

g
),
85

&
94
.9
(B

g
)
cm

−
1

x
=

9–
25
.7
,4
0,
43
.9
,4
9.
7,
55
.2
,6
1,
84
.6
&
94
.9
cm

−
1

R
am

an
m
od

es
<
40

cm
−
1
oc
ta
h
ed
ra

tw
is
ti
n
g
w
it
h
m
ot
io
n
of

th
e

ap
ic
al
I−

R
am

an
m
od

es
40
–6
0
cm

−
1
eq
u
at
or
ia
lI

−
m
ov
in
g
p
er
p
en
di
cu
la
r
to

th
e
st
ac
ki
n
g
ax
is
w
it
h
in

th
e
in
or
ga
n
ic
pl
an
e

—
M
au
ck

et
al
[7
8]

(B
A
) 2
(M

A
) n

−
1

P
b n
I 3
n+

1

n
=

2–
4

(B
A
) 2
(F
A
)P
b 2
I 7

(P
A
) 2
(M

A
)P
b 2
I 7

(H
A
) 2
(M

A
)P
b 2
I 7

R
u
dd

le
sd
en
-P
op

p
er

n
=

2–
4

R
am

an
m
od

es
<
30

cm
−
1
n
o
ca
lc
u
la
te
d
D
FT

m
od

es
to

re
la
te

(R
yt
ov

m
od

el
ap
pl
ie
s)

R
am

an
m
od

es
30
–6
0
cm

−
1

di
st
or
ti
on

s
of

th
e
in
or
ga
n
ic
ca
ge

R
am

an
m
od

es
>
60

cm
−
1

T
O
m
od

es
in

w
h
ic
h
th
e
or
ga
n
ic
an
d
in
or
ga
n
ic
su
bl
at
ti
ce
s
ex
h
ib
it

in
-p
la
n
e
sh
ea
ri
n
g

—
D
ah
od

et
al
[9
0]

(H
A
) 2
P
bI

4

(H
A
) 2
P
bB

r 4
(B
A
) 2
P
bI

4

(B
zA

) 2
P
bI

4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
R
am

an
m
od

es
<
50
0
cm

−
1
tr
an
sl
at
io
n
s/
vi
br
at
io
n
s
of

th
e

le
ad
-h
al
og
en

fr
am

ew
or
k

R
am

an
m
od

es
>
50
0
cm

−
1

vi
br
at
io
n
s/
h
in
de
re
d
ro
ta
ti
on

s
of

or
ga
n
ic

m
ol
ec
u
le
s
80
0–
10
00

cm
−
1
=

C
–C

be
n
di
n
g

14
00
–1
60
0
cm

−
1
N
H

3
+
be
n
di
n
g,

co
n
cr
et
el
y:
(H

A
) 2
P
bI

4–
14
84
.7
cm

−
1
(B

g
);

15
53
.5
cm

−
1
(A

g
);
15
62
.9
cm

−
1
(B

g
)
//

(H
A
) 2
P
bB

r 4
–1
49
6.
3
cm

−
1
(B

g
);

15
72
.6
cm

−
1
(B

g
)
//

(B
A
)2
P
bI
4–
14
79
.0
cm

−
1
(B

1g
);

15
79
.2
cm

−
1
(B

1g
)
//

(B
zA

) 2
P
bI

4–
14
74
.8
cm

−
1
(B

1g
);

15
52
.7
cm

−
1
(B

1g
)
R
am

an
m
od

es
>
28
50

cm
−
1
ar
e
H
–X

(X
=
C
,N

)
bo

n
d
st
re
tc
h
in
g

La
va
n
et
al
[9
1]

(C
on

ti
n
u
ed
.)

14



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Ta
bl
e
3.
(C

on
ti
n
u
ed
.)

C
om

po
u
n
da

Ty
p
e
of

p
er
ov
sk
it
e

In
or
ga
n
ic
m
od

es
O
rg
an
ic
m
od

es
R
ef
er
en
ce

(N
A
) 2
P
bI

2
B
r 2

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
10
9
cm

−
1
P
b-
I
St
re
tc
h
in
g

40
1
cm

−
1
C
–C

–N
B
en
di
n
g

A
bi
d
et
al
[9
3]

81
5
cm

−
1
C
–C

St
re
tc
h
in
g

88
3
cm

−
1
N
H

3
ro
ck
in
g

10
10

cm
−
1
C
H

2
R
oc
ki
n
g

14
3
cm

−
1
P
b–
B
r
St
re
tc
h
in
g

10
75

cm
−
1
C
H

3
R
oc
ki
n
g

12
30

cm
−
1
C
H

2
Tw

is
ti
n
g

13
55

cm
−
1
C
H

2
W
ag
gi
n
g

14
58

cm
−
1
C
H

2
Sc
is
so
ri
n
g

15
65

cm
−
1
N
H

3

D
ef
or
m
at
io
n

28
09

cm
−
1
C
H

2
sy
m
m
et
ri
c
st
re
tc
h
in
g

28
58

cm
−
1
C
H

2
A
n
ti
sy
m
m
et
ri
c
st
re
tc
h
in
g

29
60

cm
−
1
C
H

3
Sy
m
m
et
ri
c
st
re
tc
h
in
g

30
24

cm
−
1
C
H

3
A
n
ti
sy
m
m
et
ri
c
st
re
tc
h
in
g

(B
A
) 2
M
A
P
b 2
I 7

R
u
dd

le
sd
en
-P
op

p
er

n
=

2
—

0
G
Pa

–
∼
47
5.
3
an
d
48
4.
7
cm

−
1
(C

C
C
)
&

(C
C
N
)
be
n
di
n
g;
∼
86
4.
7
cm

−
1
B
A
ro
ck
in
g;

∼
83
7.
2
cm

−
1
C
H

2
ro
ck
in
g

Y
in

et
al
[9
2]

(B
A
) 2
P
bB

r 4
(P
E
A
) 2
P
bB

r 4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
(B
A
) 2
P
bB

r 4
T
=

4
K

21
.8
cm

−
1
oc
ta
h
ed
ra

ro
ck
in
g/
tw
is
ti
n
g
(B

1g
,B

3g
)

35
.7
,4
4.
9,
50
.3
cm

−
1
P
b–
B
r
bo

n
d
be
n
di
n
g
(A

g
)

61
.5
cm

−
1
P
b–
B
r
bo

n
d
be
n
di
n
g

an
d
tw
is
ti
n
g;
B
r−

P
b–
B
r
sc
is
so
ri
n
g
in

th
e
oc
ta
h
ed
ra
lp
la
n
e
(B

2g
)

83
.6
,8
9.
1
cm

−
1
ou

t-
of
-p
la
n
e
P
b–
B
r
bo

n
d
st
re
tc
h
in
g
(A

g
)

10
6.
8,
13
2
cm

−
1
in
/o
u
t-
of
-p
la
n
e
P
b–
B
r
bo

n
d
st
re
tc
h
in
g
(A

g
)

(P
E
A
) 2
P
bB

r 4
–T

=
4
K

26
.8
cm

−
1
oc
ta
h
ed
ra

ro
ck
in
g/
tw
is
ti
n
g
(B

1g
,B

3g
)

52
.4
,5
4.
9,
56
.0
,5
7.
7,
58
.8
cm

−
1
P
b–
B
r
bo

n
d
be
n
di
n
g
(A

g
)

70
.3
,7
2.
0,
75
.0
,7
8.
5,
80

cm
−
1
P
b–
B
r
bo

n
d
be
n
di
n
g
an
d
tw
is
ti
n
g;

B
r−

P
b–
B
r
sc
is
so
ri
n
g
in

th
e
oc
ta
h
ed
ra
lp
la
n
e
(B

2g
)
95
.1
,

10
5.
3
cm

−
1
ou

t-
of
-p
la
n
e
P
b–
B
r
bo

n
d
st
re
tc
h
in
g
(A

g
)

13
1.
6,
14
0.
7
cm

−
1
in
/o
u
t-
of
-p
la
n
e
P
b–
B
r
bo

n
d
st
re
tc
h
in
g
(A

g
)

—
D
h
an
ab
al
an

et
al
[9
4]

(C
on

ti
n
u
ed
.)

15



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Ta
bl
e
3.
(C

on
ti
n
u
ed
.)

C
om

po
u
n
da

Ty
p
e
of

p
er
ov
sk
it
e

In
or
ga
n
ic
m
od

es
O
rg
an
ic
m
od

es
R
ef
er
en
ce

(B
A
) 2
P
bB

r 4
(U

D
A
) 2
P
bB

r 4
(M

D
A
) 2
P
bB

r 4
(M

D
D
A
) 2
P
bB

r 4

R
u
dd

le
sd
en
-P
op

p
er

n
=

1
25
–3
5
cm

−
1
(R
yt
ov

m
od

el
)

40
–5
0
cm

−
1
P
b–
B
r
bo

n
d
be
n
di
n
g
an
d
sc
is
so
ri
n
g

50
–6
0
cm

−
1
P
b–
B
r
st
re
tc
h
in
g

80
–1
20

cm
−
1
ou

t-
of
-p
la
n
e
vi
br
at
io
n
s
(e
.g
.P

b–
B
r
st
re
tc
h
in
g
in

th
e

cr
os
s
pl
an
e)

—
Li
n
et
al
[7
6]

(P
A
) 4
A
gB

iB
r 8

(B
A
) 4
A
gB

iB
r 8

(P
E
A
) 4
A
gB

iB
r 8

(P
A
) 2
C
sA
gB

iB
r 7

(B
A
) 2
C
sA
gB

iB
r 7

(P
E
A
) 2
C
sA
gB

iB
r 7

D
ou

bl
e
p
er
ov
sk
it
es

R
u
dd

le
sd
en
-P
op

p
er

n
=

1,
n
=

2

∼
17
0
cm

−
1
(A
gB

r 6
)5
–
(B
iB
r 6
)3

−
oc
ta
h
ed
ra

sy
m
m
et
ri
c

st
re
tc
h
in
g(
A
1g
-l
ik
e)

∼
14
0
cm

−
1
(A
gB

r 6
)5
–
(B
iB
r 6
)3

−

oc
ta
h
ed
ra

as
ym

m
et
ri
c
st
re
tc
h
in
g
(E

g
-l
ik
e)

(P
A
) 4
A
gB

iB
r 8
/(
B
A
) 4
A
gB

iB
r 8
/(
PA

) 2
C
sA
gB

iB
r 7
/

(B
A
) 2
C
sA
gB

iB
r 7

M
ar
tí
n
-G

ar
cí
a
et
al
[7
7]

11
00
–1
25
0
cm

−
1
C
–N

st
re
tc
h
in
g

12
50
–1
42
0
cm

−
1
C
H

2
tw
is
ti
n
g/
w
ag
gi
n
g

14
20
–1
52
0
cm

−
1
C
H

2
be
n
di
n
g

15
20
–1
65
0
cm

−
1
N
H

3
+
be
n
di
n
g
an
d
ot
h
er
s

28
50
–2
95
0
cm

−
1
C
H

2
st
re
tc
h
in
g

29
50
–3
10
0
cm

−
1
C
H

3
st
re
tc
h
in
g

31
00
–3
20
0
cm

−
1
N
H

3
+
vi
br
at
io
n
s

(P
E
A
) 4
A
gB

iB
r 8
/(
P
E
A
) 2
C
sA
gB

iB
r 7

11
00
–1
25
0
cm

−
1
C
–N

&
C
–C

ri
n
g
st
re
tc
h
in
g

12
50
–1
42
0
cm

−
1
C
H

2
tw
is
ti
n
g/
w
ag
gi
n
g

14
20
–1
52
0
cm

−
1
C
H

2
be
n
di
n
g

15
20
–1
65
0
cm

−
1
N
H

3
+
be
n
di
n
g
an
d
ot
h
er
s

28
50
–3
05
0
cm

−
1
C
H

2
st
re
tc
h
in
g

30
50
–3
20
0
cm

−
1
C
H
ar
om

at
ic
vi
br
at
io
n
s

a
O
rg
an
ic
ca
ti
on

s
n
ot
at
io
n
:M

A
=

m
et
hy
la
m
m
on

iu
m
;F
A
=

fo
rm

am
id
in
iu
m
;G

A
=

gu
an
id
in
iu
m
;P
A
=

pr
op

yl
am

m
on

iu
m
;B

A
=

bu
ty
la
m
m
on

iu
m
;H

A
=

h
ex
yl
am

m
on

iu
m
;N

A
=

n
on

yl
am

m
on

iu
m
;U

D
A
=

u
n
de
cy
la
m
m
on

iu
m
;

M
D
A
=

m
et
hy
ld
ec
yl
am

m
on

iu
m
;M

D
D
A
=

m
et
hy
ld
od

ec
yl
am

m
on

iu
m
;P

E
A
=

ph
en
et
hy
la
m
m
on

iu
m
;B

zA
=

be
n
zy
la
m
m
on

iu
m
;E

D
B
E
=

2,
2-
(e
th
yl
en
ed
io
xy
)-
bi
s(
et
hy
la
m
m
on

iu
m
).

16



J. Phys. Mater. 5 (2022) 034004 D Spirito et al

Figure 5. (a) Phase transition varying temperature. Crystal structures of the 3D Cs2AgBiBr6, (PA)2CsAgBiBr7 (n= 2) and
(PA)4AgBiBr8 (n= 1) samples, drawn using VESTA 3 software [114] based on the crystallographic data from [24, 115].
Temperature-dependent Raman spectra in the range of the octahedral symmetric stretching band for the PA, BA, and PEA
systems and the 3D crystal. For the 1L systems, spectra in the range from 1100 to 1700 cm−1 are also shown, in which the
vibrational resonances of the organic cations occur. The horizontal dashed lines indicate the phase transition temperature.
Reproduced from [77]. CC BY 4.0. (b) Phase transition varying pressure. Crystal structures of the BA2PbBr4 (n= 1) and
(BA)2MAPb2Br7 (n= 2) samples, drawn using VESTA 3 software [114] based on the crystallographic data from [116, 117].
Pressure-dependent Raman spectra for BA2PbBr4 (n= 1) and (BA)2MAPb2Br7 (n= 2) in the range 0–14 GPa. Comparison of
Raman spectrum at 2.4, 3.7, and 4.8 GPa for BA2PbBr4 (n= 1) and at 2.6 and 3.4 GPa for (BA)2MAPb2Br7 (n= 2) are also
shown. [70] John Wiley & Sons. © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

the phenyl rings results in a π–π stacking in the organic layer, providing more rigidity and larger volume,
minimizing the possibility of an interlayer deformation [12, 77, 94, 109]. In a similar way, the halide anion
plays a key role. The size of the perovskite lattice increases in accordance with the anionic radius series as
Cl− < Br− < I−. This translates into differences in the phase transition temperatures, as shown by Takahashi
et al for Pb-based 2D HOIPs [110].

In this scenario, temperature-dependent Raman spectroscopy allows monitoring the dynamic
order-disorder structural changes happening at the phase transition by studying the modes involving the
R-NH3

+ bonds and the inorganic octahedra vibrational modes. In this way, Moral et al [89] studied the
phase transition of (BA)2PbI4 prepared as powder and thin film. Their results demonstrated that R-NH3

+

bonds behave as soft modes, i.e. modes whose energy goes to zero as the transition temperature is
approached. The authors find that the temperature dependence of these soft modes is given by:

ω (T) = ω0(T0 −T)1/3, where T0 is the transition temperature. The 1/3 in the exponent corroborates that it is
a second order transition with short-range correlations. Most interestingly, Moral et al highlight that the
preparation method has an influence on the phase transition temperature, finding values of 230–242 K for
powder and 260–278 K for thin films. Dragomir et al [87] also performed temperature-dependent Raman
studies in (BA)2PbI4 together with (PEA)2PbI4, showing that the nature of the dynamic order-disorder
transition is different. Using PEA, no first order phase transition exists in the range studied, while with BA
there is a transition at 220–260 K. The relevance of the crystal structure is also highlighted. For example, the
appearance of multiple modes in BA vs PEA can be due to the stiffening of the lattice due to octahedral
distortion (<200 cm−1). Moreover, some modes are more sensitive than others to the phase transition. In the
case of the (BA)2PbI4, due to the greater tilting of octahedra in the inorganic lattice, there is a high sensitivity
of the Pb-I equatorial stretching vs Pb-I apical stretching mode to the phase transition. In (PEA)2PbI4 an
order-disorder transition at 100 K is evidenced by the broadening of organic-related vibrations and the
suppression of others related to the π−π stacking among molecules. Going a step further in the Raman
analysis of these materials, Menahem et al [79] used polarized-orientation Raman spectroscopy and
compared the structural dynamics of MAPbI3 with its layered counterparts, (BA)2PbI4 and (PEA)2PbI4
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(figure 3(a)). In this way, they show that the structural dynamics of the layered counterparts has certain
features in common with the 3D one. They exhibit similar Raman mode frequencies and atomic motions
related to the inorganic lattice, which are split by the incorporation of the organic cations in the structure
due to intermolecular interactions. Moreover, the authors gain insight into the order-disorder phase
transition of (BA)2PbI4 at∼274 K demonstrating that it involves the relaxation of octahedral tilting coupled
to anharmonic thermal fluctuations, which affect the optoelectronic properties.

Apart from the temperature, another external stimulus than can promote structural changes and
therefore, property modulation due the hybrid nature of the HOIPs, is pressure. Indeed, pressure up to
50 GPa has been applied to modulate the optoelectronic properties of these HOIPs. Recent studies have
shown that the achievement of an effective bandgap tunability while keeping an efficient PL quantum yield is
a matter of materials design, specifically, of properly selecting the organic cation in terms of molecule size
and configuration. In 3D HOIPs PL tunability has been demonstrated for MAPbX3 <80 meV and for
FAPbX3 ∼120 meV before PL quenching due to lattice distortion and bond bending. Instead, this tunability
can be further increased using 2D HOIPs, reaching up to 520 meV, due to their layered nature and large
A-site organic cations [69, 70]. Considering the sensibility of the vibrational properties to changes in the
crystal structure and environment, Raman spectroscopy is a powerful tool to monitor these materials under
pressure. In this way, Liu et al [69] determined an enhancement of the interlayer interaction of PEA cations
as a systematic blueshift of the benzene ring mode during the hydrostatic compression applied to PEA2PbI4
microplates in a DAC. Furthermore, the Raman modes disappear at the same pressure as the PL quenching.
This indicates that, when placed under pressure, the organic part is the first to be compressed (as it is softer).
As pressure continues to increase, the inorganic lattice (harder part) begins to undergo changes as well, such
as distortion and tilting. The process is irreversible and does not originate a phase transition. This is in
contrast to the behaviour observed for [(BA)2(MA)n−1PbnI3n+1, n= 1, 2, 3, 4], which undergo phase
transitions under compression, indicating the key role of the organic cation [111–113]. Indeed, a detailed
recent in-situ Raman study in a DAC with single crystals by Yin et al [92] demonstrates that first the BA
cation accommodates the compression by rotating along the C–C/C–N chain, leading to different
consequences depending on the dimensionality of the HOIP. For n= 1, molecular tilting drives the adjacent
inorganic layer to shift in the same direction, promoting a pressure-induced phase transition not observed
for n > 1. Additionally, the n= 1 system presents an elastically reversible compressibility in terms of tilting
and bond lengths, absent in the n= 2 case. All these changes were observed following the evolution of peak
position and intensity of BA bending and rocking Raman modes under pressure (<3.2 GPa) evidencing the
rotation of the BA molecules during the compression. In detail, for n= 2, the bending (CCC) and (CCN)
modes merge into one band accompanied by a decrease of the rocking modes’ intensity and an enhancement
of the Raman active modes related to the new BA conformers generated by the applied pressure. A further
increase of the compression (>5.5 GPa) all the BA-related Raman peaks become weak and disappear due to
the structure amorphization [92]. For the n= 1 structure, the phase transitions (Pbca→ P21/a) were
detected as a narrowing of the octahedral in-phase and out-of-phase bending modes in the low-frequency
region of the Raman spectra with an additional octahedral out-of-phase rotation mode appearing in the
P21/a high-pressure phase. Moreover, the reorientation of the BA molecules is highlighted by the sharpening
of the BA rocking mode in Pbca and the appearance of BA breathing and C–N stretching modes in the P21/a
phase. All these Raman shifts are reversible upon decompression [88]. In terms of pressure-induced PL
modulation, n= 1 reaches∼300 meV, while n= 2∼ 190 meV [88, 92]. Similarly, Guo et al [95] studied
(HA)2(GA)Pb2I7 crystals (HA= hexylammonium; GA= guanidinium) under pressure, observing a
redshifted two-fold enhanced PL emission, with respect to the pristine material, which corresponds to a new
phase, presenting even different colour. The monitoring of the Raman modes related to the Pb-I vibrations
(∼40 and∼110 cm−1) allowed them to identify the lattice compression while increasing the pressure.
Indeed, these modes systematically blueshift and sharpen in the new phase, but increasing the pressure leads
to peaks broadening and weakening, revealing a higher structural disorder as result of the interlayer-distance
reduction and lattice contraction. Most importantly, the changes introduced in the structure are irreversible,
since the initial Raman spectrum and, therefore, the pristine crystal structure, are not recovered. Changing
the halide, Li et al [70] studied the pressure effect on the PL emission of [(BA)2(MA)n−1PbnBr3n+1, n= 1, 2]
crystals leading to redshifts of 520 meV for n= 1 and 230 meV for n= 2. Most importantly, the
(BA)2(MA)PbBr7 (n= 2) crystal undergoes two different phase transitions, related to (PbBr6)4− octahedra,
BA, and MA molecule tilting motion, detected by the appearance of new octahedral motion-related Raman
modes (figure 5(b)). In contrast, the BA2PbBr4 (n= 1) shows one phase transition, related to (PbBr6)4−

octahedra tilting and BA rearrangement, as indicated by the appearance of a Raman mode at∼30 cm−1 in
the new phase, while inside the phase increasing the pressure systematically blueshifts and broadens the
mode.
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5. Electron-phonon interaction

Several important and interesting optical properties of 3D and 2D HOIPs arise from the strong and peculiar
interaction of the charge carriers with the lattice vibrations, which are quite different from standard
inorganic semiconductors [72]. Raman spectroscopy, as discussed above, is a valuable tool to obtain
information about the typical energy and symmetry of the vibrational modes, and about the nature of lattice
dynamics, such as anharmonicity and phonon lifetime, which are relevant in electron-phonon coupling.

As discussed in section 3, a peculiarity of vibrations in HOIPs is the large ion displacement due to the
softness of the lattice, which results in anharmonic properties and localization of the phonon mode.
Combined with the small effective mass of the electrons, the localization strongly affects the electron-phonon
interaction, since it results in strong electric fields due to the ionic nature of the material. Because of this, the
coupling of electrons and phonons cannot be neglected even in simpler descriptions of the material
[72, 118]. This strong coupling is usually described in terms of polarons (i.e. a coupled state of excited
electrons and ionic lattice deformation), but HOIPs have proved to need more detailed modelling. The
polaron picture does not fully apply to HOIPs, and a better description considers the charges dynamically
localized because of the slowly moving lattice, due to the anharmonic vibrations (dynamic disorder); this
enables the prediction of properties such as the mobility and optical band gap [72, 119, 120].

Electron-phonon interaction is a critical mechanism in metal halide perovskite-based devices, as it
intervenes in limiting the carrier mobility and the efficiency and broadening of the emission [121, 122].
Studies of PL dynamics have shown that polarons can form and interact with longitudinal optical phonons
and that their large binding energy greatly affects the emission properties [123]. Furthermore, the
photoexcited charges, while being mostly localized in the inorganic layers of the hybrid perovskite, can
interact with vibrational modes of the inorganic part [124]. All these effects lead to broadband, white-light
emission of interest for LEDs. Indeed, the polaronic effects are found to be very relevant for the fate of
excited states in 2D HOIP, and several questions are open. For example, in 2D, free and self-trapped states
could not coexist, as there is no energy barrier between the states. By contrast, in PEA2PbCl4 with n= 1,
both emissions have been observed in PL, suggesting an interaction between the 2D layers [125].

The experimental techniques for assessing the electron-phonon coupling typically combine
measurements of phonon spectra, such as Raman spectroscopy, with optical spectroscopy for the electronic
transitions, such as PL and absorption. Time-resolved methods are especially useful, as they can identify the
dynamics of the electronic transitions. Using PL, the effect of phonon modes stemming from the organic
moieties has been found to affect the emission in more complex ways with respect to self-trapping or polaron
confinement. In (BA)2PbI4, Moral et al [89] found a double emission peak resulting from the splitting of the
exciton by interaction with specific modes of the BA. Their picture of interaction is summarized in
figure 6(a), as a subsequent relaxation of photoexcited hot electrons into free and then bound excitons, that
are coupled by phonon emission. Here, Raman spectroscopy provides the necessary support to evaluate the
energy of phonon modes (figure 6(b)), together with IR absorption. By comparing these results with the
analysis of the PL linewidth, the authors identified the vibrational modes of the polar heads of BA as directly
coupled with the exciton. A strong coupling between the vibrational modes of the inorganic cage and those
of the organic part has also been reported [126]. This coupling can be mechanical, or can originate from
electron-phonon interactions. Both cases would affect the dynamics of charges in the material.

Mauck et al [78] have used ultrafast time-resolved methods on thin films of n= 1 lead iodide with long
alkyl chains CxH2x+1NH3

+ with x > 4. Using femtosecond transient absorption, they photoexcited the
material with a short resonant light pulse and probed the absorption as a function of time with a broadband
light pulse. Since the pump pulse is shorter than the period of vibrations, the absorption is modulated by the
motion of the atoms, and this is observed in the time domain as oscillations in the absorption, whose
frequency corresponds to the energy of the vibrational modes coupled to the excited states. The Fourier
transform of the oscillation (figure 2(b)), called the Resonant Impulsive-Stimulated Raman Spectra (RISRS),
can then be compared directly to standard, continuous-wave Raman spectra. Mauck et al find that the energy
of phonons coupled with the photoexcited states is in the range of the vibrations of the inorganic part, and
varies little with the choice of organic moiety, in agreement with their study of PL linewidth. This is in
contrast to the observations in short chain (BA)2PbI4 (x = 4) [89], where the exciton dissociation was
ascribed to interaction with organic modes.

Electron-phonon coupling is inherent to the Raman effect [57], yet in the typical measurement, when the
excitation energy is far away from electronic resonances, the spectra are usually interpreted in a picture of
independence of phonons and electrons. Instead, in resonant Raman the two systems are strongly coupled
and their interaction is easily observed. Using this method, Gong et al [12] found differences in lead bromide
with n= 1 for different type of cation, in particular BA and PEA. The resonant-excitation spectrum of the
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Figure 6. (a) Scheme of optical and phonon-assisted transition in BA2PbI4 films. The optical excitation produces hot carriers, that
can relax to a free exciton state (FE). The exciton can recombine into radiative emission, yielding a peak in luminescence spectra,
or decay in bounded state (BE) with phonon emission, which can itself decay yielding an exciton-phonon replica in the PL. The
excitonic states depend on the crystalline phase and thus on the temperature. (b) Phonon modes observed in the same BA2PbI4
thin films, as measured by Raman and IR attenuated total reflectance. [89] John Wiley & Sons. © 2020 Wiley-VCH GmbH.

alkyl is much stronger than the one of the phenyl, indicating stronger electron-phonon coupling in the
former system. This is associated with the lower rigidity of the alkyl chain. The effect of the stronger
interaction in the alkyl sample is a larger non-radiative decay of photoexcited carriers, and thus a less
efficient luminescence.

Another relevant peculiarity is the anharmonicity in the vibrational modes [46, 107, 127–130]; its effect
on the electronic states must be taken into account, since thermal fluctuations, which are usually treated as a
perturbation, can instead give rise to large deviations when the vibrations are not described by harmonic
normal modes.

In the 3D case, especially in lead-iodides, these effects are very relevant, and are typically related to the
small size of the cation that allows a tilting of the octahedra [131–133] away from high-symmetry
configurations; in double perovskites such as Cs2AgBiBr6, which has been theoretically investigated by
Klarbring et al [73], a soft and anharmonic lattice affects phase transitions and thermal conductivity. Recent
results [46] have shown that in CsPbBr3 and Cs2AgBiBr6 the anharmonicity has quite different effects, and
these can be revealed by Raman spectroscopy. In the double perovskite, at high temperature, well-defined
modes are observed, whose Raman activity and polarization dependence follow the prediction of group
theory. In the single perovskite, the modes at high temperature are damped, and they break the predicted
selection rules, indicating that the distortions associated with octahedral tilting (thus with the anharmonicity
of the modes) is so strong that the equilibrium position of the ions is not described by the (average) cubic
structures.

The case of layered perovskites in this respect needs to be investigated in more detail; it is expected that
the movements of the octahedra can be large enough to bring the vibration beyond the harmonic
approximation, due to the presence of large organic cation. Menahem et al [79] compared the case of 3D
MAPbI3 with 2D BA2PbI4. At low temperature, the 2D HOIP has modes similar to the 3D, but they split
because of the interaction with the organic moieties (or, correspondingly, because the crystal symmetry is
reduced with respect to the 3D case, as discussed in the previous section). At high temperature, both crystals
undergo a phase transition. From orthorhombic phase, MAPbI3 becomes tetragonal at∼162 K. BA2PbI4
changes in another orthorhombic structure at∼274 K. In the high temperature phase, their Raman spectra
exhibit broad features due to the strong anharmonic tilting. Similar to 3D MAPbI3, this is related to the
phase transition via relaxational octahedral tilting, i.e. octahedral corrugation angles change, and there is an
additional tilting due to the bonding between the iodides and the amine group.

As mentioned, electron-phonon coupling can be obtained by combining the Raman data and the optical
properties of the crystals [12, 31, 134, 135]. Understanding a materials’ electron-phonon coupling is essential
for device design, as the coupling strength between the charge carriers and optical phonons plays a key role in
determining the non-radiative recombination processes occurring in HOIP-based optoelectronic
devices.The evaluation of the electron-phonon coupling from a quantitative point of view often relies on the
Huang-Rhys factor (S) [136]. This factor can be calculated from the Stokes shift energy (∆EStokes) [137] and
the LO phonon energy (ℏωLO) of the strongest overtone as∆EStokes = 2SℏωLO [85, 134]. Another way to
determine the Huang-Rhys factor is from the temperature dependent full width half maximum of the PL
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signal using the equation: FWHM= 2.36
√
Sℏωphonon

√
cot

(
ℏωphonon

2kBT

)
, where ℏωphonon is the phonon energy

[31]. Although the absolute S values obtained from both methods do not always match, the order of
magnitude is similar, allowing to distinguish between strong (S≫ 1) and weak (S∼ 1) electron-phonon
interaction. Estimations of the Huang-Rhys factor found in the literature usually show strong coupling for
the 3D HOIPs, e.g. MAPbI3 [138], Cs2AgInCl6 [31], Cs2AgBiBr6 [85, 134], or Cs2Ag1–xNaxBiCl6 (0 < x < 1)
[139], while scarce values are reported for layered HOIPs [76, 77]. Thus, more efforts are needed in this
direction to better exploit the 2D HOIPs for device integration.

6. Summary and perspective

We have presented the potential of Raman spectroscopy for the study of 2D HOIPs. The insight into the
phonon modes provided by this technique is of great value to understand the optical and electronic
properties of these hybrid materials. Methods such as polarization-dependent and resonant Raman
spectroscopy can provide important information about the symmetry of the modes and their coupling with
electrons and excitons. Temperature and pressure dependent measurements reveal an interesting landscape
of phase transitions determining not only the temperature onset, but also their origin from a structural point
of view. Additionally, this review highlights that the main focus has been done to date on Ruddlesden-Popper
structures and Pb-based 2D HOIPs. These results will be important in the study of new compounds and
crystal structures accessible when working with and designing 2D HOIPs, in combination with XRD
measurements, by studying the coupling between organic cations- and inorganic lattice-related Raman
modes. The effect of the localization of vibrations in the interaction with electrons and excitons can be
explored, to assist in the challenge of incorporating layered HOIPs in devices such as solar cells with 2D/3D
heterostructures. Here, Raman spectroscopy can be very useful to assess and monitor the quality of
optoelectronic devices and their ambient stability. Finally, we mention that Raman spectroscopy has
demonstrated to be a powerful tool to explore, locate and map the strain in layered materials and 3D HOIPs.
However, until now this potential has only been investigated in early reports on 2D HOIPs. Furthermore, we
envision that the versatility of Raman spectroscopy, with the possibility to couple with different set-ups, will
play an important role in establishing the structure-properties relationship in layered HOIPs. This may be
considered an essential first step towards the design and optimization of these hybrid materials for their use
in high-performance optoelectronic devices.
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