
Citation: Marković, D.; Stamenković,

Z.; Ðord̄ević, B.; Rand̄ić, S. Image

Processing for Smart Agriculture

Applications Using Cloud-Fog

Computing. Sensors 2024, 24, 5965.

https://doi.org/10.3390/

s24185965

Academic Editors: Yongwha Chung

and Sungju Lee

Received: 11 August 2024

Revised: 5 September 2024

Accepted: 12 September 2024

Published: 14 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Image Processing for Smart Agriculture Applications Using
Cloud-Fog Computing
Dušan Marković 1,*, Zoran Stamenković 2,3,* , Borislav Ðord̄ević 4 and Siniša Rand̄ić 5

1 Faculty of Agronomy in Čačak, University of Kragujevac, Cara Dušana 34, 32102 Čačak, Serbia
2 Institute of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
3 IHP—Leibniz-Institutfür innovative Mikroelektronik, ImTechnologiepark 25, 15236 Frankfurt, Germany
4 Institute Mihailo Pupin, Volgina 15, 11060 Belgrade, Serbia; bora@impcomputers.com
5 Faculty of Technical Sciences Čačak, University of Kragujevac, Svetog Save 65, 32102 Čačak, Serbia;

sinisa.randjic@ftn.kg.ac.rs
* Correspondence: dusan.markovic@kg.ac.rs (D.M.); stamenko@ihp-microelectronics.com (Z.S.)

Abstract: The widespread use of IoT devices has led to the generation of a huge amount of data
and driven the need for analytical solutions in many areas of human activities, such as the field
of smart agriculture. Continuous monitoring of crop growth stages enables timely interventions,
such as control of weeds and plant diseases, as well as pest control, ensuring optimal development.
Decision-making systems in smart agriculture involve image analysis with the potential to increase
productivity, efficiency and sustainability. By applying Convolutional Neural Networks (CNNs), state
recognition and classification can be performed based on images from specific locations. Thus, we
have developed a solution for early problem detection and resource management optimization. The
main concept of the proposed solution relies on a direct connection between Cloud and Edge devices,
which is achieved through Fog computing. The goal of our work is creation of a deep learning
model for image classification that can be optimized and adapted for implementation on devices
with limited hardware resources at the level of Fog computing. This could increase the importance of
image processing in the reduction of agricultural operating costs and manual labor. As a result of the
off-load data processing at Edge and Fog devices, the system responsiveness can be improved, the
costs associated with data transmission and storage can be reduced, and the overall system reliability
and security can be increased. The proposed solution can choose classification algorithms to find
a trade-off between size and accuracy of the model optimized for devices with limited hardware
resources. After testing our model for tomato disease classification compiled for execution on FPGA,
it was found that the decrease in test accuracy is as small as 0.83% (from 96.29% to 95.46%).

Keywords: image classification; cloud-fog computing; deep learning; agriculture application

1. Introduction

The amount of data generated by IoT devices can vary widely depending on the
number of devices deployed, their sensors, and the frequency of data collection. The
number of IoT devices worldwide is expected to increase in coming years, and therefore
vast amounts of data will be generated. IoT data is used for real-time monitoring, predictive
maintenance, healthcare applications, smart agriculture, smart cities, and more. Managing
and processing large volumes of IoT data poses challenges related to data storage, security,
real-time analytics, and bandwidth constraints. IoT devices collectively generate massive
amounts of data that contribute to the growth of big data and drive the need for scalable
data management and analytics solutions in various industries.

The development of IoT applications where complete data processing is performed
in the Cloud can lead to a large network load and delay in returning processing results.
Therefore, IoT applications that have requirements for delay-sensitive services and corre-
sponding energy efficiency must be taken into consideration, and that does not only imply

Sensors 2024, 24, 5965. https://doi.org/10.3390/s24185965 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24185965
https://doi.org/10.3390/s24185965
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6078-413X
https://orcid.org/0000-0002-6145-4490
https://orcid.org/0000-0002-7676-4942
https://doi.org/10.3390/s24185965
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24185965?type=check_update&version=1


Sensors 2024, 24, 5965 2 of 26

a Cloud-Only strategy. To support this type of service at the edge of the network, Cisco
has introduced a new paradigm known as Fog computing. The advantages of its use are
the reduction of energy consumption and data center load. If the Fog computing layer
consists of computer devices with limited resources, it is necessary to allocate resources,
considering requirements such as delay limits, application type, application priority or
energy efficiency. An appropriate deployment strategy is chosen to determine where the
task or part of the data processing application will be executed: on the End device, the Fog
device, or the Cloud. Thus, the structure of the system and distribution of data flow is
defined in relation to the requirements and main goals of IoT applications [1].

Image analysis via Convolutional Neural Networks (CNNs) has become increasingly
important due to their ability to automatically learn and extract relevant features from
images, leading to significant advancements across a wide range of applications. The
depth of CNNs allows them to capture complex patterns and relationships within images,
leading to highly accurate predictions. CNNs have found uses in many applications such
as Image Classification, Object Detection, Image Segmentation, Facial Recognition and
Medical Diagnosis [2].

CNNs can leverage modern hardware accelerators like GPUs and TPUs, making them
highly efficient and capable of processing large datasets quickly.CNN architectures can be
scaled to handle varying levels of complexity and computational resources, from mobile
devices to large-scale data centers. Efficient CNN models can be deployed on Edge devices,
enabling real-time inference without relying on Cloud computing, reducing latency, and
enhancing privacy [3].

Image analysis in smart agriculture is increasingly important due to its potential to
enhance productivity, sustainability, and efficiency in farming. By leveraging technologies
like CNNs, Smart Agriculture can benefit from precise monitoring, early detection of issues,
and optimized resource management.

The goal of our work is the realization of a model for image classification that can be
optimized and adapted to be executed on devices with limited resources and at the level of
Fog computing.

Data collection in the field of agronomy, using available equipment in the field, is not
the same as some other fields with special laboratory conditions. In certain cases, with
the most advanced laboratory equipment, for example, images of samples with very high
resolutions can be obtained. In the field of agronomy, images are usually not characterized
by high resolution and the number of images often depends on the season and conditions,
so that sets of images of the expected size are not always obtained. The motivation of
our research is to find an efficient way to select the appropriate classification model for a
specific purpose and translate it into a version of the model that can be executed on devices
with limited resources according to the concept of Fog computing, which would have a
purpose in the field of agriculture.

The proposed solution makes the following contributions:

• Development of a comprehensive working and testing environment that selects an
algorithm, creates and trains a deep learning model, and executes it on devices with
limited hardware resources.

• A straightforward process is used to obtain a classification model accelerator without
the need to deal with all details of FPGA implementation. This model could be
effectively run on a Fog computing layer to achieve real-time responses, save energy
and reduce network congestion towards the server.

• Indicators of the compromise between the size of the selected model and the achieved
test accuracy of the model before and after translation of the model for Fog computing
devices can be examined.

• The concept of the test environment can be transferred to another structure of Cloud-
Fog computing in order to examine the performance of applications in the case when
the classification model is executed on the Fog device or when its execution and data
transfer is in the Cloud.



Sensors 2024, 24, 5965 3 of 26

Obtaining results of the classification model in real time and without continuous
dependence on the Cloud would enable state recognition from images in various cases in
the field of Smart Agriculture, which mainly relies on devices with limited resources.

2. Fog Computing and Deep Learning

Fog computing represents a new paradigm that has extended the Cloud to the Edge
of the network and is intended to be used with Cloud computing. The Fog computing
level has similar characteristics to the Cloud, only with lower performance and closer to
the data source, and the same applies to computer, network and storage resources. They
are characterized by being able to perform some data processing near the IoT data source,
without sending all the data to the Cloud. The nodes that form the Fog computing layer
are connected to the corresponding IoT end devices. These end devices can be cameras,
wearable devices, mobile phones, smart glasses, GPS devices, or various types of sensor-
based devices. The architecture of Fog computing enables a different execution setting of
IoT applications without the need to send data to the Cloud, which enables the fulfillment of
requirements such as dynamic scalability, reduced latency and lower resource consumption
in the Cloud [4].

IoT data processing on Edge devices and Fog layer involves handling data closer
to the location where it is generated, which offers several advantages over traditional
Cloud-centric approaches.

In the case of processing on Edge devices, low latency could be obtained by processing
data locally, reducing the time it takes to transmit data to remote servers and receive
responses. Also, there is a decrease of network load by reducing the amount of data sent to
the Cloud due to processing or aggregating data locally, sending only relevant information.
Privacy and security is improved by keeping sensitive data on local devices, minimizing
exposure to potential security breaches during transmission. It is possible to perform offline
operations independently of Cloud connectivity, maintaining functionality even when
network connections are unreliable or unavailable. IoT applications with data processing
on Edge devices enable real-time decision-making and responses based on immediate local
data analysis.

With the Fog layer formed, it is possible to conduct intermediate processing which may
include aggregating and preprocessing data from multiple Edge devices before sending
it to the Cloud, reducing the load on central servers (Figure 1). It also enables usage of
Location-Based Services, since data would be processed within the proximity of the devices.
A Fog layer with multiple nodes enables better scalability, enhancing system performance
in large-scale deployments by distributing computational tasks across multiple Fog nodes.
Fog devices are characterized by their integration with the Cloud and act as intermediaries
between Edge devices and Cloud services, optimizing data transmission and storage.

Hardware acceleration for deep learning models on Edge devices involves using
specialized hardware to improve performance and efficiency. Benefits of using acceleration
can be seen through improved performance where hardware accelerators can significantly
speed up inference times compared to running models solely on CPUs. Accelerators
are designed to perform computations more efficiently, reducing power consumption on
battery-powered devices. Also, accelerator support enables real-time processing of data
without relying on Cloud services, enhancing responsiveness and privacy.

By using hardware accelerators, powerful deep learning models could be deployed on
Edge devices for applications ranging from image and speech recognition to autonomous
systems and IoT devices.

The application of artificial neural networks (ANNs) can be found in various busi-
ness areas and industries, providing a number of services that are supported by high-
performance Cloud computing and storage. On the other hand, there are requirements for
applications that imply certain intelligence in embedded devices and Edge devices, such as
autonomous systems or the Internet of Things (IoT). Although the computing capabilities
of Edge devices have increased significantly in recent years, there are still challenges in



Sensors 2024, 24, 5965 4 of 26

executing certain neural network algorithms on devices with limited resources. The au-
thors of [5] give a summary of hardware support at the network Edges for applications of
machine learning techniques that require low power consumption.

Sensors 2024, 24, x FOR PEER REVIEW 4 of 28 
 

 

 
Figure 1. Cloud-Fog computing structure. 

Hardware acceleration for deep learning models on Edge devices involves using 
specialized hardware to improve performance and efficiency. Benefits of using 
acceleration can be seen through improved performance where hardware accelerators 
can significantly speed up inference times compared to running models solely on CPUs. 
Accelerators are designed to perform computations more efficiently, reducing power 
consumption on battery-powered devices. Also, accelerator support enables real-time 
processing of data without relying on Cloud services, enhancing responsiveness and 
privacy. 

By using hardware accelerators, powerful deep learning models could be deployed 
on Edge devices for applications ranging from image and speech recognition to 
autonomous systems and IoT devices. 

The application of artificial neural networks (ANNs) can be found in various 
business areas and industries, providing a number of services that are supported by 
high-performance Cloud computing and storage. On the other hand, there are 
requirements for applications that imply certain intelligence in embedded devices and 
Edge devices, such as autonomous systems or the Internet of Things (IoT). Although the 
computing capabilities of Edge devices have increased significantly in recent years, there 
are still challenges in executing certain neural network algorithms on devices with 
limited resources. The authors of [5] give a summary of hardware support at the network 
Edges for applications of machine learning techniques that require low power 
consumption. 

A summary of research and challenges around Fog computing for IoT are given in 
[6], while a study on implementation of machine learning models in devices on the 
network Edge is presented in [7]. This article contains concepts, guidelines and future 
directions that may facilitate decentralization of machine learning to the network Edge 
devices, end devices, embedded systems and FPGA. 

ANNs involve a large number of parameters and calculations, which require high 
energy consumption and memory usage. In order to transfer them to devices with 

Figure 1. Cloud-Fog computing structure.

A summary of research and challenges around Fog computing for IoT are given in [6],
while a study on implementation of machine learning models in devices on the network
Edge is presented in [7]. This article contains concepts, guidelines and future directions
that may facilitate decentralization of machine learning to the network Edge devices, end
devices, embedded systems and FPGA.

ANNs involve a large number of parameters and calculations, which require high
energy consumption and memory usage. In order to transfer them to devices with limited
resources, it is necessary to apply compression techniques in order to optimize the ANN
models [8]. As neural networks have become more powerful, their depth and complexity
have also made deployment on resource-constrained devices more challenging. Neural
network quantization addresses this by reducing network precision, allowing for smaller
and simpler networks that fit within hardware constraints. The authors of [9] survey recent
quantization techniques and propose some future research directions.

CNNs work by progressively extracting higher-level features from the input image
through a series of convolutional and pooling layers, followed by fully connected layers
that perform the final classification or regression task. This hierarchical structure allows
CNNs to learn complex patterns and relationships within the data, making them highly
effective for various computer vision tasks [10].

3. Related Work
3.1. Image Classification and Smart Farming

The Internet of Things (IoT) has significantly advanced smart farming by facilitating
extensive data collection for various agricultural processes. The authors of [11] examine
the types of big data generated in smart farming, discuss its applications such as yield pre-
diction and farm management, and explore key big data and machine learning techniques



Sensors 2024, 24, 5965 5 of 26

used in data analysis. The authors of [12] review the significant impact of the Internet
of Things (IoT) and other smart technologies on agriculture, including Cloud computing,
machine learning, and artificial intelligence. It discusses their applications in crop and
animal production, post-harvesting processes, and considers the effects of climate change
on agriculture.

Farmers are integrating modern technologies to optimize agricultural practices sus-
tainably, leading to increased production. The authors of [13] present a detailed survey of
ten key areas in smart farming, focusing on technologies like big data, machine learning,
IoT, robotics, and others.

The authors of [14] explore the role of ICT technologies, including robotics, IoT devices,
machine learning, and artificial intelligence, in advancing agriculture and addressing
challenges in farming techniques. The paper reviews current applications, such as drones
for crop observation and optimization, and identifies emerging research trends and issues
in AI-driven agriculture.

The authors of [15] examine the transformative impact of digitization and automation
on traditional farming practices through the use of computer vision and artificial intelli-
gence (AI). The paper highlights how these technologies can enhance productivity and
economic growth, and address global challenges like food security and sustainability.

Automation in image analysis using computer vision and deep learning enhances
precision in field and yield mapping, achieving an average accuracy of 92.51% for crops like
grapes, apples, and maize. The authors of [16] review various smart farming applications
such as robot harvesting and weed detection, while also discussing limitations and future
research needs in deep learning techniques.

Accurate plant disease identification is crucial for effective prevention in complex envi-
ronments, and digital advancements in smart farming support this with data-driven methods.

Plant diseases significantly threaten crop production and food security, making accu-
rate detection essential. While traditional methods like visual observation and lab tests have
limitations, deep learning methods, particularly CNNs, have emerged as state-of-the-art
solutions in plant disease classification. A review [17] highlights recent advancements in
CNNs for plant disease detection.

Significant economic losses in agriculture occur due to crop infections, making early
disease detection crucial, especially in a major rice-producing country like India. The
authors of [18] propose a smart farming model that integrates machine learning and IoT to
detect brown spot disease in rice using CNNs, achieving 97.701% accuracy.

The Internet of Things (IoT) enhances smart farming by enabling real-time data col-
lection from agricultural fields, which, along with images and sensor data, allows for
automated disease prediction using deep neural networks. Utilizing various sensors con-
trolled by a Raspberry Pi 3 module, this system achieves 96% accuracy in leaf disease
detection and classification through a CNN [19].

To enhance smart agriculture and increase plant productivity, continuous monitoring
of plants from growth to harvest is crucial. Early detection and treatment of tomato diseases
can significantly boost production, efficiency, and quality, leading to more affordable prices
for consumers and preventing the farmers’ labor from being wasted.

The authors of [20] present an image-processing algorithm utilizing artificial neural
networks to detect and monitor four tomato crop diseases. The algorithm categorizes
images based on color, texture, and morphology, with morphology achieving the highest
accuracy of 93%.

Tomatoes are a vital crop, with yield and quality heavily impacted by leaf diseases.
Early identification and classification of these diseases are crucial for improving crop yields,
and the use of CNN has shown promise in this area. In an experiment using Google Colab
with a dataset of 3000 images, presented in [21], a CNN model was developed to classify
tomato diseases with 98.49% accuracy.

The authors of [22] introduce a custom CNN model (CCNN) designed to classify
tomato plant diseases, offering improved accuracy and reduced computational cost com-



Sensors 2024, 24, 5965 6 of 26

pared to existing models like AlexNet and VGG-16. The CCNN’s efficiency, with effective
performance across 10 disease classes, makes it well-suited for smartphone-based dis-
ease detection.

The proposed technique in [23] utilizes CNN, specifically the Visual Geometry Group
(VGG) model, to classify diseased and healthy leaves with high accuracy, achieving 98.40%
accuracy for grapes and 95.71% for tomatoes.

The authors of [24] propose a compact CNN with only six layers for disease identification,
which is computationally efficient and trained on the Plant Village tomato dataset. The
proposed network outperforms well-known pre-trained deep networks, demonstrating that a
smaller, less complex network can still deliver excellent results in tomato disease identification.

Improving food production through effective crop insect detection is crucial, as pest
damage degrades crop quality. Traditional insect identification methods rely on skilled
taxonomists and are less efficient compared to modern machine learning techniques. The
authors of [25] present an insect pest detection algorithm that integrates foreground extrac-
tion and contour identification, achieving high classification accuracies of 91.5% and 90%
with CNNs on various datasets.

Insect pests significantly impact crop yield and quality globally, making rapid and
accurate monitoring essential for effective pest control. A review [26] examines the use of
deep learning (DL) technology in smart pest monitoring (SPM), focusing on DL frameworks
for insect pest classification and detection using field images.

The authors of [27] propose using a residual CNN with transfer learning for accurate
pest identification, employing data augmentation techniques like random cropping and
CutMix to enhance model robustness. The study shows that transfer learning significantly
improves classification accuracy and reduces training time.

Excessive pesticide use can lead to harmful residues in the food chain. The work
presented in [28] introduces a deep Convolutional Neural Network-based approach for
detecting 102 common pest species. The final model, selected from 125 variations, is
integrated into a mobile app that can classify pests through image capture or gallery
selection, functioning both online and offline.

Inspecting sticky paper insect traps is crucial for effective pest management but
is often labor-intensive and challenging. Recent research [29] presents an automated
method using a CNN classifier to identify and count various insect pests from images.
The developed algorithm achieved high performance with counting accuracies of 0.91 and
0.90, demonstrating its effectiveness for improving integrated pest management strategies
in greenhouses.

Weeds significantly impact agricultural production, and full-coverage chemical her-
bicide spraying leads to environmental pollution and waste. Accurate weed detection
and precise spraying are essential, requiring reliable identification of crops and weeds. A
review [30] discusses traditional image-processing and deep learning-based methods for
weed detection.

Weeds pose significant threats to crop yields, but advances in machine vision and
image processing offer promising solutions for real-time weed detection in the field. A
review [31] describes procedures for weed detection, including pre-processing, segmenta-
tion, feature extraction, and classification, focusing on techniques like color indices and
machine learning.

The authors of [32] review DL-based techniques for weed detection and classification,
focusing on data acquisition, dataset preparation, detection methods, and evaluation
metrics. The paper highlights that supervised learning techniques, particularly fine-tuned
pre-trained models, have achieved high accuracy when large labeled datasets are available.

Weed detection is crucial in precision farming, particularly within the IoT framework,
as weeds cause significant crop losses. A recent paper [33] presents a vision-based weed
detection system using deep learning models to effectively identify weeds in soybean
plantations. Among the five models tested, including MobileNetV2, ResNet50, and three



Sensors 2024, 24, 5965 7 of 26

custom CNN models, a custom five-layer CNN achieved a high detection accuracy of 97.7%,
with the lowest latency and memory usage when deployed on a Raspberry PI controller.

Precise weed recognition is essential for effective site-specific control in precision
agriculture. The authors of [34] introduce a CNN-based graph convolutional network
(GCN) approach for weed and crop recognition, which uses a GCN graph to integrate
both labeled and unlabeled data for improved accuracy. The proposed GCN-ResNet-101
method achieved high recognition accuracies on four weed datasets and met real-time field
control requirements.

3.2. CNN and Accelerators on Edge

The authors of [35] offer a comprehensive overview of recent advancements in CNNs,
highlighting improvements in layer design, activation functions, loss functions, regulariza-
tion, optimization techniques, and computational efficiency. They also discuss the wide
array of applications where CNNs have demonstrated significant success, ranging from
computer vision to speech and natural language processing.

CNNs have achieved significant success in computer vision and natural language
processing, but their complexity and computational intensity limit practical applications,
especially with increasing data dimensions. The authors of [36] review various network
compression methods, focusing on pruning and quantization, to enhance CNN applicability
in resource-constrained environments, and propose a novel framework to address the
challenges of compressing large-scale CNNs.

In recent years, machine learning and deep learning have made significant advance-
ments across various domains, but the large size of trained models poses challenges for
deployment on resource-constrained devices like mobile phones and IoT devices. To en-
able real-time applications on such devices, it is crucial to compress and accelerate these
models without compromising accuracy; this drives research into various techniques for
model compression and acceleration. These actions are surveyed in [37] while addressing
challenges and suggesting future research directions.

Deep learning has become integral to various services and applications, necessitating
alternatives to Cloud-based training and inference due to latency concerns and the impend-
ing data overload from the Internet of Things. Edge computing emerges as a solution, but
its limitations in power and resources require new, energy-efficient deep learning models
and computing platforms. On this topic, the authors of [38] review key research directions
in Edge computing deep learning algorithms.

High energy efficiency and re-configurability are promising features that suggest
FPGA as a key platform for CNN hardware acceleration. The authors of [39] provide a
comprehensive survey of techniques for implementing and optimizing CNN algorithms
on FPGA, serving as a valuable resource for researchers in artificial intelligence, hardware
architecture, and system design.

Widespread use of CNNs in various tasks, particularly on Edge devices with limited
computing resources, is highlighted in [40]. Also, the authors propose FPGA-based custom
computing architectures as a solution to enhance CNN inference performance, while
maintaining accuracy.

The authors of [41] survey existing CNN-to-FPGA workflows, offering insights into
their key characteristics such as supported applications, architectural choices, and perfor-
mance. Also, they address major challenges and objectives introduced by the latest trends
in CNN algorithmic research.

A survey [42] explores optimization techniques for vision CNNs on both algorith-
mic and hardware levels, which is essential for efficient implementation on resource-
constrained devices, particularly FPGAs. This approach aims to address the challenge of
fitting wider and deeper CNNs onto limited hardware resources by examining various
optimization strategies.

An outline of the challenges of deploying deep learning (DL) models on Edge devices
due to their limited resources, and the benefits of processing data directly on these devices



Sensors 2024, 24, 5965 8 of 26

to reduce latency and improve real-time decision-making, is given in [43]. To address these
challenges, optimization techniques at both the hardware and software levels have been
developed, focusing on novel DL architecture, algorithm design, optimization methods,
algorithm-hardware co-design, and efficient accelerator design.

Image recognition using lightweight CNNs, which enable high-performance algo-
rithms on resource-constrained devices, is explored in [44]. Theauthors review classi-
cal lightweight CNN models and recent image recognition techniques categorized into
model compression, lightweight network optimization, and combining Transformer with
lightweight networks.

The authors of [45] present a comprehensive review of neural network optimization
technology based on FPGA, highlighting its importance and advantages in accelerating
deep learning tasks.

An exploration of the implementation of CNNs on low-power embedded systems
for use in a weeding robot to address the problem of weed control is presented in [46].
The article evaluates the technical feasibility of deploying CNNs on FPGAs, assesses
optimization possibilities for both hardware and software, and investigates the performance
of different networks on various hardware accelerators with diverse approaches.

The authors of [47] offer a thorough overview of recent advancements in computer
vision algorithms and their hardware implementations. They focus on tasks like image
classification, object detection, and image segmentation enabled by deep learning tech-
niques. They review methods for optimizing and implementing these algorithms on various
hardware accelerators such as GPU, FPGA, and emerging architectures, aiming to enable
real-time and energy-efficient operations.

3.3. CNNs and Vision Transformers

Vision Transformers as modern methods have shown great performance in computer
vision tasks such as image classification. Vision Transformers (ViTs) represent a type of
deep learning model which applies the Transformer architecture previously designed and
used for natural language processing (NLP). ViTs are applied in computer vision where
image is treated as a sequence of patches, in the same way as words are treated in a sentence
when dealing with NLP tasks [48].

ViTs could be used effectively to scale up with larger datasets and more computational
resources. ViTs can capture long-range dependencies across the image, due to the self-
attention mechanism. Using self-attention mechanisms allows them to consider the entire
image at once, which can be very important in understanding complex visual scenes. Since
ViTs treat an image as a sequence of patches, they could easily adapt to different image
sizes by adjusting the number of patches, offering more flexibility in usage of various
input dimensions.

Vision Transformers offer significant advantages over CNNs, especially in terms of
scalability, flexibility and global context awareness. Usually, the training process of ViTs
generally requires larger datasets and more computational resources.

Vision Transformers (ViTs) have been used in several cases where their strength comes
to the fore. The authors of [49] introduce a dual-branch Transformer model that combines
image patches of different sizes to improve feature representation. The model processes
small and large patches separately and fuses them using attention mechanisms, with a
cross-attention module that reduces computational complexity. Experiments show that
this approach outperforms existing models, achieving better accuracy with a manageable
increase in computational cost.

Recent advancements in multimodal data classification, such as combining hyperspec-
tral images (HSI) and LiDAR, have improved remote sensing image accuracy. To address
limitations of existing fusion methods, the authors of [50] propose a Modality Fusion Vision
Transformer (MFViT) designed specifically for HSI and LiDAR fusion classification. These
modules enhance the fusion of heterogeneous features and preserve spatial and spectral
information, respectively. The model achieves superior classification accuracies of 99.91%,



Sensors 2024, 24, 5965 9 of 26

99.59%, and 96.98% on three benchmark datasets, outperforming all existing methods and
demonstrating its effectiveness and stability.

Another important application of automated image classification based on ViTs has
high importance for decision-making for radiologists in detection of brain tumors. The
authors of [51] explore the use of an ensemble of Vision Transformer (ViT) models for
diagnosing brain tumors from T1-weighted (T1w) MRI images. They used four ViT mod-
els, the last of which (L/32) achieved the highest individual test accuracy of 98.2% at
384 × 384 resolution. Also, the ensemble of all four ViT models improved the accuracy
to 98.7%, better than any individual model and showing potential for computer-aided
diagnosis of brain tumor.

The authors of [52] explore the use of monocular depth estimation (MDE) in low-
altitude drone flights, which are crucial for safety and monitoring operations. The study
evaluates a state-of-the-art Vision Transformer (ViT) model, pre-trained on a large MDE
dataset, comparing its performance against a classical fully convolutional network. The
findings reveal that ViTs, after fine-tuning, can outperform convolutional models and are
more robust to adversarial attacks, making them suitable for such critical applications.

Another modern technique used with great efficiency for image segmentation was
presented in [53]. This paper addresses challenges in 3D image segmentation, which is
crucial for improving segmentation accuracy in various fields like healthcare and military
applications. To overcome the time complexity of Hidden Markov Models (HMMs), the
authors propose a novel system that distributes the 3D segmentation process across mul-
tiple machines to speed up HMM training. The authors, through extensive experiments,
demonstrate that the proposed approach is efficient and competitive with state-of-the-art
methods in terms of security, segmentation accuracy, and execution time.

Also, there are applications of Vision Transformers in agriculture, such as the example
presented in [54], where the authors propose GreenViT, a ViT-based technique for early
plant disease detection. By dividing images into smaller patches and processing them with
ViTs, GreenViT effectively overcomes CNN limitations.

Another study [55] also proposes a solution based on a ViT model to identify healthy
and diseased plants. Additionally, a ViT-based Android app was developed, showing
promise for large-scale smart agriculture applications and inspiring future research in
the field.

The authors of [56] propose an automatic pest identification method using ViTs which
leverages enhanced datasets (through techniques like Histogram Equalization and CLAHE)
to avoid overfitting and improve classification accuracy. The ViT network achieved test
accuracy that surpassed traditional CNNs by about 1.00%.

Comparing the CNN and Vision Transformer models, certain differences can be
observed related to the size of the model, required memory, performance and accuracy.

CNNs are more data-efficient, meaning they tend to perform better on smaller datasets,
and usually require fewer computational resources for both training and inference, espe-
cially on small to medium-sized models. ViTs often require greater computational and
memory resources, especially for high-resolution images. CNNs are well-suited for deploy-
ment on Edge devices, and could be used to realize accelerated models because of their
lower computational demands and the availability of efficient and compact models.

The choice between CNN and Vision Transformer models may depend on the par-
ticular requirements of a given case considering properties such as available resources
and data size, as well as the expected compromise between accuracy, model complexity
and performance.

CNNs could still have effective applications for many computer vision tasks due to
their success across various applications, especially when working with smaller datasets,
constrained computational resources, or the need for reliable solutions [57].

Previously presented references indicate the wide possibilities of applying image
classification in the field of agriculture, as well as the importance of its execution in real
time. Therefore, references related to acceleration models that can be performed on devices



Sensors 2024, 24, 5965 10 of 26

near data sources characterized by limited resources are also shown. The example in
this paper represents a comprehensive solution that contains algorithm selection, model
training, and implementation on end devices. At the same time, the testing environment
is defined so that it is possible to straightforwardly implement new classification models
using appropriate tools such as Tensil, without the need to know all the details of the FPGA
implementation. Also, in such a defined test environment, it is possible to determine a
compromise between the type and size of the model on the one hand and the acceptance of
accuracy during classification.

4. Materials and Methods
4.1. Datasets for Training Models

The presentation of our model and concept is given through three applications in the
field of smart agriculture. They were chosen because they represent practical examples in
image analysis, which involves the classification of images to obtain recognition of current
states. Getting information about current conditions in agriculture for these examples could
result in optimal usage of pesticide or insecticide. In addition, these applications were
selected because there are different datasets in each group collected by the researchers, and
we chose one dataset for each application to test the CNN models.

The datasets in the form of images were downloaded from the Kaggle repository. They
represent a convenient means of proving the concept of models for image classification. The
selected dataset contents are as follows: tomato leaf disease images [58], insect pests [59],
and corn weed [60].

The tomato leaf disease images are classified into 10 categories depending on the state
of the tomato leaves that could indicate a specific tomato disease or a healthy state [58]. The
categories in which a tomato leaf can be found are the following: bacterial spot, early blight,
late blight, leaf mold, Septoria leaf spot, spider mites, two-spotted spider mites, target spot,
tomato yellow leaf curl virus, tomato mosaic virus, and healthy state. All images were
pre-processed and the dimensions of the images used in the training and testing processes
were changed to 128 × 128 pixels. This is the first application in our system and is labeled
TL-01 (Tomato Leaf-01).

Another application is defined with a CNN model to perform classification on a
set of insect pest images [59]. The dataset used contains nine image categories: aphids,
armyworm, bollworm, beetle, grasshopper, mosquito, mites, sawfly, and stem borer. The
images were preprocessed so that the new image dimensions are 96 × 96 pixels. This
application contains the second largest image size and is labeled IP-02 (Insect Pests-02).

The third application relates to the detection of weeds in corn [60]. In this case, there
are only two categories, one set of images representing corn and another set of images
representing weeds. All images were also pre-processed so that the new image dimension
used in the system is 64 × 64 pixels. The third application we used in the system was
labeled CW-03 (Corn Weed-03).

From the third set of images, we formed another dataset, where the dimensions of the
images would be 32 × 32 pixels. It is an application that has the same properties as the
previous CW-03; we just reduced the size of the images in order to check the execution of
images on the PYNQ Z2 board (PYNQ is an open-source project of the AMD University
Program) for that smaller image format. The application that uses the set of images with
the specified reduced format is an additional variant of the third application and we labeled
it CW-04.

4.2. Tensorflow and Deep Learning on the Edge Devices

TensorFlow is an open-source machine learning framework developed by Google. It
provides a comprehensive ecosystem for building and deploying machine learning models,
particularly deep learning models. Flexibility is one of the characteristics of TensorFlow
2.12.0 given as it supports both high-level APIs (like Keras 2.12.0) for quick prototyping
and low-level APIs for more customization [61].



Sensors 2024, 24, 5965 11 of 26

It is suitable for small models on personal devices as well as large models on dis-
tributed computing systems. TensorFlow 2.12.0 can be run on various platforms, including
CPUs, GPUs, and TPUs. TensorFlow 2.12.0 offers a wide range of pre-built models, tools,
and libraries for various machine learning tasks. It has strong community support with
extensive documentation, tutorials, and resources [62].

Deep learning on Edge devices involves deploying machine learning models directly
on devices like smartphones, IoT devices, and embedded systems. Edge devices have
constraints on memory, processing power, and battery life. Models must be optimized for
size and efficiency.

Models for resource-constrained devices could be prepared by model compression with
quantization and pruning techniques to obtain smaller model size, using architectures that
are based on lightweight models, or training models on devices with limited capabilities.

TensorFlow Lite represents a framework that could be used to optimize models for
mobile and embedded devices. It has optimized performance and is designed for efficient
execution on devices with limited resources, and has small binary size. It can run on many
platforms such as Android, iOS, and embedded Linux devices. It can be used to convert
TensorFlow models into a format suitable for mobile or Edge devices. TensorFlow Lite
supports GPUs and TPUs for faster inference.

Model compression in TensorFlow Lite involves several techniques to reduce model
size and improve efficiency on Edge devices.

Post-Training Quantization is used to convert model weights from 32-bit floating
point to lower precision (e.g., 8-bit integers), reducing size and improving inference speed.
Quantization-Aware Training is used to train the model with quantization in mind to
maintain accuracy.

Pruning techniques remove less important weights, reducing model complexity and
size without significantly affecting accuracy.

Weight Clustering is using to group similar weights, reducing the number of unique
weights and thus compressing the model [63].

4.3. FPGA Acceleration of Deep Learning

FPGAs are programmable hardware devices that can be reconfigured after manufac-
turing. This flexibility allows them to adapt to different types of computations, including
deep learning tasks. FPGAs excel at parallel processing. They can be configured to execute
multiple operations simultaneously, making them suitable for tasks that involve large-scale
matrix operations and neural network computations.

Developers can design and optimize specific architectures tailored to their deep learn-
ing models. This customization can lead to improved performance and efficiency for
particular applications. Programming and optimizing FPGAs for deep learning can be
complex and requires expertise in hardware design languages (e.g., Verilog, VHDL) and
tools (e.g., Xilinx Vivado, Intel Quartus).

FPGAs are also used in data centers to accelerate specific workloads and tasks, offering
flexibility in adapting to changing computational demands. Also, FPGAs can be deployed
in Edge devices for on-device processing of deep learning models, enhancing privacy and
reducing latency by avoiding round-trip data transfer to Cloud servers. FPGAs can offer
low latency and high throughput when properly configured for specific tasks, making them
suitable for real-time applications in Edge computing scenarios [64].

Xilinx Vivado is a comprehensive development environment and toolchain specifically
designed for programming and optimizing Xilinx FPGAs. Xilinx Vivadouses RTL (Register
Transfer Level) Design, which means it supports hardware description languages like
Verilog, VHDL, and SystemVerilog for specifying digital circuits.

Also, High-Level Synthesis (HLS) could be used to convert C/C++ code into RTL for
FPGA implementation.

Xilinx Vivado has the ability to run simulations that perform functional verification of
the FPGA design before synthesis. It ensures that the design meets timing requirements



Sensors 2024, 24, 5965 12 of 26

and constraints, and provides debugging capabilities to identify and resolve issues in the
FPGA design. It allows developers to customize FPGA designs at a low level, optimizing
performance for specific applications and facilitates integration into complex systems
through a comprehensive toolchain and IP core library.

Xilinx Vivado could be used for designing custom hardware accelerators for specific
algorithms or applications, including deep learning inference. Xilinx Vivado includes a
library of pre-designed Intellectual Property (IP) cores for common functions, simplifying
design reuse and accelerating development [65].

4.4. Residual Network Based on CNN

A Residual network (ResNet) is a type of deep neural network that introduces skip
connections or shortcuts to address the problem of vanishing gradients in very deep
networks. It can be obtained from the CNN network by adding the input of the previous
layer to the output of the current layer. This allows the network to learn more effectively
and can enable better performance. ResNets were first introduced by Kaiming He et al. [66]
with results that won the Best Paper Award at the 2015 Conference on Computer Vision
and Pattern Recognition (CVPR).

A residual block consists of a few convolutional layers, typically two or three, along
with a shortcut or skip connection that bypasses these layers. The output of the convolu-
tional layers is added to the original input of the block (the identity connection), forming
the block’s final output.

Skip connections help to mitigate the vanishing gradient problem by allowing gra-
dients to flow directly through the network during backpropagation, thus improving the
training of deep networks. Skip connections enable the network to learn identity mappings,
making it easier to optimize and allowing for the training of much deeper networks. The
architecture of a typical ResNet consists of multiple residual blocks stacked together, along
with initial convolutional and pooling layers and final fully connected layers. They have
become a foundational architecture in deep learning and have significantly advanced the
field of computer vision [67].

The authors of [68] present the theoretical foundations of the CNN concept and
architecture. Table 1 summarizes popular CNN architectures with important characteris-
tics indicated.

Table 1. Popular CNN architectures and their comparison.

Architecture Year Highlights Strength

LeNet
1998

Rapidly deployable and effective at
resolving small-scale image

recognition issues.

Utilized spatial correlation to decrease computation and
parameter count.

LeNet-5 Automated discovery of feature hierarchy structures.

AlexNet 2012

AlexNet is comparable to LeNet-5, except
it is more complex, has more filters per

layer and employs stacked
convolutional layers.

Low, middle, and high-level feature extraction utilizing
large and tiny size filters on the early (5 × 5 and 11 × 11)

and final (5 × 5 and 11 × 11) layers (3 × 3).
Implemented regularization in CNN. Commenced
parallel usage of GPUs as an accelerator to address

difficult architectures.

ZfNet 2014 Conceptualization of middle levels.
Illustrated parameter tweaking by displaying the output

of intermediary layers. Diminished the filter size and
stride in the initial two layers of AlexNet.

VGG 2014
The accuracy of a model is improved by

employing small convolutional filters
with dimensions of 3 × 3 in each layer.

Introduced the concept of an effective receptive field.
Presented the concept of a simple and

homogeneous topology.



Sensors 2024, 24, 5965 13 of 26

Table 1. Cont.

Architecture Year Highlights Strength

GoogLeNet 2015
A deeper and broader architecture with

various receptive field sizes and a
number of extremely small convolutions.

Introduced the concept of applying multiscale filters to
layers. Introduced the concept of divide, transform, and
merge. Reduced the number of parameters by the use of

bottleneck layer, global average-pooling at the final
layer, and sparse connections. Use of auxiliary classifiers

to enhance convergence rate.

Inception-V3 2015

Enhances the efficiency of a network. The
application of batch normalization

expedites the training process.
Inception-building elements are

employed effectively to go deeper.

Utilized asymmetric filters and bottleneck layer to
decrease the computational expense of deep designs.

ResNet 2016
A unique design that features “skip
connections” and extensive batch

normalization.

Reduces the error rate of deeper networks; introduces
the concept of residual learning; mitigates the vanishing

gradient problem.

DenseNet

DenseNet-121
2017

All layers are intimately connected to one
another in a feed-forward fashion. It
mitigates the problem of vanishing

gradients and requires few parameters.

Added depth or cross-layer dimension. Ensures
maximum data flow across network layers. Prevents

relearning redundant feature-maps. Both low-level and
high-level features are available to decision layers.

In the table, among the prominent types of CNNs, there is a ResNet architecture
with its advantages, which was selected for the implementation of our model. Since it
represents the concept of residual learning, it positively affects the difficulty of network
convergence. In this way, learning ability and performance in the image classification
process are improved. Specifically, ResNet20 with a small number of layers was used,
since the intention was to transfer the model to devices with limited resources within
Fog computing.

4.5. Tensil AI

Tensil is a set of tools that provides hardware and software solutions for accelerating
machine learning models, particularly for Edge devices. Tensil aims to offer efficient, scal-
able, and high-performance machine learning inference through its specialized hardware
and software stack.

Tensil offers AI accelerators that are customizable and can be tailored to meet spe-
cific performance, power, and area requirements. These accelerators are designed to be
integrated into System-on-Chips (SoCs) for various Edge applications.

The architecture of Tensil’s solutions is scalable, meaning it can be adapted to various
performance levels depending on the application requirements. This scalability ensures that
a wide range of devices, from low-power IoT sensors to high-performance Edge servers,
can benefit from their technology. Designed for low power consumption, Tensil’s hardware
accelerators are ideal for battery-operated devices and applications where energy efficiency
is critical.

Tensil provides a comprehensive software stack that includes tools for model optimiza-
tion, deployment, and management. This software stack helps developers convert their
trained machine learning models into formats that can run efficiently on hardware [69].

4.6. PYNQ Z2 Description and Characteristics

The PYNQ Z2 is a development board that combines the power of a Xilinx Zynq-7000
SoC with the flexibility of Python programming. The board features a Xilinx Zynq-7000 SoC,
which includes a dual-core ARM Cortex-A9 processor and an FPGA fabric. This combination
allows for both high-level software processing and customizable hardware acceleration.

The PYNQ Z2 board offers a range of features and characteristics that make it suitable
for various applications. It has 512 MB of DDR3 memory, which provides ample space for



Sensors 2024, 24, 5965 14 of 26

running complex algorithms and storing data. The board also includes 16 MB of Quad-SPI
flash memory for storing boot files and other essential data.

In terms of connectivity, the PYNQ Z2 offers a variety of options. It has HDMI input
and output ports, allowing for easy integration with displays. It also includes USB ports,
Ethernet, and Wi-Fi capabilities, enabling communication with other devices and networks
(Figure 2). Additionally, the board has Arduino and Raspberry Pi headers, providing
compatibility with a wide range of expansion modules and accessories [70].

Sensors 2024, 24, x FOR PEER REVIEW 15 of 28 
 

 

 
Figure 2. PYNQ Z2 board. 

One of the standout features of the PYNQ Z2 is its support for the PYNQ (Python 
Productivity for Zynq) framework. This framework allows developers to leverage the 
power of Python and the flexibility of the FPGA fabric to accelerate their applications. 
With PYNQ, developers can easily program the FPGA using Python libraries and take 
advantage of hardware acceleration for computationally intensive tasks. 

Its features and characteristics make it suitable for a wide range of applications, from 
embedded systems development to digital design prototyping. The ARM cores and 
FPGA fabric can communicate with each other through a high-bandwidth interconnect, 
enabling efficient data exchange and collaboration between the software and hardware 
components of a system [71]. 

4.7. Working and Testing Environment 
The entire environment where the classification model was created and trained, as 

well as tested, was placed on the server. After that, the trained models were converted 
into optimized models for running on resource-constrained devices. The entire process of 
preparing the CNN model is shown in Figure 3. First, the images were pre-processed in 
order to obtain the appropriate dimensions intended for model training and validation. A 
CNN model was created using ResNet 20 and all necessary parameters were defined in 
order to perform the training process as efficiently as possible. After achieving 
satisfactory accuracy, the given CNN is saved in h5 format for further use. At that 
moment, it can be immediately tested on the server with the help of test data that were 
not used for training. 

Figure 2. PYNQ Z2 board.

One of the standout features of the PYNQ Z2 is its support for the PYNQ (Python
Productivity for Zynq) framework. This framework allows developers to leverage the
power of Python and the flexibility of the FPGA fabric to accelerate their applications. With
PYNQ, developers can easily program the FPGA using Python libraries and take advantage
of hardware acceleration for computationally intensive tasks.

Its features and characteristics make it suitable for a wide range of applications, from
embedded systems development to digital design prototyping. The ARM cores and FPGA
fabric can communicate with each other through a high-bandwidth interconnect, enabling
efficient data exchange and collaboration between the software and hardware components
of a system [71].

4.7. Working and Testing Environment

The entire environment where the classification model was created and trained, as
well as tested, was placed on the server. After that, the trained models were converted
into optimized models for running on resource-constrained devices. The entire process of
preparing the CNN model is shown in Figure 3. First, the images were pre-processed in
order to obtain the appropriate dimensions intended for model training and validation. A
CNN model was created using ResNet 20 and all necessary parameters were defined in
order to perform the training process as efficiently as possible. After achieving satisfactory
accuracy, the given CNN is saved in h5 format for further use. At that moment, it can be
immediately tested on the server with the help of test data that were not used for training.



Sensors 2024, 24, 5965 15 of 26Sensors 2024, 24, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 3. Training CNN models and preparing for image classification on the server and PYNQ Z2. 

The given model in h5 format is loaded and its conversion into TensorFlow lite 
model is performed. Also, the same model is converted with the help of the Tensil 
framework to the model format that would be intended to be executed on FPGA. These 
new forms of models as well as test data are transferred to PYNQ Z2 where they are run. 

The process of converting a CNN model with the help of the Tensil framework and 
preparing for its execution on FPGA is shown in Figure 4. 

 
Figure 4. Preparation of CNN models to run on PYNQ Z2. 

Figure 3. Training CNN models and preparing for image classification on the server and PYNQ Z2.

The given model in h5 format is loaded and its conversion into TensorFlow lite model
is performed. Also, the same model is converted with the help of the Tensil framework to
the model format that would be intended to be executed on FPGA. These new forms of
models as well as test data are transferred to PYNQ Z2 where they are run.

The process of converting a CNN model with the help of the Tensil framework and
preparing for its execution on FPGA is shown in Figure 4.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 3. Training CNN models and preparing for image classification on the server and PYNQ Z2. 

The given model in h5 format is loaded and its conversion into TensorFlow lite 
model is performed. Also, the same model is converted with the help of the Tensil 
framework to the model format that would be intended to be executed on FPGA. These 
new forms of models as well as test data are transferred to PYNQ Z2 where they are run. 

The process of converting a CNN model with the help of the Tensil framework and 
preparing for its execution on FPGA is shown in Figure 4. 

 
Figure 4. Preparation of CNN models to run on PYNQ Z2. Figure 4. Preparation of CNN models to run on PYNQ Z2.



Sensors 2024, 24, 5965 16 of 26

First, the PYNQ Z2 architecture was selected, which is given as records in a file with
extension “tarch”. Then, the same architecture file was used in two processes by the Tensil
framework. First, the design was generated with the help of Tensil, which produced the
Verilog files. These files are loaded into the Xilinx Vivado, where the preparation and
synthesis of the project is carried out, which enables the execution of the CNN model on the
FPGA. On the other hand, with the help of the selected architecture, the pretrained CNN
model is converted, resulting in three files: *.tmodel, *.tprog and *.tdata. All these files are
transferred to PYNQ Z2 and image classification is called from the Python environment
using the CNN model which is now executed on the FPGA.

The entire process of preparing a classification system from model selection and train-
ing to the server and its compilation and transfer to a device with limited resources, as a
model accelerator on the FPGA, is shown in Figure 5. In order to simplify the implementa-
tion and application of the model, the process is divided into two branches, the resulting
files of which are transferred to the PYNQ Z2 board, where the image classification is
performed. The first branch represents the selection of an architecture, which in this case is
PYNQ Z2, then the generation of the accelerator design, its preparation and synthesis with
the help of Xilinx Vivado. Finally, the resulting bit file and the driver file are used on the
PYNQ Z2. In the case of choosing and using this particular architecture, the procedures de-
scribed are carried out once and the resulting files can be reused for different classification
models that are executed on this hardware.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 28 
 

 

First, the PYNQ Z2 architecture was selected, which is given as records in a file with 
extension “tarch”. Then, the same architecture file was used in two processes by the 
Tensil framework. First, the design was generated with the help of Tensil, which 
produced the Verilog files. These files are loaded into the Xilinx Vivado, where the 
preparation and synthesis of the project is carried out, which enables the execution of the 
CNN model on the FPGA. On the other hand, with the help of the selected architecture, 
the pretrained CNN model is converted, resulting in three files: *.tmodel, *.tprog and 
*.tdata. All these files are transferred to PYNQ Z2 and image classification is called from 
the Python environment using the CNN model which is now executed on the FPGA. 

The entire process of preparing a classification system from model selection and 
training to the server and its compilation and transfer to a device with limited resources, 
as a model accelerator on the FPGA, is shown in Figure 5. In order to simplify the 
implementation and application of the model, the process is divided into two branches, 
the resulting files of which are transferred to the PYNQ Z2 board, where the image 
classification is performed. The first branch represents the selection of an architecture, 
which in this case is PYNQ Z2, then the generation of the accelerator design, its 
preparation and synthesis with the help of Xilinx Vivado. Finally, the resulting bit file and 
the driver file are used on the PYNQ Z2. In the case of choosing and using this particular 
architecture, the procedures described are carried out once and the resulting files can be 
reused for different classification models that are executed on this hardware. 

 
Figure 5. Preparing an acceleration model for image classification on FPGA. 

The second branch is not completely independent from the first, but it contains all 
the steps for choosing a classification model and preparing it for execution on the FPGA. 
Dependency to the first part is reflected in the fact that when compiling the pre-trained 
model with the help of Tensil [69], the chosen architecture is taken into account, which 
can be clearly seen from Figure 5. The steps in the second branch are repeated every time 
when a new model is prepared for image classification. The approach formed in this way 

Figure 5. Preparing an acceleration model for image classification on FPGA.

The second branch is not completely independent from the first, but it contains all
the steps for choosing a classification model and preparing it for execution on the FPGA.
Dependency to the first part is reflected in the fact that when compiling the pre-trained
model with the help of Tensil [69], the chosen architecture is taken into account, which
can be clearly seen from Figure 5. The steps in the second branch are repeated every time
when a new model is prepared for image classification. The approach formed in this way
implies that it is very simple to repeat the process for any new model. The only thing that



Sensors 2024, 24, 5965 17 of 26

needs to be included is a new classification model (A) and input datasets with a suitable
set of images (B). All the other processes below are repeated and thus the classification
model for the FPGA is effectively obtained without the need to know the details of the
FPGA implementation.

5. Results and Discussion

The testing of CNN models, which are used in the three implemented applications,
was performed on new datasets that were not used during training. Three tests were
performed for each model, one test on the server with the original model and two tests
on PYNQ Z2 with the converted CNN model for devices with limited resources. The test
accuracy values are shown in Figure 6, where it can be seen that there was no significant
decrease in accuracy after converting and using the model on the Fog computing layer.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 28 
 

 

implies that it is very simple to repeat the process for any new model. The only thing that 
needs to be included is a new classification model (A) and input datasets with a suitable 
set of images (B). All the other processes below are repeated and thus the classification 
model for the FPGA is effectively obtained without the need to know the details of the 
FPGA implementation. 

5. Results and Discussion 
The testing of CNN models, which are used in the three implemented applications, 

was performed on new datasets that were not used during training. Three tests were 
performed for each model, one test on the server with the original model and two tests on 
PYNQ Z2 with the converted CNN model for devices with limited resources. The test 
accuracy values are shown in Figure 6, where it can be seen that there was no significant 
decrease in accuracy after converting and using the model on the Fog computing layer. 

 
Figure 6. Test accuracy for CNN models run on server and PYNQ Z2. 

The achieved test accuracy when using the classification models has quite high 
values, which can be seen from Figure 6, while in the third application in our example, 
the accuracy even reached 99%. Such a high value was achieved because in the third 
application (CW-03) there are only two classes, allowing one of the two possible variants 
to be recognized very successfully on a given set of images. 

After testing the CNN models, we proceeded to check the performance of the system 
depending on where the data is processed. We formed a test dataset of images and sent 
one image at a time to the classifier module. We calculated the time elapsed from the 
moment of sending the image to the moment when the result arrives in the form of the 
category to which the image belongs. 

There were three different main variants regarding the type where the classification 
process is carried out. In the first variant, we sent one image at a time to the server via the 
MQTT protocol, where the receiving model downloaded the image and performed 
classification with the help of the pre-trained CNN model. After that, using the MQTT 
protocol, the response would be returned to the device that sent the request. The elapsed 
time or delay for receiving a response from the server in case of all three applications and 
their combinations is presented in Figure 7. 

Figure 6. Test accuracy for CNN models run on server and PYNQ Z2.

The achieved test accuracy when using the classification models has quite high values,
which can be seen from Figure 6, while in the third application in our example, the accuracy
even reached 99%. Such a high value was achieved because in the third application (CW-03)
there are only two classes, allowing one of the two possible variants to be recognized very
successfully on a given set of images.

After testing the CNN models, we proceeded to check the performance of the system
depending on where the data is processed. We formed a test dataset of images and sent one
image at a time to the classifier module. We calculated the time elapsed from the moment
of sending the image to the moment when the result arrives in the form of the category to
which the image belongs.

There were three different main variants regarding the type where the classification
process is carried out. In the first variant, we sent one image at a time to the server via
the MQTT protocol, where the receiving model downloaded the image and performed
classification with the help of the pre-trained CNN model. After that, using the MQTT
protocol, the response would be returned to the device that sent the request. The elapsed
time or delay for receiving a response from the server in case of all three applications and
their combinations is presented in Figure 7.



Sensors 2024, 24, 5965 18 of 26Sensors 2024, 24, x FOR PEER REVIEW 19 of 28 
 

 

 
Figure 7. Latency in image classification on the server for different application settings. 

When only one application is running, it can be seen that the delay is about 1.5 s. We 
chose in our test examples that the first period of sending images should be 2 s (T = 2 s). If 
the images were continuously sent in a time interval of less than 1.5 s in this setting, the 
time required for the classification process would accumulate and lengthy delay times 
would be obtained, which would prevent the expected system functionality. When two 
applications are running, a slightly higher delay value is obtained, but still below the 
sending period of 2 s. If all three applications on the server are started, and receive 
images periodically from the Fog device, then their delay increases to a value of about 3.5 
s. A further increase in data transfer or additional network activity on the server can 
cause a higher value of latency, which leads to a situation that we do not expect from a 
system where getting a quick response is very important. 

The idea of transferring the classification model to the level of Fog computing was 
demonstrated in order to improve the reliability of the application, among other things. If 
the model were executed on the server, the amount of data would affect the response 
time so that in the case of a larger number of running applications or due to an increase in 
the frequency of sending data, the delay time would be significantly increased. Under 
such conditions, the delay would be high, so that it would jeopardize the normal 
functioning of the system. If the classification model were executed on a Fog device close 
to the data source, the response would be obtained in real time and the reliability of the 
system would not depend on a constant connection to the Cloud and network load. 

If in the variant with all three applications we increase the period of sending data, 
i.e., the interval between sending, then the load on the server decreases and thus the 
value of the delay (Figure 8). 

Figure 7. Latency in image classification on the server for different application settings.

When only one application is running, it can be seen that the delay is about 1.5 s. We
chose in our test examples that the first period of sending images should be 2 s (T = 2 s). If
the images were continuously sent in a time interval of less than 1.5 s in this setting, the time
required for the classification process would accumulate and lengthy delay times would be
obtained, which would prevent the expected system functionality. When two applications
are running, a slightly higher delay value is obtained, but still below the sending period
of 2 s. If all three applications on the server are started, and receive images periodically
from the Fog device, then their delay increases to a value of about 3.5 s. A further increase
in data transfer or additional network activity on the server can cause a higher value of
latency, which leads to a situation that we do not expect from a system where getting a
quick response is very important.

The idea of transferring the classification model to the level of Fog computing was
demonstrated in order to improve the reliability of the application, among other things. If
the model were executed on the server, the amount of data would affect the response time
so that in the case of a larger number of running applications or due to an increase in the
frequency of sending data, the delay time would be significantly increased. Under such
conditions, the delay would be high, so that it would jeopardize the normal functioning
of the system. If the classification model were executed on a Fog device close to the data
source, the response would be obtained in real time and the reliability of the system would
not depend on a constant connection to the Cloud and network load.

If in the variant with all three applications we increase the period of sending data, i.e.,
the interval between sending, then the load on the server decreases and thus the value of
the delay (Figure 8).

When the image sending period is increased to 5 s, as well as to 6 s, in a given system
setting, the delay is reduced to near 1.5 s, setting it to the value it had in the case of
individual applications.

Apart from the classification of images on the server, the other two variants refer to
the processing of data on the PYNQ Z2, so that the images are forwarded to the TensorFlow
Lite model and the FPGA part of the device for the execution of the classification process.
The time required for image classification (latency) in the case of execution on the server as
well as on the Fog level via PYNQ Z2 is presented in Figure 9.



Sensors 2024, 24, 5965 19 of 26Sensors 2024, 24, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 8. Latency in image classification on the server running all three applications. 

When the image sending period is increased to 5 s, as well as to 6 s, in a given system 
setting, the delay is reduced to near 1.5 s, setting it to the value it had in the case of 
individual applications. 

Apart from the classification of images on the server, the other two variants refer to 
the processing of data on the PYNQ Z2, so that the images are forwarded to the 
TensorFlow Lite model and the FPGA part of the device for the execution of the 
classification process. The time required for image classification (latency) in the case of 
execution on the server as well as on the Fog level via PYNQ Z2 is presented in Figure 9. 

 
Figure 9. Time elapsed in receiving result of image classification. 

In this graph, the same server latency data for the T = 2 s and T = 3 s periods as in the 
previous figure can be seen, but now in relation to the latency values of the PYNQ Z2. As 
expected, the delay is lower on the Fog computing layer, but the values are not the same 
for all three application variants. For the first application, TL-01, classification is 
performed on images that have the largest dimension of 128 × 128 pixels, and therefore 
during testing we had the largest delay. In the second application, IP-02, images with 
dimensions of 96 × 96 pixels were used and, accordingly, a lower delay was obtained. The 
third application, CW-03, accepts and classifies images with dimensions of 64 × 64 pixels 

Figure 8. Latency in image classification on the server running all three applications.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 28 
 

 

 
Figure 8. Latency in image classification on the server running all three applications. 

When the image sending period is increased to 5 s, as well as to 6 s, in a given system 
setting, the delay is reduced to near 1.5 s, setting it to the value it had in the case of 
individual applications. 

Apart from the classification of images on the server, the other two variants refer to 
the processing of data on the PYNQ Z2, so that the images are forwarded to the 
TensorFlow Lite model and the FPGA part of the device for the execution of the 
classification process. The time required for image classification (latency) in the case of 
execution on the server as well as on the Fog level via PYNQ Z2 is presented in Figure 9. 

 
Figure 9. Time elapsed in receiving result of image classification. 

In this graph, the same server latency data for the T = 2 s and T = 3 s periods as in the 
previous figure can be seen, but now in relation to the latency values of the PYNQ Z2. As 
expected, the delay is lower on the Fog computing layer, but the values are not the same 
for all three application variants. For the first application, TL-01, classification is 
performed on images that have the largest dimension of 128 × 128 pixels, and therefore 
during testing we had the largest delay. In the second application, IP-02, images with 
dimensions of 96 × 96 pixels were used and, accordingly, a lower delay was obtained. The 
third application, CW-03, accepts and classifies images with dimensions of 64 × 64 pixels 

Figure 9. Time elapsed in receiving result of image classification.

In this graph, the same server latency data for the T = 2 s and T = 3 s periods as in
the previous figure can be seen, but now in relation to the latency values of the PYNQ
Z2. As expected, the delay is lower on the Fog computing layer, but the values are not
the same for all three application variants. For the first application, TL-01, classification is
performed on images that have the largest dimension of 128 × 128 pixels, and therefore
during testing we had the largest delay. In the second application, IP-02, images with
dimensions of 96 × 96 pixels were used and, accordingly, a lower delay was obtained. The
third application, CW-03, accepts and classifies images with dimensions of 64 × 64 pixels
and accordingly there is a delay of 0.89 s for the TF Lite model and 0.26 s for the FPGA
classification. Taking these delay values, the number of images to be classified per second
can be determined, which for the CW-03 application is 3.85 images per second. In Figure 8,
we also present an application labeled CW-04, which represents the same application as
CW-03, only with different inputs, since it uses images with dimensions of 32 × 32 pixels.
In this variant, even less delay time is obtained, and a significant acceleration in image
processing via FPGA is achieved.

One of the datasets we used to demonstrate the presented image classification system
concept is a set of tomato leaf disease images, which correspond to images from the Plant
Village dataset [72]. A dataset related specifically to images of tomato leaves has been used



Sensors 2024, 24, 5965 20 of 26

by various authors in experiments to classify tomato diseases. Various algorithms were
used and the results of the applied models expressed by accuracy are shown in Table 2.
The table contains several studies that represent the basis for comparison in terms of model
accuracy [55]. Each row contains the reference of the author’s research, the dataset used,
the algorithm and the testing accuracy, which can be compared with the last two rows in
the table that contain the description of the model presented in this paper.

Table 2. Comparison of testing accuracy for tomato diseases classification.

No. Articles Tomato Dataset Algorithm/Model Testing
Accuracy

1 Abbas et al. [73] Plant Village
Synthetic DenseNet121 97.11%

2 Hossain et al. [74] Plant Village Multi-Axis Vision
Transformer 93.00%

3 Agarwal et al. [75] Plant Village VGG16 91.20%

4 Barman et al. [55] Plant Village Vision
Transformer 90.99%

5 Proposed Work—on
server

Part of Plant
Village dataset ResNet20 96.29%

6 Proposed Work—on
FPGA accelerator

Part of Plant
Village dataset ResNet20 95.46%

Although the presented model has its compact size with the aim of being placed on
devices with limited resources, its accuracy still has a high value. After training the model
on the server, it was tested with unused data and a testing accuracy of 96.29% was achieved.
After the model was optimized and translated to a version of the model that can be run on
the FPGA, testing was performed with the same new data and a test accuracy of 95.46%
was obtained. Although the model was adapted and compiled for FPGA, the given testing
accuracy was very slightly reduced compared to the original trained model on the server.
Compared to the results from other articles, it can be seen that the accuracy of the proposed
model for classification is acceptable even in the case of preparing its version for FPGAs
within the concept of Fog computing that characterizes devices with limited resources.

Precisely because of the cases with limited resources, in order to meet the requirements
of the concept of Edge or Fog computing, the image classification algorithm and other
parameters were selected in order to obtain a model with a smaller and more compact size.
In Table 3, various deep learning models are presented [54], with the number of their model
parameters, model size and number of frames per second on ARM Cortex processor.

Table 3. Parameters comparison of proposed classification system and other DL models.

Model Parameters (106) Model Size (MB) FPS (ARM Cortex
Processor)

VGG19 [76] 200.25 229.0 0.47

VGG16 [76] 147.15 168.0 0.62

EfficientNetB0 [77] 4.05 46.9 2.69

MobileNetV1 [78] 3.23 37.1 8.23

MobileNetV3Small [79] 1.53 18.0 7.43

Vit Base [48] 86.00 345.0 0.21

GreenViT [54] 21.65 247.0 0.34

Proposed Work (TL-01 app)
0.29 3.8

0.30

Proposed Work (CW-04 app) 4.17



Sensors 2024, 24, 5965 21 of 26

According to the data in the table, it can be seen that the proposed model for classifi-
cation has a far smaller number of parameters than other models, and also a smaller size.
Another parameter that shows the performance of the model is the execution time, in this
case the number of images per second, on a device with an ARM Cortex processor, and
this is presented in the last column. For our model in the last two lines we present two
variants depending on the size of the input data. In the case of classification of images with
dimensions of 128 × 128 pixels, processing of 0.3 images per second is achieved on an end
device with limited resources. If we used a set of smaller images, 32 × 32 pixels, then the
image processing value would be 4.17 images per second. The stated values in relation to
the other models fit into their range, even though ours is a much smaller model.

Table 4 shows the hardware platforms that can make up the Edge devices on which the
classification model will be run. Certain platforms were selected based on the comparison
presented in article [80], with the platform used in our work for FPGA acceleration entered
as the last row in the table for comparison.

Table 4. Hardware platforms as Edge devices.

Hardware
Platform Processing Unit AI Acceleration Memory FPS

Tinker Edge R ARM Dual-core Cortex A72,
Quad-core cortex A53 NPU 4 GB LPDDR4,

2GB LPDDR3 6.5

Raspberry Pi 4 ARM Quad-core Cortex A72 - 4 GB LPDDR4 4.8

Google Coral ARM Dual-core Cortex A53 TPU 1 GB LPDDR4 3.6

NVIDIA Jetson
Nano ARM Cortex A57 128-core GPU 4 GB LPDDR4 7.2

Proposed Work
with PYNQ Z2
(CW-04 app)

ARM Dual-core Cortex A9 Programmable
Logic (FPGA) 512 MB DDR3 12.2

Especially when considering the execution values of the same model compiled for
FPGA, improvements can be seen. Testing the accelerated model on FPGA, we get results
(Figure 9) that for the first TL-01 application, the number of images per second is 1.14, while
in the second variant for the CW-04 application, the number of images per second is 12.2.

Processing data on the Fog computing layer and getting fast and reliable responses is
beneficial in itself, but it also saves resources on the server side. The images from the end
devices are not sent to the remote server and therefore the data transfer over the network
is lower, especially if there are a large number of devices. In the case of our system setup,
the network load for different variants of the three selected applications (TL-01, IP-02 and
CW-03) is shown in Figure 10.

Within the defined system settings, the influence of running applications on the
network load at the server was measured. During the testing, the network data were
captured and their average values are shown in Figure 10, where NA-00 represents the
network load when no applications are running. The next three values represent the
amounts of network data in the case of individual applications, according to the size of the
data transferred for each application. A higher value is obtained when two applications
are running and the highest network traffic value is for all three applications. The tests
described were carried out with a period of 2 s (T = 2 s), and if the period of sending images
to the server were to be increased (3, 4, 5, or 6 s), the network data transfer on the server
would be reduced accordingly.



Sensors 2024, 24, 5965 22 of 26

Sensors 2024, 24, x FOR PEER REVIEW 23 of 28 
 

 

system setup, the network load for different variants of the three selected applications 
(TL-01, IP-02 and CW-03) is shown in Figure 10. 

 
Figure 10. Network data transfer to the server. 

Within the defined system settings, the influence of running applications on the 
network load at the server was measured. During the testing, the network data were 
captured and their average values are shown in Figure 10, where NA-00 represents the 
network load when no applications are running. The next three values represent the 
amounts of network data in the case of individual applications, according to the size of 
the data transferred for each application. A higher value is obtained when two 
applications are running and the highest network traffic value is for all three 
applications. The tests described were carried out with a period of 2 s (T = 2 s), and if the 
period of sending images to the server were to be increased (3, 4, 5, or 6 s), the network 
data transfer on the server would be reduced accordingly. 

In the case where most of the data stream processing is transferred to the Fog 
computing layer, energy consumption on the server is also saved. The values of energy 
consumption on the server, during testing, observed on average for one hour, are 
presented in Figure 11. 

Figure 10. Network data transfer to the server.

In the case where most of the data stream processing is transferred to the Fog com-
puting layer, energy consumption on the server is also saved. The values of energy con-
sumption on the server, during testing, observed on average for one hour, are presented in
Figure 11.

Sensors 2024, 24, x FOR PEER REVIEW 24 of 28 
 

 

 
Figure 11. Energy consumption on the server during application testing. 

The value labeled with NA-00 represents the consumption value when none of the 
test applications are started; the server only has its other services active, configured 
according to the previously defined system settings. Similar to the previous graph, the 
highest consumption is in the case where all three applications are running. If the period 
of sending data to the server increases, the intervals when the classification process is 
performed are longer, and then the value of the energy required for executing 
applications is reduced. 

The presented results of the test system show the relationships between important 
parameters in the case of executing applications in the Cloud or transferring them to the 
level of Fog computing. The test system not only contains the part related to the training 
of CNN models, but also support for their preparation and transmission at the Fog 
computing level. 

Realized applications in smart agriculture are also accomplished through CNN 
image classification that can be performed on the Fog devices. Therefore, user 
applications can be defined in such a way that the classification results could be obtained 
in real time. Such benefits enable further application development in the field of smart 
agriculture by providing the opportunity to optimize CNN models and their execution 
on devices with limited resources close to the location of the data source. 

The entire test system with the parameters obtained during application testing can 
be used to consider the benefits of using Cloud-Fog computing. Also, the existing 
structure of the test system can be transferred to another environment that has 
completely different configuration and resources. In this situation, the same types of 
parameters could be obtained quite effectively, performing tests of user applications, and 
providing indicators to evaluate a new Fog computing system. 

6. Conclusions 
Image analysis using a classification process provides recognition of various 

conditions in the field of agriculture which enables many resource savings, optimization 
and timely reactions. In this article, we have presented a working setup for creating, 
training and using image classification models in the domain of smart agriculture. This 
realization of the classification model represents a comprehensive solution, from data 
preparation, through defining the structure of the neural network, and the training 
process, to the preparation and implementation of the model on devices that belong to 

Figure 11. Energy consumption on the server during application testing.

The value labeled with NA-00 represents the consumption value when none of the test
applications are started; the server only has its other services active, configured according
to the previously defined system settings. Similar to the previous graph, the highest
consumption is in the case where all three applications are running. If the period of sending
data to the server increases, the intervals when the classification process is performed are
longer, and then the value of the energy required for executing applications is reduced.



Sensors 2024, 24, 5965 23 of 26

The presented results of the test system show the relationships between important
parameters in the case of executing applications in the Cloud or transferring them to
the level of Fog computing. The test system not only contains the part related to the
training of CNN models, but also support for their preparation and transmission at the Fog
computing level.

Realized applications in smart agriculture are also accomplished through CNN image
classification that can be performed on the Fog devices. Therefore, user applications can
be defined in such a way that the classification results could be obtained in real time.
Such benefits enable further application development in the field of smart agriculture by
providing the opportunity to optimize CNN models and their execution on devices with
limited resources close to the location of the data source.

The entire test system with the parameters obtained during application testing can be
used to consider the benefits of using Cloud-Fog computing. Also, the existing structure
of the test system can be transferred to another environment that has completely different
configuration and resources. In this situation, the same types of parameters could be
obtained quite effectively, performing tests of user applications, and providing indicators
to evaluate a new Fog computing system.

6. Conclusions

Image analysis using a classification process provides recognition of various conditions
in the field of agriculture which enables many resource savings, optimization and timely
reactions. In this article, we have presented a working setup for creating, training and
using image classification models in the domain of smart agriculture. This realization
of the classification model represents a comprehensive solution, from data preparation,
through defining the structure of the neural network, and the training process, to the
preparation and implementation of the model on devices that belong to the level of Fog
computing. The transfer of image classification near the data source to devices with
constrained resources allows a significant contribution in smart agriculture applications as
it enables real-time response, operational reliability and independence from constant data
transfer to the Cloud. Also, the test part of our setup can be used to check the performance
of new configurations or new solutions. By running tests on other configurations, it would
be possible to determine what the delays would be, and the network load depending on
the number of application instances and the frequency of sending data. Also, our test
setup could be used for determination of device potential at the Fog computing layer for
executing selected IoT applications. Future research directions could be related to the
application of transfer learning techniques to address the challenges of limited datasets
in agriculture. A significant insight would be to examine the effectiveness of applying
pre-trained models for data classification and transfer learning in the case of small datasets.
The classification models employed were related to the applications used for recognition
of weeds, insect pests and tomato leaf diseases, and could contribute to the reduction of
sensitive substances appliance, such as fungicides and insecticides.

Author Contributions: Conceptualization, D.M. and S.R.; Data curation, D.M. and B.Ð.; Formal
analysis, D.M. and B.Ð.; Methodology, D.M. and S.R.; Resources, S.R.; Software, B.Ð.; Supervision,
Z.S.; Validation, Z.S. and S.R.; Writing—original draft, D.M. and Z.S.; Writing—review & editing, Z.S.
All authors have read and agreed to the published version of the manuscript.

Funding: The work presented in this paper was supported by the German Federal Ministry for
Education and Research in form of Brandenburg/Bayern Initiative for Integration of Artificial
Intelligence—Hardware Subjects in University Curriculum (BB-KI-Chips), project no. 16DHBKIO20.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding authors.



Sensors 2024, 24, 5965 24 of 26

Acknowledgments: The research presented in this paper was supported by the Ministry of Science,
Technological Development and Innovation of the Republic of Serbia, and these results are part of
the Grant with University of Kragujevac, Faculty of Agronomy Čačak, project no. 451-03-66/2024-
03/200088.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Mahmoud, M.M.E.; Rodrigues, J.J.P.C.; Saleem, K.; Al-Muhtadi, J.; Kumar, N.; Korotaev, V. Towards Energy-Aware Fog-Enabled

Cloud of Things for Healthcare. Comput. Electr. Eng. 2018, 67, 58–69. [CrossRef]
2. Dhillon, A.; Verma, G.K. Convolutional Neural Network: A Review of Models, Methodologies and Applications to Object

Detection. Prog. Artif. Intell. 2020, 9, 85–112. [CrossRef]
3. Lin, W.; Adetomi, A.; Arslan, T. Low-Power Ultra-Small Edge AI Accelerators for Image Recognition with Convolution Neural

Networks: Analysis and Future Directions. Electronics 2021, 10, 2048. [CrossRef]
4. Abdelmoneem, R.M.; Benslimane, A.; Shaaban, E. Mobility-Aware Task Scheduling in Cloud-Fog IoT-Based Healthcare Architec-

tures. Comput. Netw. 2020, 179, 107348. [CrossRef]
5. Zou, Z.; Jin, Y.; Nevalainen, P.; Huan, Y.; Heikkonen, J.; Westerlund, T. Edge and Fog Computing Enabled AI for IoT-An Overview.

In Proceedings of the 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Hsinchu,
Taiwan, 18–20 March 2019; pp. 51–56.

6. Hazra, A.; Rana, P.; Adhikari, M.; Amgoth, T. Fog Computing for Next-Generation Internet of Things: Fundamental, State-of-the-
Art and Research Challenges. Comput. Sci. Rev. 2023, 48, 100549. [CrossRef]

7. Branco, S.; Ferreira, A.G.; Cabral, J. Machine Learning in Resource-Scarce Embedded Systems, FPGAs, and End-Devices: A
Survey. Electronics 2019, 8, 1289. [CrossRef]

8. Rokh, B.; Azarpeyvand, A.; Khanteymoori, A. A Comprehensive Survey on Model Quantization for Deep Neural Networks in
Image Classification. ACM Trans. Intell. Syst. Technol. 2023, 14, 1–50. [CrossRef]

9. Weng, O. Neural Network Quantization for Efficient Inference: A Survey. arXiv 2021, arXiv:2112.06126.
10. Chen, L.; Li, S.; Bai, Q.; Yang, J.; Jiang, S.; Miao, Y. Review of Image Classification Algorithms Based on Convolutional Neural

Networks. Remote Sens. 2021, 13, 4712. [CrossRef]
11. Alwis, S.D.; Hou, Z.; Zhang, Y.; Na, M.H.; Ofoghi, B.; Sajjanhar, A. A Survey on Smart Farming Data, Applications and Techniques.

Comput. Ind. 2022, 138, 103624. [CrossRef]
12. Idoje, G.; Dagiuklas, T.; Iqbal, M. Survey for Smart Farming Technologies: Challenges and Issues. Comput. Electr. Eng. 2021,

92, 107104. [CrossRef]
13. Sharma, V.; Tripathi, A.K.; Mittal, H. Technological Revolutions in Smart Farming: Current Trends, Challenges & Future Directions.

Comput. Electron. Agric. 2022, 201, 107217. [CrossRef]
14. Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in

Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [CrossRef]
15. Ghazal, S.; Munir, A.; Qureshi, W.S. Computer Vision in Smart Agriculture and Precision Farming: Techniques and Applications.

Artif. Intell. Agric. 2024, 13, 64–83. [CrossRef]
16. Darwin, B.; Dharmaraj, P.; Prince, S.; Popescu, D.E.; Hemanth, D.J. Recognition of Bloom/Yield in Crop Images Using Deep

Learning Models for Smart Agriculture: A Review. Agronomy 2021, 11, 646. [CrossRef]
17. Lu, J.; Tan, L.; Jiang, H. Review on Convolutional Neural Network (CNN) Applied to Plant Leaf Disease Classification. Agriculture

2021, 11, 707. [CrossRef]
18. Debnath, O.; Saha, H.N. An IoT-Based Intelligent Farming Using CNN for Early Disease Detection in Rice Paddy. Microprocess.

Microsyst. 2022, 94, 104631. [CrossRef]
19. Ramana, K.; Aluvala, R.; Kumar, M.R.; Nagaraja, G.; Krishna, A.V.; Nagendra, P. Leaf Disease Classification in Smart Agriculture

Using Deep Neural Network Architecture and IoT. J. Circuits Syst. Comput. 2022, 31, 2240004. [CrossRef]
20. Pang, H.; Zheng, Z.; Zhen, T.; Sharma, A. Smart Farming: An Approach for Disease Detection Implementing IoT and Image

Processing. Int. J. Agric. Environ. Inf. Syst. 2021, 12, 55–67. [CrossRef]
21. Trivedi, N.K.; Gautam, V.; Anand, A.; Aljahdali, H.M.; Villar, S.G.; Anand, D.; Goyal, N.; Kadry, S. Early Detection and

Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. Sensors 2021, 21, 7987. [CrossRef]
22. Aishwarya, N.; Praveena, N.G.; Priyanka, S.; Pramod, J. Smart Farming for Detection and Identification of Tomato Plant Diseases

Using Light Weight Deep Neural Network. Multimed. Tools Appl. 2023, 82, 18799–18810. [CrossRef]
23. Paymode, A.S.; Malode, V.B. Transfer Learning for Multi-Crop Leaf Disease Image Classification Using Convolutional Neural

Network VGG. Artif. Intell. Agric. 2022, 6, 23–33. [CrossRef]
24. Özbılge, E.; Ulukök, M.K.; Toygar, Ö.; Ozbılge, E. Tomato Disease Recognition Using a Compact Convolutional Neural Network.

IEEE Access 2022, 10, 77213–77224. [CrossRef]
25. Kasinathan, T.; Singaraju, D.; Uyyala, S.R. Insect Classification and Detection in Field Crops Using Modern Machine Learning

Techniques. Inf. Process. Agric. 2021, 8, 446–457. [CrossRef]

https://doi.org/10.1016/j.compeleceng.2018.02.047
https://doi.org/10.1007/s13748-019-00203-0
https://doi.org/10.3390/electronics10172048
https://doi.org/10.1016/j.comnet.2020.107348
https://doi.org/10.1016/j.cosrev.2023.100549
https://doi.org/10.3390/electronics8111289
https://doi.org/10.1145/3623402
https://doi.org/10.3390/rs13224712
https://doi.org/10.1016/j.compind.2022.103624
https://doi.org/10.1016/j.compeleceng.2021.107104
https://doi.org/10.1016/j.compag.2022.107217
https://doi.org/10.1016/j.compag.2022.107119
https://doi.org/10.1016/j.aiia.2024.06.004
https://doi.org/10.3390/agronomy11040646
https://doi.org/10.3390/agriculture11080707
https://doi.org/10.1016/j.micpro.2022.104631
https://doi.org/10.1142/S0218126622400047
https://doi.org/10.4018/IJAEIS.20210101.oa4
https://doi.org/10.3390/s21237987
https://doi.org/10.1007/s11042-022-14272-2
https://doi.org/10.1016/j.aiia.2021.12.002
https://doi.org/10.1109/ACCESS.2022.3192428
https://doi.org/10.1016/j.inpa.2020.09.006


Sensors 2024, 24, 5965 25 of 26

26. Li, W.; Zheng, T.; Yang, Z.; Li, M.; Sun, C.; Yang, X. Classification and Detection of Insects from Field Images Using Deep Learning
for Smart Pest Management: A Systematic Review. Ecol. Inform. 2021, 66, 101460. [CrossRef]

27. Li, C.; Zhen, T.; Li, Z. Image Classification of Pests with Residual Neural Network Based on Transfer Learning. Appl. Sci. 2022,
12, 4356. [CrossRef]

28. Rimal, K.; Shah, K.B.; Jha, A.K. Advanced Multi-Class Deep Learning Convolution Neural Network Approach for Insect Pest
Classification Using TensorFlow. Int. J. Environ. Sci. Technol. 2023, 20, 4003–4016. [CrossRef]

29. Rustia, D.J.A.; Chao, J.-J.; Chiu, L.-Y.; Wu, Y.-F.; Chung, J.-Y.; Hsu, J.-C.; Lin, T.-T. Automatic Greenhouse Insect Pest Detection and
Recognition Based on a Cascaded Deep Learning Classification Method. J. Appl. Entomol. 2021, 145, 206–222. [CrossRef]

30. Wu, Z.; Chen, Y.; Zhao, B.; Kang, X.; Ding, Y. Review of Weed Detection Methods Based on Computer Vision. Sensors 2021,
21, 3647. [CrossRef]

31. Wang, A.; Zhang, W.; Wei, X. A Review on Weed Detection Using Ground-Based Machine Vision and Image Processing Techniques.
Comput. Electron. Agric. 2019, 158, 226–240. [CrossRef]

32. Hasan, A.S.M.M.; Sohel, F.; Diepeveen, D.; Laga, H.; Jones, M.G.K. A Survey of Deep Learning Techniques for Weed Detection
from Images. Comput. Electron. Agric. 2021, 184, 106067. [CrossRef]

33. Razfar, N.; True, J.; Bassiouny, R.; Venkatesh, V.; Kashef, R. Weed Detection in Soybean Crops Using Custom Lightweight Deep
Learning Models. J. Agric. Food Res. 2022, 8, 100308. [CrossRef]

34. Jiang, H.; Zhang, C.; Qiao, Y.; Zhang, Z.; Zhang, W.; Song, C. CNN Feature Based Graph Convolutional Network for Weed and
Crop Recognition in Smart Farming. Comput. Electron. Agric. 2020, 174, 105450. [CrossRef]

35. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent Advances in
Convolutional Neural Networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

36. Awan, Z.W.; Khalid, S.; Gul, S. A Theoretical CNN Compression Framework for Resource-Restricted Environments. In Pro-
ceedings of the 2022 2nd International Conference on Digital Futures and Transformative Technologies (ICoDT2), Rawalpindi,
Pakistan, 24–26 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 1–8.

37. Choudhary, T.; Mishra, V.; Goswami, A.; Sarangapani, J. A Comprehensive Survey on Model Compression and Acceleration.
Artif. Intell. Rev. 2020, 53, 5113–5155. [CrossRef]

38. Véstias, M.P.; Duarte, R.P.; de Sousa, J.T.; Neto, H.C. Moving Deep Learning to the Edge. Algorithms 2020, 13, 125. [CrossRef]
39. Mittal, S. A Survey of FPGA-Based Accelerators for Convolutional Neural Networks. Neural Comput. Appl. 2020, 32, 1109–1139.

[CrossRef]
40. Xiyuan, P.; Jinxiang, Y.; Bowen, Y.; Liansheng, L.; Yu, P. A Review of FPGA-Based Custom Computing Architecture for

Convolutional Neural Network Inference. Chin. J. Electron. 2021, 30, 1–17. [CrossRef]
41. Venieris, S.I.; Kouris, A.; Bouganis, C.-S. Toolflows for Mapping Convolutional Neural Networks on FPGAs: A Survey and Future

Directions. ACM Comput. Surv. 2018, 51, 56. [CrossRef]
42. Sateesan, A.; Sinha, S.; KG, S.; Vinod, A.P. A Survey of Algorithmic and Hardware Optimization Techniques for Vision

Convolutional Neural Networks on FPGAs. Neural Process. Lett. 2021, 53, 2331–2377. [CrossRef]
43. Shuvo, M.M.H.; Islam, S.K.; Cheng, J.; Morshed, B.I. Efficient Acceleration of Deep Learning Inference on Resource-Constrained

Edge Devices: A Review. Proc. IEEE 2023, 111, 42–91. [CrossRef]
44. Liu, Y.; Xue, J.; Li, D.; Zhang, W.; Chiew, T.K.; Xu, Z. Image Recognition Based on Lightweight Convolutional Neural Network:

Recent Advances. Image Vis. Comput. 2024, 146, 105037. [CrossRef]
45. Wang, C.; Luo, Z. A Review of the Optimal Design of Neural Networks Based on FPGA. Appl. Sci. 2022, 12, 10771. [CrossRef]
46. Czymmek, V.; Köhn, C.; Harders, L.O.; Hussmann, S. Review of Energy-Efficient Embedded System Acceleration of Convolution

Neural Networks for Organic Weeding Robots. Agriculture 2023, 13, 2103. [CrossRef]
47. Feng, X.; Jiang, Y.; Yang, X.; Du, M.; Li, X. Computer Vision Algorithms and Hardware Implementations: A Survey. Integration

2019, 69, 309–320. [CrossRef]
48. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
[CrossRef]

49. Chen, C.-F.R.; Fan, Q.; Panda, R. CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. In Proceedings
of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada, 10–17 October 2021;
pp. 347–356.

50. Yang, B.; Wang, X.; Xing, Y.; Cheng, C.; Jiang, W.; Feng, Q. Modality Fusion Vision Transformer for Hyperspectral and LiDAR
Data Collaborative Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 1–14. [CrossRef]

51. Tummala, S.; Kadry, S.; Bukhari, S.A.C.; Rauf, H.T. Classification of Brain Tumor from Magnetic Resonance Imaging Using Vision
Transformers Ensembling. Curr. Oncol. 2022, 29, 7498–7511. [CrossRef] [PubMed]

52. Ercolino, S.; Devoto, A.; Monorchio, L.; Santini, M.; Mazzaro, S.; Scardapane, S. On the Robustness of Vision Transformers for
In-Flight Monocular Depth Estimation. Ind. Artif. Intell. 2023, 1, 1–14. [CrossRef]

53. Al-Zu’bi, S.; Hawashin, B.; Mughaid, A.; Baker, T. Efficient 3D Medical Image Segmentation Algorithm over a Secured Multimedia
Network. Multimed. Tools Appl. 2021, 80, 16887–16905. [CrossRef]

54. Parez, S.; Dilshad, N.; Alghamdi, N.S.; Alanazi, T.M.; Lee, J.W. Visual Intelligence in Precision Agriculture: Exploring Plant
Disease Detection via Efficient Vision Transformers. Sensors 2023, 23, 6949. [CrossRef] [PubMed]

https://doi.org/10.1016/j.ecoinf.2021.101460
https://doi.org/10.3390/app12094356
https://doi.org/10.1007/s13762-022-04277-7
https://doi.org/10.1111/jen.12834
https://doi.org/10.3390/s21113647
https://doi.org/10.1016/j.compag.2019.02.005
https://doi.org/10.1016/j.compag.2021.106067
https://doi.org/10.1016/j.jafr.2022.100308
https://doi.org/10.1016/j.compag.2020.105450
https://doi.org/10.1016/j.patcog.2017.10.013
https://doi.org/10.1007/s10462-020-09816-7
https://doi.org/10.3390/a13050125
https://doi.org/10.1007/s00521-018-3761-1
https://doi.org/10.1049/cje.2020.11.002
https://doi.org/10.1145/3186332
https://doi.org/10.1007/s11063-021-10458-1
https://doi.org/10.1109/JPROC.2022.3226481
https://doi.org/10.1016/j.imavis.2024.105037
https://doi.org/10.3390/app122110771
https://doi.org/10.3390/agriculture13112103
https://doi.org/10.1016/j.vlsi.2019.07.005
https://doi.org/10.48550/arXiv.2010.11929
https://doi.org/10.1109/JSTARS.2024.3415729
https://doi.org/10.3390/curroncol29100590
https://www.ncbi.nlm.nih.gov/pubmed/36290867
https://doi.org/10.1007/s44244-023-00005-3
https://doi.org/10.1007/s11042-020-09160-6
https://doi.org/10.3390/s23156949
https://www.ncbi.nlm.nih.gov/pubmed/37571732


Sensors 2024, 24, 5965 26 of 26

55. Barman, U.; Sarma, P.; Rahman, M.; Deka, V.; Lahkar, S.; Sharma, V.; Saikia, M.J. ViT-SmartAgri: Vision Transformer and
Smartphone-Based Plant Disease Detection for Smart Agriculture. Agronomy 2024, 14, 327. [CrossRef]

56. Li, H.; Li, S.; Yu, J.; Han, Y.; Dong, A. Plant Disease and Insect Pest Identification Based on Vision Transformer. In Proceedings of
the International Conference on Internet of Things and Machine Learning (IoTML 2021), Shanghai, China, 17–19 December 2021;
SPIE: Bellingham, WA, USA, 2022; Volume 12174, pp. 194–201.

57. Maurício, J.; Domingues, I.; Bernardino, J. Comparing Vision Transformers and Convolutional Neural Networks for Image
Classification: A Literature Review. Appl. Sci. 2023, 13, 5521. [CrossRef]

58. Tomato Leaf Disease Image Classification. Available online: https://kaggle.com/code/rohanpatnaik/tomato-leaf-disease-image-
classification (accessed on 7 June 2024).

59. Pest Dataset. Available online: https://www.kaggle.com/datasets/simranvolunesia/pest-dataset (accessed on 7 June 2024).
60. Weed-Classification. Available online: https://www.kaggle.com/datasets/aminelaatam/weed-classification (accessed on

7 June 2024).
61. Pang, B.; Nijkamp, E.; Wu, Y.N. Deep Learning with TensorFlow: A Review. J. Educ. Behav. Stat. 2020, 45, 227–248. [CrossRef]
62. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 10 June 2024).
63. TensorFlow Lite | ML for Mobile and Edge Devices. Available online: https://www.tensorflow.org/lite (accessed on 10 Au-

gust 2024).
64. Seng, K.P.; Lee, P.J.; Ang, L.M. Embedded Intelligence on FPGA: Survey, Applications and Challenges. Electronics 2021, 10, 895.

[CrossRef]
65. Vivado Overview. Available online: https://www.xilinx.com/products/design-tools/vivado.html (accessed on 10 May 2024).
66. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
67. Shafiq, M.; Gu, Z. Deep Residual Learning for Image Recognition: A Survey. Appl. Sci. 2022, 12, 8972. [CrossRef]
68. Taye, M.M. Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future

Directions. Computation 2023, 11, 52. [CrossRef]
69. Tensil. Available online: https://www.tensil.ai/ (accessed on 19 April 2024).
70. PYNQ Board Overview—TU/e PYNQ Pages. Available online: https://pynq.tue.nl/general/pynq/ (accessed on 9 June 2024).
71. Sun, S.; Zou, J.; Zou, Z.; Wang, S. (Eds.) Experience of PYNQ: Tutorials for PYNQ-Z2; Springer Briefs in Applied Sciences and

Technology; Springer Nature: Singapore, 2023; ISBN 978-981-19907-1-7.
72. Geetharamani, G.; Arun Pandian, J. Identification of Plant Leaf Diseases Using a Nine-Layer Deep Convolutional Neural Network.

Comput. Electr. Eng. 2019, 76, 323–338. [CrossRef]
73. Abbas, A.; Jain, S.; Gour, M.; Vankudothu, S. Tomato Plant Disease Detection Using Transfer Learning with C-GAN Synthetic

Images. Comput. Electron. Agric. 2021, 187, 106279. [CrossRef]
74. Hossain, S.; Tanzim Reza, M.; Chakrabarty, A.; Jung, Y.J. Aggregating Different Scales of Attention on Feature Variants for Tomato

Leaf Disease Diagnosis from Image Data: A Transformer Driven Study. Sensors 2023, 23, 3751. [CrossRef]
75. Agarwal, M.; Singh, A.; Arjaria, S.; Sinha, A.; Gupta, S. ToLeD: Tomato Leaf Disease Detection Using Convolution Neural

Network. Procedia Comput. Sci. 2020, 167, 293–301. [CrossRef]
76. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.

[CrossRef]
77. Tan, M.; Le, Q. EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. In Proceedings of the 36th

International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR, 24 May 2019. pp. 6105–6114.
78. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. MobileNets: Efficient

Convolutional Neural Networks for Mobile Vision Applications. arXiv 2017, arXiv:1704.04861. [CrossRef]
79. Howard, A.; Sandler, M.; Chen, B.; Wang, W.; Chen, L.-C.; Tan, M.; Chu, G.; Vasudevan, V.; Zhu, Y.; Pang, R.; et al. Search-

ing for MobileNetV3. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul,
Republic of Korea, 27 October–2 November 2019; pp. 1314–1324.

80. Choi, K.; Sobelman, G.E. An Efficient CNN Accelerator for Low-Cost Edge Systems. ACM Trans. Embed. Comput. Syst. 2022, 21,
1–20. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/agronomy14020327
https://doi.org/10.3390/app13095521
https://kaggle.com/code/rohanpatnaik/tomato-leaf-disease-image-classification
https://kaggle.com/code/rohanpatnaik/tomato-leaf-disease-image-classification
https://www.kaggle.com/datasets/simranvolunesia/pest-dataset
https://www.kaggle.com/datasets/aminelaatam/weed-classification
https://doi.org/10.3102/1076998619872761
https://www.tensorflow.org/
https://www.tensorflow.org/lite
https://doi.org/10.3390/electronics10080895
https://www.xilinx.com/products/design-tools/vivado.html
https://doi.org/10.3390/app12188972
https://doi.org/10.3390/computation11030052
https://www.tensil.ai/
https://pynq.tue.nl/general/pynq/
https://doi.org/10.1016/j.compeleceng.2019.04.011
https://doi.org/10.1016/j.compag.2021.106279
https://doi.org/10.3390/s23073751
https://doi.org/10.1016/j.procs.2020.03.225
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1145/3539224

	Introduction 
	Fog Computing and Deep Learning 
	Related Work 
	Image Classification and Smart Farming 
	CNN and Accelerators on Edge 
	CNNs and Vision Transformers 

	Materials and Methods 
	Datasets for Training Models 
	Tensorflow and Deep Learning on the Edge Devices 
	FPGA Acceleration of Deep Learning 
	Residual Network Based on CNN 
	Tensil AI 
	PYNQ Z2 Description and Characteristics 
	Working and Testing Environment 

	Results and Discussion 
	Conclusions 
	References

