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The properties of anisotropic materials are used in many optical components such as waveplates or polarizing
beamsplitters. In particular, anisotropic materials that possess electro-optical properties allow the realization of
actively controllable optical components like optical switches, phase shifters, or modulators. Hence, understand-
ing and computation of light propagation in anisotropic materials with electro-optical effects are crucial in optical
science and technology. On the one hand this tutorial stresses the use of eigenvalue problems to explain qualita-
tively and to compute quantitatively important properties such as polarization. On the other hand it discusses
the mathematical model of both electro-optical effects, namely, the Pockels and the DC Kerr effect. This tutorial
describes the basic concepts in a consistent tensor language, shows how the tensors are conveniently summarized in
matrices, and points out that these matrices do not transform like tensors. The tensor approach clarifies how sym-
metry arguments affect tensor components. Further, this paper derives the more accurate nonlinear relationship
between the refractive index and the externally applied electric field. ©2024Optica PublishingGroup

https://doi.org/10.1364/JOSAB.524213

1. INTRODUCTION

The propagation of light through an anisotropic optical material
depends on the dielectric tensor of the material. This tensor
determines the reduced speed of light inside the material and
restricts the polarization direction of the light. For some mate-
rials, the dielectric tensor and hence the optical properties will
change, if an external electric field is applied. The change of
the tensor components is approximated by the first terms of a
Taylor series with respect to the external electric field with center
E= 0. The effect of the linear term of the Taylor series is called
the Pockels effect and the effect of the quadratic term is known
as the DC Kerr effect.

Electro-optical effects feature several advantages for tech-
nological applications. First, the refractive index change is
ultra-fast and is currently limited by the electronic driver circuit
but not by the electro-optical material [1]. Second, the electric
field modifies only the real part (refraction) of the complex
refractive index but does not alter the imaginary part (absorp-
tion) [2]. For example, this is important for coherent optical
modulators [3,4]. Third, electro-optical materials are highly
transparent in the visible wavelength range [5] and also in the
optical O-band and C-band [6], which are important for tele-
communication applications. Electro-optical effects are used for

high-speed modulators [7–9], for the generation of ultra-short
laser pulses [10–12], in photoacoustics [5,13], and for electric
field sensing [14–16]. Important materials are polymer systems
[17–20], barium titanate (BTO) [21,22], lithium niobate
[23,24], and lead zirconate titanate (PZT) [25,26].

Electro-optical effects are described in several textbooks.
The classic book by Yariv and Yeh [27] provides an excellent
introduction to electro-optical effects in crystals, but is out of
print. Unfortunately, many texts take the decades-old model
assumptions for granted, skip mathematical details, often
avoid a consistent tensor language, and do not aim at a deeper
understanding of the foundations. The present tutorial provides
mathematical details in a general context. In particular, tensors
and eigenvalue problems are stressed.

The first part of this tutorial starts in Section 2 by briefly
reviewing the polarization effects of an electric field on matter
and defines the impermeability tensor, which is the central
object of interest. Then Section 3 derives the eigenvalue prob-
lem of the impermeability tensor from Maxwell’s equations and
establishes that this eigenvalue problem describes electromag-
netic wave propagation through optical anisotropic materials.
Section 4 shows that the eigenvalues determine the speed of
light through the medium. The speed of light ratios relates to
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the semi-axes of the index ellipsoid, which visualizes the imper-
meability tensor. This visualization is presented in Section 5.
Then, Section 6 explains how eigenvectors correspond to opti-
cal polarizations. The mathematical details of the eigenvalue
problem that connects a specific direction of the propagation
of light with the impermeability tensor are presented. Section 7
closes the general part of the paper by visualizing the specific
eigenvalue problem as one of the ellipses that is the intersection
of the index ellipsoid with the plane normal to the propagation
of light.

The second part of the paper starts with Section 8. It
introduces the tensors of the linear and quadratic electro-
optical effects, i.e., the Pockels effect and the DC Kerr effect,
respectively. These tensors possess 27 and 81 components,
respectively, of which many are repeating due to symmetries,
so that their independent components are conveniently sum-
marized in matrices even though these matrices are not tensors.
On top of the mathematical symmetries the symmetries of the
chosen anisotropic material produce some zero matrix entries
and some repeating ones. The underlying tensor theory of
symmetry is elaborated in Section 10. The following Section 11
is a case study of the symmetries of the electro-optical material
barium titanate (BTO) for the Pockels effect. We point out
that a commonly used linearized formula does not provide
sufficient precision for a material like BTO with an ultra-large
linear electro-optical effect. This is relevant for a more accurate
determination of electro-optical material parameters from
experiments. Finally, Section 12 studies how the physical sym-
metries of BTO are inherited by the quadratic electro-optical
tensor.

2. EFFECT OF AN ELECTRIC FIELD ON
MATTER–ELECTRIC DISPLACEMENT,
DIELECTRIC TENSOR, AND IMPERMEABILITY
TENSOR

When an external electric field acts on matter, it induces dielec-
tric polarization effects. The electric field creates dipole
moments in formerly unpolarized atoms or aligns already exist-
ing dipole moments of molecules. This paper considers a linear
dielectric medium, i.e., the magnitude of the polarization den-
sity field P depends linearly on the magnitude of the electric field
E, but their directions need not be collinear. The dependence
of the polarization density on the electric field is described by
the electric susceptibility tensor χ also known as polarization
tensor:  P1

P2

P3

= ε0

χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 E1

E2

E3

 , (1)

where ε0 is the permittivity of free space.
Actually, Eq. (1) is a coordinate representation of the polariza-

tion tensor. There are two interpretation styles of the coordinate
invariance of tensor equations. Some scientists consider such
a coordinate form already as an invariant equation, as there are
fixed rules for transforming the equation into any other allowed
coordinate system. For example, Einstein wrote the equations of
general relativity in this coordinate form and considered them
invariant. Other scientists, in particular those familiar with the

modern presentation of differential geometry, prefer an extra
level of abstraction. For them, the only acceptable invariant
form of Eq. (1) looks like

P= ε0χE. (2)

We consider it advantageous to consider a concrete coordinate
representation as a valid description of the invariant quantity.
Moreover, when the coordinate system is fixed, some tensor
equations can be rewritten using matrix products. We often do
so, to show the connections with elementary results from matrix
theory.

In this tutorial the allowed coordinate systems are Cartesian,
i.e., the axes are orthogonal and there is a common unit for all
axes. Consistently, the coordinate transformations of vector
components correspond to orthogonal matrices, which describe
rotations or reflections. A reason for this restriction is rather
technical. (The important tensor η below transforms according
to SηST under a coordinate change S, while its eigenvalues
are invariant under the transformation SηS−1. To consider
eigenvalues as invariant quantities, we need ST

= S−1, which is
the defining condition for an orthogonal transformation.)

This polarization tensor is symmetric, χij = χji. Feynman
uses αxy instead of χij and points out that this property is a
physical one, not a mathematical one:

“(This [symmetry] is a physical property of the real crystal
and not necessary for all tensors.) You can prove for yourself
that this must be true by computing the change in energy of a
crystal through the following cycle: (1) Turn on a field in the
x -direction; (2) turn on a field in the y -direction; (3) turn off the
x -field; (4) turn off the y -field. The crystal is now back where it
started, and the net work done on the polarization must be back
to zero. You can show, however, that for this to be true, αxy must
be equal to αyx. The same kind of argument can, of course, be
given for αxz, etc. So the polarization tensor is symmetric” ([28],
Volume II, Chapter 31 Tensors).

Appendix A provides more mathematical details by trans-
lating these steps in line integrals. The above argument is
independent of the chosen coordinate system. It also follows
from the transformation rules for tensors below that, math-
ematically, if tensor components are symmetric with respect to
one coordinate system, they are symmetric in every coordinate
system.

In this tutorial we work with a symmetric dielectric ten-
sor, which assumes materials with negligible optical chirality
[29]. The polarization density P is an electrical field inside
the material that partially counteracts the external electrical
field E. The superposition of the external electric field and its
induced polarization density is the electrical displacement
D= ε0E+ P: D1

D2

D3

= ε0

1+ χ11 χ12 χ13

χ21 1+ χ22 χ23

χ31 χ32 1+ χ33


︸ ︷︷ ︸

dielectric tensor εij

 E1

E2

E3

 . (3)

The dielectric tensor ε = 1+ χ is symmetric due to its sym-
metric summands. Moreover, since every material responds to a



Tutorial Vol. 41, No. 9 / September 2024 / Journal of the Optical Society of America B 2193

nonzero electric field with a nonzero electric displacement, the
dielectric tensor is invertible. The inverse of the dielectric tensor
is the impermeability tensor η= ε−1 and is the key tensor of
interest in the discussion below.

For a symmetric tensor the Principal Axes Theorem from
Linear Algebra guarantees that there is a Cartesian coordinate
system (an orthonormal basis), with respect to which the tensor
is diagonal. For example, diagonality of the dielectric tensor
means εij = 0 for i 6= j . Then the diagonal entries ε1 = ε11,
ε2 = ε22, and ε3 = ε33 are called the principal values or eigen-
values of the tensor. Because of the relationships between
susceptibility tensor, dielectric tensor, and impermeability
tensor, they are diagonal with respect to the same coordinate
system.

If the optical medium is isotropic then the polarization
density will always be directed along the external electric field.
Hence, the susceptibility tensor, the dielectric tensor, and the
impermeability tensor are diagonal with constant diagonal
entries independent of the coordinate system. In the isotropic
case, these tensors simplify to scalar quantities.

If the optical medium is anisotropic then, at least sometimes,
the polarization density will be not collinear with the electric
field. The eigenvalues are not all equal anymore, which leads to
two subcases. In the uniaxial case two of the three eigenvalues
are still equal, while in the biaxial case the three eigenvalues are
pairwise different.

3. LIGHT PROPAGATION IN MATTER AS AN
EIGENVALUE PROBLEM

Eigenvalues and eigenvectors determine the index of refraction
and light polarization, respectively. For a deeper understanding
we shall start with Maxwell’s equations in matter:

1. Gauss’s law for electric fields

∇ ·D= ρfree, (4)

whereρfree is the density of free electric charges;
2. Gauss’s law for magnetic fields

∇ · B= 0; (5)

3. Faraday’s law

∇ × E=−
∂B
∂t
; (6)

and the Maxwell-Ampère law

∇ ×H= Jfree +
∂D
∂t
, (7)

where Jfree is the free electric current density.

The fields in the above equations are averaged over the vol-
ume of a unit cell. The averaging volume is large compared to
the scale of the charge density modulation, which is the nonuni-
form distribution of charges. However, it is small compared to
the wavelength of a light wave.

Moreover, we have the constitutive relations, which connect
the fields with the material properties:

 D1

D2

D3

= ε0

 ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33

 E1

E2

E3

 , or D= ε0εE,

(8)
and

H=
1

µ0
B−M, (9)

where M describes the magnetization effect of the magnetic field
on the medium similarly to the dielectric polarization effect of
an electric field.

Our model assumes that there are neither free charges,
ρfree = 0, nor free currents, Jfree = 0. Besides that, we assume
that the medium does not respond to magnetic fields (M= 0)
because light waves have very high frequencies (in the terahertz
range), and magnetic dipole moments cannot effectively follow
these rapid oscillations. The response of electrons to the electric
field of the light wave is much stronger than to the magnetic field
of the same wave.

Now we derive the relationships for light propagation in the
medium. We substitute µ0H= B, i.e., Eq. (9) with M= 0, in
Faraday’s law, Eq. (6),

∇ × E=−µ0
∂H
∂t
, (10)

apply the curl operation,

∇ × (∇ × E)=−µ0∇ ×
∂H
∂t
, (11)

and plug in Maxwell-Ampere’s law, Eq. (7) with Jfree = 0, to
obtain

∇ × (∇ × E)=−µ0
∂2D
∂t2

. (12)

The inverse constitutive equation 1
ε0

ηD= E leads to the wave
equation

∇ × (∇ × ηD)=−µ0ε0
∂2D
∂t2

, (13)

where η is the impermeability tensor. We use the inverse con-
stitutive relation instead of D= ε0εE to obtain an eigenvalue
problem TD= αD instead of a generalized eigenvalue problem
SE= αεE.

There is also a physical reason to prefer D over E in our set-
ting. The optical polarization of light waves traveling through
free space is given by the direction of the electric field E. But
we are considering light waves traveling through an optical
medium, so the optical polarization depends on the direction
of the electrical displacement D.

A light wave can be written as a superposition of plane waves
of the form

D(r, t)=D0 · sin(k · r−ωt + ϕ) with r= (x , y , z)T ,
(14)

where D0 6= 0 is a constant vector, |k| = 2π/λ is the wave num-
ber with wavelength λ, frequency ω= 2π/T with period T,
and ϕ is a constant phase shift. The plane wave travels in the
direction of k.
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The second partial derivatives of the plane wave are

∂2D
∂xi∂x j

=−ki k j D, and
∂2D
∂t2
=−ω2D. (15)

Applying the partial derivative formulas to Eq. (13) yields

−k× (k× η)D=ω2µ0ε0D. (16)

Then, let k= k · k̂ with unit vector k̂ and divide by the squared
magnitude k2:

−k̂× (k̂× η)D=
ω2µ0ε0

k2
D. (17)

Since c 0 = 1/
√
ε0µ0, the scalar on the right-hand side equals

ω2µ0ε0

k2
=
(2π)2

T2

λ2

(2π)2
1

c 2
0

=

(
v

c 0

)2

, (18)

where v is the speed of light inside the medium. Finally, we
factor out the scalar function sin(k · r−ωt + ϕ) and obtain the
eigenvalue problem for the polarization D0:

−k̂× (k̂× η)D0 =

(
v

c 0

)2

D0. (19)

An eigenvalue problem has only specific solutions. The eigen-
vectors specify the allowed polarization directions of the light
propagating along k through the medium. The square root of
the eigenvalue determines the fraction by which the speed of
light is reduced along k in the medium. The ratio n = c 0/v is the
refractive index of the medium in the direction of k.

To learn more about the eigenvalue problem we rewrite the
cross product of k̂ and v, k̂1

k̂2

k̂3

×
 v1

v2

v3

 , (20)

as the tensor-vector product 0 −k̂3 k̂2

k̂3 0 −k̂1

−k̂2 k̂1 0


︸ ︷︷ ︸

=Rk

 v1

v2

v3

 . (21)

The tensor Rk is skew-symmetric, RT
k =−Rk. It has only one

real-number eigenvalue, namely, zero in the direction of k.
Hence this tensor is non-invertible. Vectors in the plane perpen-
dicular to k are rotated by 90◦ about k, which corresponds to the
pair of complex conjugate eigenvalues i and−i .

Applying the cross product twice, k̂× (k̂× v), leads to the
tensor product−k̂2

2 − k̂2
3 k̂1k̂2 k̂1k̂3

k̂2k̂1 −k̂2
1 − k̂2

3 k̂2k̂3

k̂3k̂1 k̂3k̂2 −k̂2
1 − k̂2

2


︸ ︷︷ ︸

=K

 v1

v2

v3

 , (22)

with the symmetric tensor K , which still has the eigenvalue zero
in the direction of k̂. Vectors in the plane perpendicular to k̂ are

rotated by 180◦, so they are eigenvectors with eigenvalue −1.
Finally, we incorporate the negative sign from Eq. (17). With
respect to an orthonormal eigenvector basis with third vector k̂,
we have

Pk =−K =

1 0 0
0 1 0
0 0 0

 , (23)

which is the orthogonal projection along k̂ onto its perpendicu-
lar plane.

Therefore, the propagation of light along k through an aniso-
tropic medium is governed by the eigenvalue problem

(Pkη)D0 =

(
v

c 0

)2

D0. (24)

Of course, the eigenvalues, which determine the speed of light
inside the medium, depend on the impermeability tensor of the
medium and the direction of light propagation.

The speed of light inside the medium is v =ω/k = λ/T.
Light traveling through the medium consists of photons of
energy E = ~ω, where ~ is Planck’s constant divided by 2π .
The photons do not change their energy, so the angular fre-
quencyω and, equivalently, the period T of the electromagnetic
wave do not change. Therefore, the decreased velocity inside
the medium corresponds to a decreased wavelength λ and,
equivalently, to an increased wave number k. Here we assume
a transparent material, i.e., a material in which the absorption
is zero and other effects due to scattering (e.g., the Compton
effect) can be neglected.

The following sections discuss the details of this eigenvalue
problem. Section 4 establishes the connection with the index
of refraction. Then Section 6 solves the eigenvalue problem,
which leads to the ellipsoid visualization in Section 5, and
Section 7 incorporates the eigenvalue problem in the ellipsoid
visualization.

4. RELATIONSHIP BETWEEN EIGENVALUES
OF THE IMPERMEABILITY TENSOR AND
THE INDEX OF REFRACTION

Light travels through vacuum with constant velocity c 0. When it
travels through an optical medium instead, the electromagnetic
light wave induces dielectric polarization effects in the atoms or
molecules of the medium. These dielectric polarization effects
impede the light propagation and lead to a reduced velocity of
v = c 0/n with n > 1. The constant n is the index of refraction.
It depends on the medium and may depend on the propagation
direction and the polarization of the electromagnetic light wave
relative to the medium. Unfortunately, the term polarization
appears in two different meanings. On the one hand it describes
the effect on the atoms or molecules that creates a partially
offsetting electric field. This is dielectric polarization. On the
other hand, optical polarization refers to the direction of the
electric displacement D perpendicular to the propagation of
light through the optical medium. However, while both mean-
ings occur in this paragraph, only the latter meaning occurs in
the remainder of this paper.
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Amorphous media such as glasses, gases, or crystalline mate-
rials with cubic lattice symmetry are isotropic. Their index
of refraction is a scalar quantity, which is independent of the
propagation direction and polarization. In contrast, crystalline
materials with non-cubic lattice symmetry are anisotropic.
Their index of refraction depends on the propagation direction
and on polarization. Some cubic point group symmetries do not
have to be isotropic with respect to their other properties.

To find out more about the dependence of the index of refrac-
tion on propagation direction and polarization, we study special
cases of the eigenvalue problem in Eq. (24). The impermeability
tensor η is symmetric and, hence, can be diagonalized with
respect to its orthogonal principal axes, say, p1, p2, and p3 with
respective eigenvalues η1, η2, and η3. (Please note, the real and
imaginary parts separately can be diagonalized, but for low-
symmetry crystals, i.e., monoclinic and triclinic, the principal
axes for dispersion and absorption are different [30].)

First we consider the special case of a planar light wave propa-
gating along one of the principal axes, say, k= p3. See Fig. 1.

Then p1 and p2 are in the normal plane k⊥. Hence the prin-
cipal axes of η are also eigenvectors of the projection Pk. With
respect to this basis we have the coordinate representation

Pkη=

 1 0 0
0 1 0
0 0 0

η1 0 0
0 η2 0
0 0 η3

=
η1 0 0

0 η2 0
0 0 0

 , (25)

and the eigenvalue problem attains the diagonal formη1 0 0
0 η2 0
0 0 0


︸ ︷︷ ︸
if k along axis of η1

 D0,1

D0,2

D0,3

=( v
c 0

)2
 D0,1

D0,2

D0,3


︸ ︷︷ ︸
polarization

. (26)

Similarly, light propagation along k= p2 leads to eigenvalues
η1, 0, andη3. We obtain the following important relationship.

The eigenvalues ηi of the impermeability tensor are related to
the indices of refraction ni along the eigenvector directions by

ηi = (vi/c 0)
2
= 1/n2

i for i = 1, 2, 3. (27)

The second equation uses the definition of the refractive index,
n = c 0/v, as the quotient of speed of light inside the medium
and the speed of light in empty space.

This result shows another important mathematical property:
the impermeability tensor is positive-definite, since all eigen-
values are positive. A positive-definite tensor possesses a useful
visualization as an ellipsoid, which is discussed in Section 5.

Recall that the index of refraction depends not only on the
direction of light propagation, which determines the matrix
product on the left-hand side of Eq. (26), but also on the polari-
zation given by the eigenvector. The simple diagonal form of
this equation is due to the light propagation along one of the
principal axes of the impermeability tensor. Section 6 treats the
general case of an arbitrary direction of light propagation.

5. VISUALIZATION: THE INDEX ELLIPSOID OR
OPTICAL INDICATRIX

This section introduces the visualization of a positive-definite
tensor as an ellipsoid, which is particularly useful for the
impermeability tensor.

We want to study how the impermeability tensor acts in dif-
ferent directions. Therefore, we have to remove its dependence
on the magnitude of its argument D. One way to do so, is to
restrict our attention to arguments ‖D‖2 = 1 with normalized
Euclidean norm. However, equivalently, and more commonly
used, is the normalization of the value DTηD= 1.

Due to the symmetry of the impermeability tensor, there is
an eigenvector basis with respect to which the tensor is diagonal,
with its eigenvalues on the diagonal. We consider all vectors D
such that

(
D1 D2 D3

) η1 0 0
0 η2 0
0 0 η3

 D1

D2

D3


= η1 D2

1 + η2 D2
2 + η3 D2

3 = 1. (28)

Sections 3 and 4 have shown that the eigenvalues equal the recip-
rocal of the squared refractive index in the respective direction.
So, the equation becomes

D2
1

n2
1

+
D2

2

n2
2

+
D2

3

n2
3

= 1, (29)

which is the equation of an ellipsoid with semi-axes of lengths
n1, n2, and n3 in the directions of the corresponding eigenvec-
tors (see Fig. 1). This ellipsoid is called the index ellipsoid or
optical indicatrix and is illustrated in Fig. 2.

The Principal Axes Theorem from Linear Algebra states that
any symmetric tensor can be diagonalized using an orthogonal
coordinate transformation, which in the three-dimensional case
can even be chosen as a rotation. Thus, the equation

(
D1 D2 D3

) η11 η12 η13

η21 η22 η23

η31 η32 η33

 D1

D2

D3

= 1 (30)

with the positive-definite impermeability tensor describes a
rotated ellipsoid.

Several mathematical concepts below are visualized using this
index ellipsoid.

6. EIGENVALUE PROBLEM FOR A PRODUCT OF
A PROJECTION AND A SYMMETRIC MATRIX

We will now consider the eigenvalue problem

(Pkη)D0 = αD0 (31)

in three dimensions, D0 ∈R3, for the orthogonal projection
Pk along k 6= 0 and the symmetric and invertible matrix η with
inverse ε = η−1. In the setting of Section 4 the eigenvalue has
the physical meaningα = (vi/c 0)

2.
Section 4 studied specific directions of k so that Pk and η

have a common basis of eigenvectors. Now we allow an arbi-
trary direction k 6= 0 as illustrated in Fig. 3 and compute the
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Fig. 1. Special case of a planar light wave propagating along one of the principal axes where k= p3.

eigenvalues and the eigenvector basis of the product Pkη. We
compute with respect to an orthonormal basis (b1, b2, b3) of
eigenvectors of the projection Pk, which has eigenvalues 1, 1,
and 0.

For a given k, we concretely compute such a coordinate sys-
tem in the following way. An eigenvector of Pk with eigenvalue
0 is the vector b3 = k/ ‖k‖2 normalized with respect to the
Euclidean norm‖·‖2. In the case that k= (k1, k2, k3)

T does not
have a zero component; let b1 = 1/(k2

1 + k2
2) · (k2,−k1, 0)T .

In the case that k has a zero component, say, ki = 0 is the first
zero component, let b1 = (δ1i , δ2i , δ3i )

T , i.e., the vector with
a 1 in the i th component and 0s in the other components.
Generally, the so-called Kronecker delta is defined by δii = 1 and
δij = 0 for i 6= j . In either case of k, the vector b1 is orthogonal
to b3 and we let b2 = b3 × b1. Since b1 and b2 are orthogonal to
k, they are eigenvectors of Pk with eigenvalue 1.

With respect to this basis, the eigenvalue problem Eq. (31)
has the coordinate representation

 1 0 0
0 1 0
0 0 0

η11 η12 η13

η21 η22 η23

η31 η32 η33

 x
y
z

= α
 x

y
z

 . (32)

The matrix (ηij) inherits the symmetry from the tensorη and the
symmetric coordinate change:η11 η12 η13

η21 η22 η23

η31 η32 η33

=
− bT

1 −

− bT
2 −

− bT
3 −

 η

 | | |b1 b2 b3

| | |

 . (33)

To determine the eigenvalues, we multiply the matrices on the
left-hand side of Eq. (32):η11 η12 η13

η21 η22 η23

0 0 0

 x
y
z

= α
 x

y
z

 . (34)

The characteristic equation is

p(α)= α[(α − η11)(α − η22)− η12η21]

= α[α2
− (η11 + η22)α + η11η22 − η12η21︸ ︷︷ ︸

>0

], (35)

in which the constant coefficient in brackets is positive because
it is a leading principal minor of a positive-definite matrix
(Sylvester’s Criterion). Hence, 0 is a single eigenvalue.
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Fig. 2. (a) The tensor η is visualized as the index ellipsoid defined by η1x 2
+ η2 y 2

+ η3z2
= 1. Due to the relations ηi = (1/ni )

2, i = 1, 2, 3, the
equation also has the form x 2/n2

1 + y 2/n2
2 + z2/n2

3 = 1; therefore, the semi-axes indicated in the cross-sections of the ellipsoid, (b) and (c), are the
indices of refraction.

The eigenvector (ηij)
−1(0, 0, k)T belongs to the eigenvalue

0. Its coordinate-free description is η−1k= εk, i.e., the image of
the wave propagation vector under the dielectric tensor.

Because of the zero row on the left-hand side of Eq. (34),
eigenvectors for nonzero eigenvalues must have a coordinate
representation (x , y , 0)T . They lie in the plane onto which we
project, which is normal to k. The zero z-component reduces
the problem to the two-dimensional symmetric eigenvalue
problem (

η11 η12

η21 η22

)(
x
y

)
= α

(
x
y

)
, η12 = η21. (36)

Therefore there are two real eigenvalues with orthogonal eigen-
vectors. The eigenvalues are the zeros of the characteristic poly-
nomial

p(α)= (η11 − α)(η22 − α)− η
2
12

= η11η22 − (η11 + η22)α + α
2
− η2

12, (37)

that is,

α1,2 =
η11 + η22

2
±

√
(η11 + η22)

2

4
− η11η22 + η

2
12

=
η11 + η22

2
±

√
(η11 − η22)

2

4
+ η2

12. (38)

In the case η12 = 0, the eigenvalues are α1 = η11 and α2 = η22.
In the case η12 6= 0, the eigenvalues lie outside the interval with

endpoints η11 and η22. The further η12 is from zero, the further
the eigenvalues are from the diagonal entries.

For the eigenvectors we have to solve the system

x y
η11 − α 0 0

0 η22 − α 0
or

x y
η11 − α η12 0
η12 η22 − α 0,

(39)

withη12 = 0 orη12 6= 0, respectively, forα = α1 andα = α2.
In the caseη12 = 0 the eigenvalues areα1 = η11 andα2 = η22.

In the subcase η11 6= η22, the eigenvectors are (1, 0)T and
(0, 1)T . The coordinate representations of the eigenvectors of
the original three-dimensional problem are D(1)

0 = (1, 0, 0)T

and D(2)
0 = (0, 1, 0)T . Coordinate-free, they are D(1)

0 = b1

and D(2)
0 = b2. In the subcase η11 = η22, all nonzero vectors in

the plane spanned by b1 and b2 are eigenvectors. In either case,
the third eigenvector is D(3)

0 = εk. Note that this vector need
not be orthogonal to the others as the matrix in Eq. (34) is not
necessarily symmetric.

In the case η12 6= 0, the eigenvalues are different from the
diagonal elements and the system reduces to

x y
η11 − α η12 0

0 (η22 − α)−
η2

12

η11 − α︸ ︷︷ ︸
=0

0. (40)

The lower right entry is zero forα = α1 andα = α2, since it cor-
responds to the characteristic polynomial.
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Fig. 3. Image of Pkη is visualized while k 6= 0 has an arbitrary direction.

The coordinate eigenvectors with respect to the basis

(b1, b2, b3) of the three-dimensional problem are

D(1)
0 =

 η12

α1 − η11

0

 and D(2)
0 =

 η12

α2 − η11

0

 . (41)

Thus the eigenvectors are

D(1)
0 = η12b1 +

η22 − η11

2
−

√
(η11 − η22)

2

4
+ η2

12

 b2,

(42)

D(2)
0 = η12b1 +

η22 − η11

2
+

√
(η11 − η22)

2

4
+ η2

12

 b2,

(43)

D(3)
0 = εk. (44)

7. VISUALIZATION: INTERSECTION OF INDEX
ELLIPSOID AND PLANE

The eigenvalue problem (Pkη)D0 = αD0 of the product of the
orthogonal projection along k and the impermeability tensor
η has a nice geometric interpretation. It corresponds to finding
the semi-axes of the ellipse, which is obtained as the intersection
of the index ellipsoid and the normal plane k⊥, as illustrated in
Figs. 4(a) and 4(b).

The points r= (x , y , z)T in the normal plane k⊥ satisfy

0= r · k= x · k1 + y · k2 + z · k3. (45)

As in Section 6 we rotate the coordinate system so that
k= (0, 0, k)T . Then the points in k⊥ are characterized by
z= 0. See Figs. 4(c) and 4(d).

We restrict the index ellipsoid equation

(
x y z

) η11 η12 η13

η21 η22 η23

η31 η32 η33

 x
y
z

= 1 (46)

to points in the x y -plane, (x , y , 0)T , and obtain
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Fig. 4. (a) The linear map Pkη is a projection onto a plane perpendicular to the light propagation along k. The intersection of the index ellipsoid
with this plane is called the index ellipse. (b) The eigenvalue problem Pkηv= αv has the eigenvalue 0 in the direction v= η−1k and the eigenvalues
1/na and 1/nb related to the axes of the ellipse with eigenvectors EDa and EDb that are perpendicular to k and to each other. (c), (d) Rotated coordinate
system so that k= (0, 0, k)T . Then the points in k⊥ are characterized by z= 0.
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(
x y

) (η11 η12

η21 η22

)(
x
y

)
= 1. (47)

This submatrix is symmetric and, by the leading principal
minors criterion, inherits positive definiteness from η. Hence
this equation describes an ellipse. Its semi-axes are in the direc-
tion of the eigenvectors and the eigenvalues are 1/n2

a and 1/n2
b ,

where na and nb are the lengths of the semi-axes of the ellipse.

8. LINEAR AND QUADRATIC ELECTRO-OPTIC
EFFECT

Now we apply an external electric field, which affects the imper-
meability tensor of the optical medium, and study the effects of
these changes on light traveling through the optical medium.

We use the principal axes coordinate system of the imper-
meability tensor before the external field is applied. With respect
to this coordinate system the impermeability tensor is diagonal.
Then we apply the external electric field E. The field affects the
components of the impermeability tensor so that, usually, it is
not diagonal anymore:

η(0)=

η1 0 0
0 η2 0
0 0 η3

 E
−→ η(E)=

η11 η12 η13

η21 η22 η23

η31 η32 η33

 .

(48)
The perturbed impermeability tensor η(E) is still symmetric
and positive definite (see Appendix A). Then the corresponding
equation

η11x 2
+ η22 y 2

+ η33z2
+ 2η23 y z+ 2η31zx + 2η12x y = 1

(49)
describes a rotated ellipsoid. But it need not be and usually is not
a rotated version of η(0); the lengths of the semi-axes may have
changed. Physically this means that the indices of refraction and
the feasible polarization directions may have changed due to the
externally applied electric field.

We write the dependence of the impermeability tensor on the
external electric field as

η(E)= η(0)+1η(E). (50)

Its coordinate representation with respect to the principal axes of
η(0) is

η(E)=

1/n2
1 0 0

0 1/n2
2 0

0 0 1/n2
3


︸ ︷︷ ︸

η(0)

+

η11 − 1/n2
1 η12 η13

η21 η22 − 1/n2
2 η23

η31 η32 η33 − 1/n2
3


︸ ︷︷ ︸

1η(E)

. (51)

The components ηij of η(E) depend in an unknown way on the
applied external electric field. To model the unknown depend-
ence approximately we use the multivariate Taylor polynomial
up to quadratic degree for each tensor component about the
center E= 0:

ηij(E)≈ ηij(0)+
∑

k

ηi j ,k Ek +
1

2

∑
k,l

ηi j ,kl Ek E l

≈ ηij(0)+
(
ηi j ,1 ηi j ,2 ηi j ,3

)  E1

E2

E3



+
1

2

(
E1 E2 E3

) ηi j ,11 ηi j ,12 ηi j ,13

ηi j ,21 ηi j ,22 ηi j ,23

ηi j ,31 ηi j ,32 ηi j ,33

 E1

E2

E3

 ,
(52)

where ηij(0)= δij/n2
i with the Kronecker delta δii = 1 and

δij = 0 for i 6= j . Moreover, the gradient and Hessian matrix
with respective components

ηi j ,k =
∂ηij

∂Ek
(0) and ηi j ,kl =

∂2ηij

∂Ek∂E l
(0) (53)

are the linear electro-optical third-rank tensor and the
quadratic electro-optical fourth-rank tensor with constant
components. The linear and the quadratic electro-optical
tensors correspond to the Pockels effect and DC Kerr effect,
respectively. The comma in the tensor indices indicates that the
indices after the comma result from taking partial derivatives.

Since the impermeability tensor is symmetric, the linear
and quadratic electro-optic tensors are symmetric in its first
two indices, ηi j ,k = η j i,k and ηi j ,kl = η j i,kl . Moreover, the
quadratic electro-optical tensor is symmetric in the last two
coefficients, ηi j ,kl = ηi j ,lk , because it is safe to assume that the
dependence is sufficiently smooth and therefore that the order
of the partial derivatives does not matter.

Because of the symmetries, only 6 · 3= 18 of the 33
= 27

components of the linear electro-optical tensor are independent:
six independent component pairs i ≤ j times three independ-
ent partial derivatives. For the quadratic tensor 6 · 6= 36 of
34
= 81 components are independent: six independent compo-

nent pairs i ≤ j times six independent second partial derivatives
k ≤ l .

It is customary and convenient to use the Voigt notation


1η1

1η2

1η3

1η4

1η5

1η6

=


η11 −
1

n2
1

η22 −
1

n2
2

η33 −
1

n2
3

η23

η13

η12


=


r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63


 E1

E2

E3



+


s 11 s 12 s 13 s 14 s 15 s 16

s 21 s 22 s 23 s 24 s 25 s 26

s 31 s 32 s 33 s 34 s 35 s 36

s 41 s 42 s 43 s 44 s 45 s 46

s 51 s 52 s 53 s 54 s 55 s 56

s 61 s 62 s 63 s 64 s 65 s 66




E 2

1
E 2

2
E 2

3
E2 E3

E3 E1

E1 E2

, (54)

in which the 18 coefficients r ij correspond to the 18 independ-
ent tensor components of the linear electro-optical tensor:
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r ij = ηi i, j , r4 j = η23, j = η32, j , r5 j = η13, j = η31, j ,

r6 j = η12, j = η21, j for 1≤ i, j ≤ 3,
(55)

The 36 coefficients s k` are linear combinations of the 36 inde-
pendent tensor components of the quadratic electro-optical
tensor:

s ij = ηi i, j j for 1≤ i, j ≤ 3, (56)

s 4 j = η12, j j , s 5 j = η13, j j , s 6 j = η23, j j for 1≤ j ≤ 3 (57)

s i4 = ηi i,12 + ηi i,21 = 2ηi i,12,

s i5 = ηi i,13 + ηi i,31 = 2ηi i,13,

s i6 = ηi i,23 + ηi i,32 = 2ηi i,23 for 1≤ i ≤ 3, (58)

s 44 = 2η12,12, s 45 = 2η12,13, s 46 = 2η12,23,

s 54 = 2η13,12, s 55 = 2η13,13, s 56 = 2η13,23,

s 64 = 2η23,12, s 65 = 2η23,13, s 66 = 2η23,23. (59)

Due to the symmetries, both linear systems are invertible.
Therefore, Voigt coefficients determined by measurements can
be converted back into tensor components.

Equation (54) is not a tensor equation because the com-
ponents do not transform under coordinate changes the way
tensors do. See Section 9 below. With the exception of the vec-
tor (E1, E2, E3)

T none of these quantities is a tensor; we use
brackets instead of parentheses to emphasize this fact. Each
index of a tensor in three-dimensional space must use exactly
three values, corresponding to the number of dimensions.
These vectors and matrices do not transform like tensors under
coordinate changes. However, this non-tensor representation
has the advantages that we neither have to write entries that
repeat due to symmetry nor do we have to write tensors of rank
three or even four. The disadvantage of using this coordinate-
specific representation is negligible, since we do not change the
coordinate system. We consistently use the principal axes of the
dielectric tensor without an external electric field.

We are going to study how the index ellipsoid changes due
to the linear electro-optical (Pockels) effect or the quadratic
electro-optic (DC Kerr) effect. For centrosymmetric materials
any change in the impermeability coefficients ηij in one direc-
tion must be the same in the opposite direction. Hence the
gradient ηi j ,k must be zero. Section 10 contains a more formal
proof that the linear electro-optic tensor vanishes for centrosym-
metric materials. While the linear electro-optical effect requires
non-centrosymmetric material, the quadratic electro-optical
effect occurs in centrosymmetric and non-centrosymmetric
materials. Consequently, both effects need to be taken into
account for non-centrosymmetric materials.

9. TENSOR QUANTITIES AND THEIR
TRANSFORMATION BEHAVIOR

Many crystalline structures feature symmetries in the sense that
they look the same when viewed from a specifically rotated per-
spective or in a mirror. These changes of perspective correspond
to linear changes of coordinates: rotation about a certain axis by
a certain angle, reflection about a certain plane, or inversion. A
symmetry of the material means that the material is invariant
under some coordinate change.

A key property of tensors is that their components, which
depend on the chosen coordinate system, transform in a very
specific linear or multilinear way, when the coordinate system
is changed. The specific coordinate transformation depends on
the rank of the tensor.

A scalar quantity such as temperature is a tensor of rank zero.
A scalar is invariant under coordinate system changes. It has the
same value in each coordinate system.

A position vector (x1, x2, x3)
T is an example of a vector

or tensor of rank one, i.e., a tensor with one index. Its trans-
formation is directly derived from the transformation of the
coordinate system. Say we change from a coordinate system
denoted by capital letters to a coordinate system denoted by
small letters. The small coordinate-axis vectors x̂1, x̂2, x̂3 have
coordinates with respect to the capital vectors X̂1, X̂2, X̂3, say,

x̂1 = T11 · X̂1 + T21 · X̂2 + T31 · X̂3,

x̂2 = T12 · X̂1 + T22 · X̂2 + T31 · X̂3,

x̂3 = T13 · X̂1 + T23 · X̂2 + T33 · X̂3,

that is,

x̂ j =

3∑
i=1

TijX̂i , for j = 1, 2, 3, (60)

or in matrix form

(
x̂1 x̂2 x̂3

)
=
(

X̂1 X̂2 X̂3

) T11 T12 T13

T21 T22 T23

T31 T32 T33

 . (61)

An arbitrary vector is a linear combination of the coordi-
nate vectors and their coefficients in either coordinate system.
Therefore,

(
X 1 X 2 X 3

)  X̂1

X̂2

X̂3

= ( x1 x2 x3
)  x̂1

x̂2

x̂3



=
(

x1 x2 x3
) T11 T21 T31

T12 T22 T32

T13 T23 T33

 X̂1

X̂2

X̂3

 . (62)

Comparing the coefficients of the capital basis vectors tells us
that the coordinates transform according to X i =

∑
j Tijx j for

i = 1, 2, 3, which is written in matrix form as

(
X 1 X 2 X 3

)
=
(

x1 x2 x3
) T11 T21 T31

T12 T22 T32

T13 T23 T33

 (63)
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or—to put the matrix indices in the standard order—as the
transposed matrix product X 1

X 2

X 3

=
T11 T12 T13

T21 T22 T23

T31 T32 T33

 x1

x2

x3

 . (64)

On the one hand, triples of quantities that transform like the
coordinates of a vector,

Q j =

3∑
i=1

Tjiqi , for j = 1, 2, 3, (65)

form a contravariant tensor of rank one. On the other hand, any
triple of quantities that transforms like the triple of coordinate
vectors,

q j =

3∑
i=1

Tij Qi , for j = 1, 2, 3, (66)

is called a covariant vector or covariant tensor of rank one. These
transformations differ because the matrix is transposed and the
roles of the small and the capital quantities are exchanged, which
corresponds to an additional inversion of the matrix.

The equality
∑3

i=1 xi x̂i =
∑3

j=1 X j X̂ j resulting from
describing the same object in two coordinate systems is the
prototype of the concept of duality in tensors. (Alas, there
is no single definition of duality; see [31].) The product of
a contravariant and a covariant vector is an invariant quan-
tity under coordinate changes. For example, the electric field
E=

∑
j E j X̂ j =

∑
i e i x̂i is an instance of an invariant vector

quantity. Its coordinates form a contravariant tensor of rank
one.

The impermeability tensor is a covariant tensor of rank two
because combining it with two contravariant vectors produces
an invariant scalar. We transform the vectors in that product:∑

k,`

ηk`xk y` =
∑
i, j

Hij X i Y j

=

∑
i, j

Hij

∑
k

Tikxk

∑
`

Tj` y`

=

∑
k,`

∑
i, j

HijTikTj`

 xk y`. (67)

Since this relationship has to hold for all contravariant vectors
(x1, x2, x3)

T and (y1, y2, y3)
T , we obtain the transformation

rule for the components of the impermeability tensor:

ηk` =
∑

ij

HijTikTj`. (68)

This can also be written as a matrix product involving the trans-
posed transformation matrix on the left:η11 η12 η13

η21 η22 η23

η31 η32 η33

= TT

H11 H12 H13

H21 H22 H23

H31 H32 H33

 T. (69)

10. RELATIONS BETWEEN TENSOR
COMPONENTS DUE TO SYMMETRIES OF THE
MATERIAL

If a physical quantity of a material is described by a tensor, then
the tensor components inherit relations from the symmetries of
the material. If the material is invariant under a certain coordi-
nate transformation, then the transformed tensor components
must agree with the original ones.

More concretely, if the material that is described by the sym-
metric tensor η of rank two is invariant under the coordinate
transformation, then the tensor components are invariant as
well, that is, Hij = ηij. Hence each symmetry of the material
under a coordinate transformation T induces relations

ηk` =
∑

ij

ηijTikTj`. (70)

For example, consider a rotation about the X̂3-axis by 90◦. It
has the following effect on the coordinate-axis vectors:

x̂1 = T(X̂1)= X̂2 = 0 · X̂1 + 1 · X̂2 + 0 · X̂3, (71)

x̂2 = T(X̂2)=−X̂1 =−1 · X̂1 + 0 · X̂2 + 0 · X̂3, (72)

x̂3 = T(X̂3)= X̂3 = 0 · X̂1 + 0 · X̂2 + 1 · X̂3, (73)

and the transformation matrix is the transposed coefficient
scheme

T =

 0 −1 0
1 0 0
0 0 1

 . (74)

If a material is symmetric under this rotation, the tensor compo-
nent relations will beη11 η12 η13

η12 η22 η23

η13 η23 η33

=
 0 1 0
−1 0 0

0 0 1

η11 η12 η13

η12 η22 η23

η13 η23 η33

 0 −1 0
1 0 0
0 0 1



=

 η22 −η12 η23

−η12 η11 −η13

η23 −η13 η33

 ,
(75)

where we have already incorporated the tensor symmetry
ηij = ηji, by using the representativeηij with i ≤ j .

We read off η11 = η22. Also, η12 =−η12 and, hence, η12 = 0.
Finally, η13 = η23 =−η13 =−η23 and, thus, η13 = η23 = 0. A
fourfold rotational symmetry about the x3-axis forces that the
impermeability tensor with respect to a Cartesian coordinate
system with the third axis along the x3-axis is of the formηo 0 0

0 ηo 0
0 0 ηe

 , (76)

where η11 = η22 = ηo and η33 = ηe are called ordinary and
extraordinary impermeability, respectively. Similar to this
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definition, an ordinary and extraordinary refractive index is used
in optics, which is discussed in Section 11.

A fascinating aspect of this example is that fourfold rotational
symmetry of a material about an axis implies full rotational sym-
metry of the impermeability tensor about that axis.

Next, let us consider tensors of higher rank. The linear
electro-optical tensor is covariant of rank three, so it transforms
according to

ηi j ,k =
∑
m,n,r

Hmn,r TmiTnjTrk. (77)

The coordinate transformation applies to each index, even
the one belonging to partial differentiation. For the quadratic
electro-optical tensor, which is a covariant of rank four, we get
analogously

ηi j ,k` =
∑

m,n,r ,s

Hmn,r s TmiTjnTrkTs `. (78)

As a symmetry example, we now consider the inversion X 1

X 2

X 3

=
 −1 0 0

0 −1 0
0 0 −1

 x1

x2

x3

 , i.e., Tij =−δij.

(79)
The linear electro-optical tensor transforms according to

ηi j ,k =
∑
m,n,r

(−1)3 Hmn,r δmiδnjδrk =−Hi j ,k . (80)

If the crystalline structure is invariant under inversion, that is, if
it is centrosymmetric, then we have

ηi j ,k =−ηi j ,k, i.e., ηi j ,k = 0 for all i, j , k. (81)

In the centrosymmetric case the linear electro-optical tensor is
zero. There is no linear electro-optic effect.

For the quadratic electro-optic tensor the inversion transfor-
mation produces the relations

ηi j ,k` =
∑

m,n,r ,s

(−1)4 Hmn,r δmiδnjδrkδs ` = Hi j ,k`. (82)

Invariance of the material under inversion only leads to the
tautology

ηi j ,k` = ηi j ,k`. (83)

Inversion symmetry does not restrict the quadratic electro-optic
tensor.

As another example we consider the reflection about the
x2x3-plane:  X 1

X 2

X 3

=
 −1 0 0

0 1 0
0 0 1

 x1

x2

x3

 . (84)

The linear electro-optic tensor transforms according to

ηi j ,k =
∑
m,n,r

(−1)`Hmn,r δmiδnjδrk = (−1)`Hi j ,k, (85)

where ` counts how often the index 1 occurs in i , j , and k. If
the crystalline structure is invariant under this reflection, then

we have ηi j ,k =−ηi j ,k , whenever the index 1 occurs an odd
number of times. There is no restriction if the index 1 occurs an
even number of times. Thus,

ηi j ,k = 0, if index 1 occurs an odd number of times. (86)

As the final symmetry example in this context, we consider
the coordinate transformation that exchanges the x1 and the x2

variable:  X 1

X 2

X 3

=
 0 1 0

1 0 0
0 0 1

 x1

x2

x3

 . (87)

Geometrically, this transformation is the reflection about the
plane spanned by the x3-axis and the bisecting line between the
x1-axis and x2-axis.

The effect of this transformation is an exchange of tensor
components whose position indices differ by an exchange of the
index value 1 and the index value 2. For instance,

η12,1 = H21,2 and η33,2 = H33,1. (88)

If the crystalline structure is symmetric about the plane spanned
by the x3-axis and the x1x2-bisector, then the exchanged compo-
nents of the linear electro-optic tensor must agree, e.g.,

η12,1 = η21,2 and η33,2 = η33,1. (89)

Similarly, we obtain the quadratic electro-optic tensor relation-
ships of the form

η12,13 = η21,23 and η33,22 = η33,11, (90)

in which the index va1ues 1 and 2 are exchanged. This includes
indices belonging to partial differentiation.

As shown by the preceding examples, symmetries of the mate-
rial provide valuable information about tensor quantities.

11. EXAMPLE OF SYMMETRY CONSTRAINTS:
CHANGE OF REFRACTIVE INDEX OF BARIUM
TITANATE DUE TO AN EXTERNAL ELECTRIC
FIELD

Electro-optical effects in anisotropic materials play a major
role in science and technology. For example, lithium nio-
bate has been the key material for telecommunication and
laser technologies for 50 years, due to its—for a long time
unrivaled—large Pockels effect of an externally applied elec-
tric field on the refractive index of the material. The Pockels
effect is described by the linear electro-optical tensor, whose
largest component for lithium niobate is 32.8 pm/V. On the
basis of this size, the theory and mathematical foundations
for electro-optical effects have been developed and used for
50 years. However, progress in material engineering has led to
materials with dramatically larger Pockels effects. The ceramic
barium titanate (BTO), though already having appeared in
the Feynman Lectures ([28], Volume II, 11-7 Ferroelectricity:
BaTiO3), has become prominent in applications rather recently
[32–34]. It possesses an electro-optical tensor component of
1300 pm/V [35]. Therefore, the mathematical models and, in
particular, the original linear approximations for electro-optical
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Fig. 5. Crystal structure of BTO (a) above Curie temperature and (b) below. The ionic radii relative to the size of the unit cell are substantially
larger than indicated in the figures.

effects need to be updated. Linearization errors have become
non-negligible.

First we study the crystallographic point group of BTO, a
biaxial crystal, to understand the origin of its electro-optical
effect. Then we derive how the index ellipsoid for BTO gets
rotated by applying an external electric field. Finally, we com-
pute the principal values (eigenvalues) of this rotated ellipsoid
and determine the change of the refractive index due to the
external electric field.

BTO has a Curie temperature of 120◦C [36]. Above this
temperature, BTO is paraelectric in the cubic phase: see Fig. 5;
barium ions Ba2+ are located at the corners of a cube. A titanium
ion Ti4+ is at the center of the cube, and oxygen ions O2− are at
the center of the faces of the cube. The oxygen ions form the ver-
tices of an octahedron. In this phase BTO is centrosymmetric,
and, therefore, does not feature a linear electro-optic effect. Its
point group in the Hermann-Mauguin notation is m3m, that is,
there is a mirror symmetry about each of the cubic faces (m · ·),
a threefold rotational symmetry about the space diagonals (·3·),
and a mirror symmetry about the planes through one edge and
the bisector line of the other two edges (· ·m).

Below the Curie temperature BTO is ferroelectric and its
fundamental cell is a parallelepiped with a square base and a
height that is only slightly longer than the base sides [37]. As
in the cubic phase the barium ions are located at the corners
and the oxygen ions at the center of the faces (Fig. 5). The
titanium ion however is not located at the center, but slightly
shifted in vertical direction. Because of the shift, this structure is
non-centrosymmetric. In this phase BTO possesses tetragonal
symmetry with the point group 4 mm: there is fourfold rota-
tional symmetry about the longer edges (4 · ·), mirror symmetry
about the vertical faces (·m·), and mirror symmetry about the
planes through a longer edge and the bisector line of two shorter
edges (· ·m).

The tetragonal phase possesses a linear electro-optical
(Pockels) effect. It originates from the shift of the Ti4+ ion from
the center toward an oxygen ion (O2−) at one of the face centers
of the unit cell. An external electric field induces a redistribution

of the bond charges and possibly a slight deformation of the
ion lattice. As net result, the optical impermeability tensor is
changed.

This section only considers the linear electro-optical effect of
BTO in the tetragonal phase. We use a coordinate system with
the x -axis and y -axis parallel to the edges along the square base
of the fundamental cell. The z-axis is parallel to the elongated
height.

With respect to the principal axes coordinate system (without
an external electric field) we have

η(E)≈


1

n2
1

0 0

0 1
n2

2
0

0 0 1
n2

3



+

∑ η11,k Ek
∑
η12,k Ek

∑
η13,k Ek∑

η21,k Ek
∑
η22,k Ek

∑
η23,k Ek∑

η31,k Ek
∑
η32,k Ek

∑
η33,k Ek


︸ ︷︷ ︸

=1η(1)

,

with ηi j ,k = η j i,k and sums over k = 1, 2, 3.
(91)

Because of the fourfold rotational symmetry along the z-
direction we have n1 = n2. The longer height indicates that
n3 differs from the other two principal indices of refraction. If
two refractive indices are equal, the common value is called the
ordinary refractive index no and the deviant refractive index is
the extraordinary refractive index ne . The optical axis of the
crystal is always normal to the plane belonging to the ordinary
refractive index. The optical axis of the crystal is a different
concept from the optical axis of the light beam, which is parallel
to k. See Fig. 6: the optical axis of the crystal is along the z-axis
while the direction of light propagation k is different from the
z-axis.

The Hermann-Mauguin notation of BTO—below the Curie
temperature—is 4 mm, so the symmetries are: (1) fourfold
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Fig. 6. (a) The tensor η is visualized by the so-called index ellipsoid η1 D2
x + η2 D2

y + η3 D2
z = 1. Due to the relations ηi = (1/ni )

2, i = 1, 2, 3, the
semi-axes are the indices of refraction. This particular ellipsoid and its cross-sections in (b) and (c) show the special case n1 = n2 6= n3, which fits the
case of barium titanate.

rotational symmetry about the z-axis, (2) reflections about
the y z-plane and about the x z-plane, and (3) reflection about
the plane spanned by the z-axis and the x y -bisector, that is,
exchange of the x and y coordinates. The corresponding
coordinate transformations are 0 −1 0

1 0 0
0 0 1

 ,
−1 0 0

0 1 0
0 0 1

 ,
 1 0 0

0 −1 0
0 0 1

 , and

 0 1 0
1 0 0
0 0 1

 .

(92)

The use of symmetry arguments in this setting is subtle. Of
course, if we apply an external electric field, then the ions in
BTO will move and the symmetry will be broken. The above
symmetries only hold in the absence of the external electric
field. But the tensor components that we are going to study
are actually the function values and derivatives with argument
E= 0.

As seen in Section 10, the fourfold rotational symmetry
implies

η(0)=

ηo 0 0
0 ηo 0
0 0 ηe

 (93)

for the tensor values without an external electric field. The other
symmetries do not add any more constraints.

For the partial derivatives tensor ηi j ,k of rank three, we start
with the other symmetries. The reflection symmetries about the

y z-plane and the x z-plane lead to ηi j ,k = 0 if an odd number
of indices is 1 or if an odd number of indices is 2. Finally, the
bisector symmetry stipulates that two tensor coefficients are
equal when their index tuples transform into one another by
exchanging the values 1 and 2. Overall, we obtain (we use u, v,
andw to keep track of equal values due to bisector symmetry)

η11,1 = 0 η12,1 = 0 η13,1 = v

η11,2 = 0 η12,2 = 0 η13,2 = 0
η11,3 = u η12,3 = 0 η13,3 = 0

η22,1 = 0 η23,1 = 0
η22,2 = 0 η23,2 = v

η22,3 = u η23,3 = 0

η33,1 = 0
η33,2 = 0
η33,3 =w.

(94)

The fourfold rotation does not add any more constraints since
the rotation is obtained by first reflecting about the x y -bisector
and z-axis plane and then reflecting about the y z-plane:−1 0 0

0 1 0
0 0 1

 0 1 0
1 0 0
0 0 1

=
 0 −1 0

1 0 0
0 0 1

 . (95)
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We summarize the results efficiently in the Pockels matrix


1η1

1η2

1η3

1η4

1η5

1η6

=


η11(E)− 1
n2

1

η22(E)− 1
n2

2

η33(E)− 1
n2

3

η23(E)
η31(E)
η12(E)


=


0 0 u
0 0 u
0 0 w
0 v 0
v 0 0
0 0 0


 E1

E2

E3



=


0 0 r13

0 0 r23

0 0 r33

0 r42 0
r51 0 0
0 0 0


 E1

E2

E3

 . (96)

Our goal is to find an expression for the refractive index
change due to the external electric field. The refractive index
change depends not only on the anisotropic material but also on
the polarization of the light and the orientation of the external
electric field. First, we read off the entries ηij(E) from Eq. (96)
(special case: if E1 = E2 = 0, then the fourfold rotational sym-
metry still holds, and consistent with the symmetry, the tensor is
diagonal with the first two entries being equal because n1 = n2

and r13 = r23; for a suitable E3—moving the titanium ion into
the center—all three eigenvalues will agree):

η(E)=


1

n2
1
+ r13 E3 0 r51 E1

0 1
n2

2
+ r23 E3 r42 E2

r51 E1 r42 E2
1

n2
3
+ r33 E3

 . (97)

This tensor is characterized by the rotated ellipsoid defined by(
1

n2
1

+ r13 E3

)
x 2
+

(
1

n2
2

+ r23 E3

)
y 2
+

(
1

n2
3

+ r33 E3

)
z2

+ 2r42 E2 y z+ 2r51 E1zx = 1.
(98)

We compute its semi-axes. Their lengths are the reciprocals of
the square-roots of the eigenvalues and their directions are given
by the respective eigenvectors.

Since the crystalline structure of BTO in the x -direction
equals the structure in the y -direction, n1 = n2 and r13 = r23,
this matrix is of the form

η(E)=

 A 0 C
0 A D
C D B

 . (99)

Its characteristic polynomial is

p(λ)= (A− λ)2(B − λ)−C 2(A− λ)− D2(A− λ)

= (A− λ)[(A− λ)(B − λ)− (C 2
+ D2)]

= (A− λ)[λ2
− (A+ B)λ+ AB − (C 2

+ D2)],

(100)

so that the eigenvalues areλ1 = A and

λ2,3 =
A+ B

2
±

√
(A+ B)2

4
−

4AB
4
+C 2 + D2

=
A+ B

2
±

√
(A− B)2

4
+C 2 + D2. (101)

Plugging in the original expressions, we obtain the eigenvalues

λ1 =
1

n2
1

+ r13 E3, (102)

λ2 =
1

2

(
1

n2
1

+
1

n2
3

+ (r13 + r33)E3

)

+

√
1

4

(
1

n2
1

−
1

n2
3

+ (r13 − r33)E3

)2

+ (r51 E1)
2
+ (r42 E2)

2,

(103)

λ3 =
1

2

(
1

n2
1

+
1

n2
3

+ (r13 + r33)E3

)

−

√
1

4

(
1

n2
1

−
1

n2
3

+ (r13 − r33)E3

)2

+ (r51 E1)
2
+ (r42 E2)

2.

(104)

To determine the changed indices of refraction Ni we solve the
equation 1/N2

i = λi for Ni . We obtain for the first eigenvalue

1

N2
1

=
1+ n2

1r13 E3

n2
1

(105)

or, equivalently,

N1 =
n1√

1+ n2
1r13 E3

. (106)

For1� 1 we can use the approximation

N1 =
n1

√
1+1

≈ n1(1−1/2)= n1 −
1

2
n3

1r13 E3. (107)

To find the directions of the semi-axes, we compute the eigen-
vectors using again the abbreviated matrix entries. For an eigen-
valueλwe have to solve the linear system

x y z RHS
A− λ 0 C 0

0 A− λ D 0
C D B − λ 0

with A 6= B . (108)

For the eigenvalueλ= A we have to consider several cases.
Case C 6= 0: one elimination step leads to

x y z RHS
0 0 C 0
0 0 0 0
C D B − A 0,

(109)

and the eigenvectors are the scalar multiples of (−D,C , 0)T .
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Case C = 0 and D 6= 0: the system is already in reduced form

x y z RHS
0 0 0 0
0 0 D 0
0 D B − A 0,

(110)

and the eigenvectors are the scalar multiples of (1, 0, 0)T .
Case C = 0 and D= 0: again the system is already in reduced

form

x y z RHS
0 0 0 0
0 0 0 0
0 0 B − A 0.

(111)

The eigenvalue λ= A has multiplicity two and the eigenvectors
are linear combinations of (1, 0, 0)T and (0, 1, 0)T .

For an eigenvalue λ 6= A there are no cases to distinguish. We
reduce Eq. (108) to

x y z RHS
A− λ 0 C 0

0 A− λ D 0

0 0 (B − λ)−
C 2

A− λ
−

D2

A− λ︸ ︷︷ ︸
=0

0,
(112)

where the (3, 3) entry is zero since this is the eigenvalue condi-
tion (zero of characteristic polynomial). The eigenvectors are
scalar multiples of (−C ,−D, A− λ)T .

As an example, for the case that the electric field is in
z-direction, E1 = E2 = 0, we have C = D= 0 and

λ1 =
1

n2
1

+ r13 E3, (113)

λ2 =
1

2

(
1

n2
1

+
1

n2
3

+ (r13 + r33)E3

)

+

√
1

4

(
1

n2
1

−
1

n2
3

+ (r13 − r33)E3

)2

=
1

n2
1

+ r13 E3, (114)

λ3 =
1

2

(
1

n2
1

+
1

n2
3

+ (r13 + r33)E3

)

−

√
1

4

(
1

n2
1

−
1

n2
3

+ (r13 − r33)E3

)2

=
1

n2
3

+ r33 E3, (115)

and consequently we find

Ni =
ni√

1+ n2
i r i3 E3

. (116)

For1� 1 we can use again the approximation

Table 1. Measured Values of Pockels Matrix Elements
for BTO [35]

Matrix Entry Value

r13 = r23 10.2± 0.6 pm/V
r33 105± 10 pm/V
r42 = r51 1300± 100 pm/V

Fig. 7. Calculated refractive index as a function of the Pockels coef-
ficient for different electric field strengths. The unit of the refractive
index N is dimensionless but in optics it is common to call it refrac-
tive index unit (RIU). The approximated Formula (117) can differ
significantly from the original Formula (116) at large field strengths.

Ni =
ni

√
1+1

≈ ni (1−1/2)= ni −
1

2
n3

i r i3 E3. (117)

The eigenvectors do not change. The double eigenvalue pos-
sesses two eigenvectors that can be arbitrarily chosen to span the
x y -plane while the third one is parallel to the z-axis.

Table 1 shows values for the matrix entries measured by [35].
In practice we usually have linearly polarized light, especially

in the case of a chip-integrated electro-optical modulator. In
this case the electric field vector of the electro-magnetic wave
oscillates always in the same direction. For example, if the
electro-magnetic wave propagates in the direction of kx , it is rea-
sonable to polarize the light in z-direction to obtain the largest
refractive index change because r33 is about 10 times larger than
r23 (see Table 1).

To optimize the performance of electro-optical modulators,
the light polarization, which is the direction of the electric field
vector of the electromagnetic wave, as well as the direction of
the external electric field need to be considered. In practice, the
approximation of the refractive index [see Eq. (117)] is typically
used for device optimizations. At this point it is important to
note that the approximation can introduce non-negligible error
if, for example, the large Pockels coefficient r42 is employed.
With larger electric field strengths, the error increases. Figure 7
shows calculated values for the refractive index N as a function
of the Pockels coefficient and different external electric field
strengths as a parameter. In this figure, we compare the calcu-
lated values using the approximated equation [Eq. (117)] and
the original equation [Eq. (116)]. It is clearly shown that the
linearized Formula (117) differs significantly from the nonlinear
Formula (116). It is therefore recommended to use the original
(nonlinear) formula at high external electric field strengths and
large Pockels coefficients.
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12. SYMMETRY CONSTRAINTS ON THE
QUADRATIC ELECTRO-OPTICAL TENSOR FOR
BARIUM TITANATE

Finally we give a brief introduction to the symmetry constraints
on the quadratic electro-optical tensor. The symmetries of
the non-centrosymmetric barium titanate are: (1) fourfold
symmetry about the z-axis, (2) reflection about the y z-plane,
(3) reflection about the x z-plane, and (4) reflection about the
plane spanned by the z-axis and x y -bisector. The same argu-
ments apply to the tensor of second-order partial derivatives as
for the one of first-order. The symmetry (1) is a consequence of
the others. Symmetries (2) and (3) lead to ηi j ,kl = 0 if an odd
number of indices is 1 or an odd number of indices is 2. Finally,
(4) stipulates that two tensor components are equal when the
indices 1 and 2 in one of them are flipped to 2 and 1, respectively.
Moreover, there are the (tensor) symmetry of the impermeabil-
ity tensor, soηi j ,kl = η j i,kl and the irrelevance of the order of the
partial derivativesηi j ,kl = ηi j ,lk .

We obtain (brackets are used because each matrix is only a
part of the tensor with 34

= 81 components)

η11,kl =

 u 0 0
0 v 0
0 0 w

 η12,kl =

 0 x 0
x 0 0
0 0 0

 η13,kl =

 0 0 y
0 0 0
y 0 0

 ,

η22,kl =

 v 0 0
0 u 0
0 0 w

 η23,kl =

0 0 0
0 0 y
0 y 0

 ,

η33,kl =

 p 0 0
0 p 0
0 0 q

 .

(118)

This leads to the second-order change

1η
(2)
11

1η
(2)
22

1η
(2)
33

1η
(2)
23

1η
(2)
31

1η
(2)
12


=

1

2


u v w 0 0 0
v u w 0 0 0
p p q 0 0 0
0 0 0 2y 0 0
0 0 0 0 2y 0
0 0 0 0 0 2x




E 2

1
E 2

2
E 2

3
E2 E3

E3 E1

E1 E2

 . (119)

Hence, the quadratic contribution for the change of η is

1η(2)(E)=
1

2

·

 u E 2
1 + vE 2

2 +wE 2
3 2x E1 E2 2y E1 E3

2x E2 E1 vE 2
1 + u E 2

2 +wE 2
3 2y E2 E3

2y E3 E1 2y E3 E2 p E 2
1 + p E 2

2 + q E 2
3

 .

(120)

13. DISCUSSION AND CONCLUSION

The purpose of this tutorial is the presentation of the
mathematical foundations of the classical—not quantum-
theoretical—approach to electro-optics. The Pockels effect and
the Kerr effect in anisotropic materials are accurately described

by tensors, but due to symmetries are more efficiently sum-
marized in matrices that do not transform like tensors. So, one
important aspect of this tutorial is to explain the tensor transfor-
mation properties, the implementation of symmetry properties,
and the transition between the tensors and the non-tensor
matrices. In our experience, theses mathematical aspects are
often left out from or at most treated cursorily in engineering
curricula.

Another mathematical aspect is the use of eigenvalue prob-
lems. They explain why the polarization is limited to specific
directions. The eigenvalues of a tensor are conveniently illus-
trated by ellipsoids. Then the influence of an external electric
field transforms the ellipsoid and we can compute how its
semi-axes change not only in direction but also in length.
This corresponds to the change of the refraction indices of the
material due to the external electric field.

The light that travels through the material can be described
by planar waves due to the scale of the applications in mind.
The wave vector k determines an orthogonal plane in three-
dimensional space. Its intersection with the index ellipsoid
yields an index ellipse whose semi-axes provide the relevant
information about the possible polarization directions.

We also point out that a commonly used formula for the
change of the refraction index involves linearization. However,
with today’s materials the electro-optical effects become so
strong that we should include more accuracy and consider a
quadratic approximation. We believe that experimentalists
should make measurements to fit quadratic models to today’s
materials and find out if the quadratic effects are still negligible
compared to the linear effects.

We also believe that a detailed understanding of this classical
approach, as it is presented here, is only a first step towards
incorporating quantum-theoretical models in the light-matter
interactions. The presented classical approach provides mean-
ingful insights into light propagation in anisotropic materials
and electro-optical effects, which is important for both classi-
cal optics and modern photonics such as integrated photonic
circuits.

APPENDIX A: SYMMETRY OF TENSORS
WITHOUT OR WITH AN EXTERNAL ELECTRIC
FIELD

This appendix provides more mathematical details for the sym-
metry and positive-definiteness of the polarization tensor χ , the
dielectric tensor ε, and the impermeability tensorη.

It suffices to show the symmetry and positive-definiteness
for the polarization tensor χ . The dielectric tensor inherits
these properties due to its definition εij = δij + χij, which adds
the symmetric identity tensor. Since positive definiteness is
characterized by all eigenvalues being positive, the all positive
eigenvalues of χ are shifted by +1 to become the all positive
eigenvalues of ε. Finally, the inverse of a rank two symmetric,
the positive definite tensor is also a symmetric, positive definite
tensor: the symmetry can be seen from the determinant cofactor
formula for the inverse. The positive-definiteness follows, since
the eigenvalues of the inverse are the inverses of the original
eigenvalues, i.e., they stay positive.

The argument for the polarization tensor uses the line integral
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∫
E · dP=

∫
E · d(χE), (A1)

which expresses the potential energy created in the material due
to the polarization ([28], Volume II, Chapter 31 Tensors).

In coordinates and with a parameterization t 7→ E(t), for a ≤
t ≤ b, the line integral becomes∫ b

a

(
E1(t) E2(t) E3(t)

) χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

T1(t)
T2(t)
T3(t)

 dt,

(A2)
where T1(t)

T2(t)
T3(t)

= 1

‖E′(t)‖

 E ′1(t)
E ′2(t)
E ′3(t)

 dt (A3)

is the unit tangent vector of the parameterization.
The quoted text from Feynman in Section 2 translates into

the parameterizations

(i) t 7→
(

t 0 0
)T

for 0≤ t ≤1E x , (A4)

(i i) t 7→
(
1E x t 0

)T
for 0≤ t ≤1E y , (A5)

(i i i) t 7→
(
1E x − t 1E y 0

)T
for 0≤ t ≤1E x ,

(A6)

(iv) t 7→
(

0 1E y − t 0
)T

for 0≤ t ≤1E y . (A7)

The line integrals become

(i)
∫ 1E x

0

(
t 0 0

) χ11 χ12 χ13

χ21 χ22 χ23

χ31 χ32 χ33

 1
0
0

 dt

=
1

2
χ11(1E x )

2, (A8)

and

(i i) χ121E x1E y +
1

2
χ22(1E y )

2, (A9)

(i i i) − χ211E x1E y −
1

2
χ11(1E x )

2, (A10)

(iv) −
1

2
χ22(1E y )

2. (A11)

The sum of the line integrals over all four paths is

(χ12 − χ21)1E x1E y , (A12)

which has to equal zero, since the closed path leads the material
back to its original state. There is neither gain nor loss in poten-
tial energy. Since1E x and1E y are arbitrary,χ12 = χ21.

Now, we consider the polarization tensor of a material sub-
jected to an external electric field E= (E x , E y , E z)

T . We
integrate along the boundary of the rectangle with vertices
(E x ±1x/2, E y ±1y/2, E z). As before the integral has to be

zero. We assume that1x and1y are so small that the values of
the edge midpoints are a good approximation along the whole
edge. For notational convenience we omit the dependence of the
constant E z in the following formulas. Then the partial results
in Eq. (A8) to Eq. (A11) become

1

2
χ11

(
E x , E y −

1y
2

)
·1x 2, (A13)

χ12

(
E x +

1x
2
, E y

)
·1x1y +

1

2
χ22

(
E x +

1x
2
, E y

)
·1y 2,

(A14)

−χ21

(
E x , E y +

1y
2

)
·1x1y −

1

2
χ11

(
E x , E y +

1y
2

)
·1x 2,

(A15)

−
1

2
χ22

(
E x −

1x
2
, E y

)
·1y 2. (A16)

We add these up and—for normalization with respect to the
rectangle size—divide by1x ·1y :

1x
2
·

χ11

(
E x , E y −

1y
2

)
− χ11

(
E x , E y +

1y
2

)
1y

+
1y
2
·
χ22

(
E x +

1x
2 , E y

)
− χ2

(
E x −

1x
2 , E y

)
1x

+ χ12

(
E x +

1x
2
, E y

)
− χ21

(
E x , E y +

1y
2

)
. (A17)

With the practically safe assumption that the components of
χ are continuously differentiable, we let1x and1y approach
zero. The big fractions become partial derivatives. As they are
still multiplied by a delta, they become zero in the limit and do
not contribute to the integral. By continuity, the last two terms
form the difference

χ12(E x , E y )− χ21(E x , E y ), (A18)

which has to equal zero because there is no potential energy
change along the integral that leads us back to the starting value.
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