
1Scientific RepoRtS |         (2019) 9:11078  | https://doi.org/10.1038/s41598-019-47472-2

www.nature.com/scientificreports

Advanced numerical investigation 
of the heat flux in an array of 
microbolometers
Matteo Stocchi1,2, Davide Mencarelli2,3, Luca pierantoni2,3, Alexander Göritz1, 
canan Baristiran Kaynak1, Matthias Wietstruck1 & Mehmet Kaynak1

The investigation of the thermal properties of an array of microbolometers has been carried out by 
mean of two independent numerical analysis, respectively the Direct-Simulation Monte Carlo (DSMC) 
and the classic diffusive approach of the Fourier’s equation. In particular, the thermal dissipation of a 
hot membrane placed in a low-pressure cavity has been studied for different values of the temperature 
of the hot body and for different values of the pressure of the environment. The results for the heat flux 
derived from the two approaches have then been compared and discussed.

Due to the high level of rarefaction, the simulation of gas flow in a micro-cavity that encloses an array of microbo-
lometers1–5 is much more challenging than in the classical flow regimes: the low number of gas molecules encap-
sulated in the considered domain make their mean free path much longer than usual, so the diffusive description 
used in the continuum approach (Navier-Stokes equations) ceases to be valid. The degree of rarefaction of a gas 
in such micro-systems is generally defined by the Knudsen parameter

λ
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L
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where λ is the mean free path of the molecule and L the characteristic dimension of the system. Depending on the 
value of the Knudsen parameter, three different approaches may be used to characterize the phenomenon under 
investigation: for ≤ −K 10n

3 the classic diffusive approach gives the best results as the gas flow can still be assumed 
as a continuum, for ≤ ≤− −K10 10n

3 1 the slip/transition flow (an extension of the diffusive approach for low 
pressure regime) should be used and, for ≥ −K 10n

1, a discrete approach is needed since the system enters in the 
free molecular flow regime. Depending on the ratio between the collision probability between two different mol-
ecules and the collision probability between a molecule and a wall of the considered domain, the free molecular 
regime can further be sub-classified in the collision ( ≤ ≤− K10 10n

1 ) and collisionless ( ≥K 10n ) cases. The exact 
solution for systems characterized by high Knudsen number values is given by the Boltzmann equation, but for 
most of the real cases study this approach results too expensive in computational terms, so another way of 
addressing the problem is needed. The Direct-Simulation Monte Carlo (DSMC)6–11 is one of the most used and 
successful tracking simulation method for rarefied gas flow. The basic principle behind such approach is that each 
simulated body represents n real particles, so the overall solution is given by mean of statistical considerations. 
Although the DSMC provides a rigorous solution for finding the behaviour of the gas flow in a micro-cavity, it 
would be convenient to rely on a rather simpler and less time-consuming approach for addressing the optimiza-
tion process of the system geometric parameters. An approximate solution is given by the rarefied gas heat trans-
fer theory12,13, that makes use of the diffusive continuum approach by correcting the expression for the thermal 
conductivity evaluated at ambient pressure kamb to consider the reduced pressure of the environment14–16. In what 
follows, a detailed report about the researches that have been made for evaluating the heat flux of a hot body in a 
low-pressure cavity will be presented, and a comparison between the two approaches of DSMC and Fourier’s 
equation will be given.
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Theoretical Background
According to the nature of the system under analysis, the DSMC method have been used for getting a reliable 
solution about the kinetic behaviour of the gas particle. The millimetric scale of the cavity that encloses the array 
of microbolometers and its low-pressure environment (p~10−2 mbar) lead to a Knudsen parameter well above 
the limit for the collisionless case, so any particle-particle interaction will be considered. For what concerns the 
particle-wall interaction, the fully diffusive approach with complete thermal accommodation has been chosen. 
According to the surface roughness of the cavity walls, the incident molecules can either suffer of multiple scat-
tering, being momentarily trapped or even being fully absorbed. In such a case, the velocities of the particles that 
have been reflected by the cavity walls are completely uncorrelated to the velocities of the incident ones, and they 
must satisfy the Maxwellian velocity probability distribution for the particle valocity
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where m is the particle mass, TW the wall temperature and kB the Boltzmann’s constant. The reflected velocities ′u n, 
′u t ,1 and ′u t ,2 can then be sampled from (2) depending on the reflection plane orientation. In general:
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where −R rln( )i  and θ = 2πr, with r being a uniform random number between 0 and 1. The definition of the heat 
flux comes from one of the basic principles of the molecular dynamics: by considering a generic wall element i, 
the heat flux qi can be regarded as the ratio of the difference between the energy ε of all the incoming and reflected 
particles N to the time t and the area of the considered surface A
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For what concerns the total energy associated to each particle, for the case of a monoatomic molecule the 
only contribution comes from the kinetic energy, while for the diatomic and polyatomic cases also the rotational 
energy must be considered.

Figure 1. Sketches of the top and front views of the simulated unit cell. The values of the geometric parameters 
are: lbol = 25 μm, hbol = 1 μm, dcell = 1 μm, htop = 97 μm, hbot = 2 μm and hcover = 10 μm.
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The approximate approach, e.g. the one passing through the Fourier’s equation, makes use of a corrected 
expression for the conductivity k. If to consider the thermal conductivity of a generic material at ambient pressure 
kamb, its corresponding low-pressure form k′ is given as

′ =
+ β
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where dm is the diameter of the particle, p the pressure of the system, Li the characteristic dimension of the consid-
ered domain and β is a constant between 1.5 and 2, which depends on the gas type, core material characteristics 
and mean temperature.

Figure 2. Comparison between the heat flux computed by the DSMC method (solid lines) and the one 
computed from the diffusive-approximate one (dashed lines) evaluated at the top (a) and bottom (b) surface 
of the hotter bolometer and at the top (c) and bottom (d) surface of the colder bolometer for different values of 
ΔT.
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Results and Discussion
An array of microbolometers usually consists in several hundreds of silicon membranes regularly placed in both 
the x- and y-direction. Such elevated number of components makes possible the use of the periodic boundary 
conditions (PBC) for the lateral boundaries of the simulated domain, which allows us to simulate just the unit cell 
of the system instead of the whole of it. The DSMC-PBC act as an absorber for each incoming particle having an 
incident velocity c, for then recreating such a particle in the opposite boundary by preserving its velocity. The 
bottom boundary of the simulated domain is held at a fixed temperature = .T 303 15 KW B,  since that’s the operat-
ing temperature of the electronic components of the device, while on the top wall of the unit cell, where a silicon 
cover layer of 10 μm has been considered, the temperature (initially set to 293.15 K) freely evolves according to 
the Fourier’s law. The coupling between the two physics is made by the heat flux evaluated at the top boundary 
qtop: what comes from the DSMC analysis represents the source term in the Fourier’s law, which in turn gives the 
temperature of the boundary Ttop. To model a real case study where the intensity of the incoming IR-radiation is 
not spatially constant, the unit cell contains two microbolometers, whose temperatures are different. This allows 

Figure 3. Comparison between the heat flux computed by the DSMC method (solid lines) and the one 
computed from the diffusive-approximate one (dashed lines) evaluated at the top (a) and bottom (b) surface of 
the hotter bolometer and at the top (c) and bottom (d) surface of the colder bolometer for different values of the 
pressure p.
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for the investigation of the heat flux along the lateral boundaries of the membrane for different Δ = −T T Tbol i bol j, , . 
For the investigated case, a single membrane has the dimensions of 25 × 25 × 1 μm and the gap with its neighbour 
is 1 μm. The simulated unit cell is shown in Fig. 1. The micro-cavity is supposed to be filled with argon 
( = . ⋅ −m 66 3 10 Kgp

27 , =d 340 pmm ) at the pressure =p 1 Pa. The DSMC study has been carried out by con-
sidering 250000 simulated particles, tracked for 5000 time steps (observed to be enough for obtaining a steady 
state solution).

For what concerns the approximate diffusive analysis, conducted by using (7) for the thermal conductivity of 
argon, two 1D models for the characteristic dimensions Ltop and Lbottom and one 2D model for the characteristic 
dimension Lside have been implemented, and a β = 1.5 has been used. The necessity of having a 2D model for 
evaluating the heat flux at the lateral sides of the microbolometers derives from their subtlety: the thermal field 
spreading in the thin gap between two adjacent membranes is strongly affected by the ones spreading towards the 
top and the bottom of the unit cell, leading to spatially varying heat fluxes.

A first comparison between the heat fluxes obtained from the DSMC and the approximate diffusive approaches 
is shown in Fig. 2. Here, the parameter ΔT have been swept from 5 K up to 35 K, considering a fixed temperature 
for the second microbolometer of 343.15 K. The considerable difference in temperature between the membranes 
and the bottom surface of the micro-cavity TW,B and between the two membranes ΔT is aimed at reducing the 
characteristic statistical noise of the DSMC approach. A good agreement between the solutions coming from the 
two different methods is observed both for the hotter and for the colder microbolometers, that is partially lost if 
to consider the heat fluxes obtained for the bottom surfaces for low values of ΔT: the committed relative error for 
the heat flux evaluated at the bottom surface of the hot membrane at ΔT = 15 K is 5.5%. A possible explanation 
for this comes from the statistical nature of the DSMC approach. Since the gap between the bottom surfaces of 
the microbolometers and the bottom surface of the micro-cavity is quite narrow, the number of incident par-
ticles used for the computation of the heat fluxes are probably not enough if to consider just 5000 time steps. 
Furthermore, the temperature difference between the membranes and the bottom surface of the micro-cavity is 
10 K less than the one existing between the membranes and the top surface.

Figure 3 shows the same comparison of Fig. 2 with the only difference that in this case ΔT is held constant 
at 5 K and the varying parameter is the pressure of the gas. The comparison between the obtained solutions is in 
general good also in this case, except for high pressure values, where the highest encountered relative error is 
12.47%. The reason for this discrepancy is sought, also in this case, in the DSMC method: for a pressure of 10 Pa 
the Knudsen number falls to the collision case of the free molecular flow regime, which makes the implemented 
model insufficient.

For what concerns the heat flux of the side walls of the microbolometers, Fig. 4 shows once again the com-
parison between the two approaches. As aforementioned, the diffusive-approximate model employed in the side 
walls case must be defined in a 2D environment, which gives spatially-varying heat fluxes for each value of ΔT. 
To give a constant value for the heat flux coming from the approximate approach, the spatial average has been 
taken. Apart from the high-ΔT cases of Fig. 4a, related to the hotter microbolometer, the approximate model fails 
in predicting the correct values for the heat flux. The most significant proof of this lies in the heat fluxes related to 
the colder bolometer, where the trend in respect to the variation of ΔT obtained from the approximate approach 

Figure 4. Comparison between the heat flux computed by the DSMC method (solid lines) and the one 
computed from the diffusive-approximate one (dashed lines) evaluated at the side walls of the hotter (a) and 
colder (b) microbolometers for different values of ΔT.
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is the opposite of the one derived from the DSMC method. In this case the divergence between the results may be 
caused by the small value for the gap existing between two adjacent membranes and the strong variation of the 
thermal field. By observing the flat heat fluxe trends for the various simulated cases, we can deduce that the error 
introduced by the statistical nature of the DSMC approach seems to be quite negligible even though the number 
of particles hitting the lateral walls is definitely smaller in respect to the previous cases.

conclusion
By considering an array of microbolometers enclosed by a medium vacuum-level micro-cavity, a comparison 
between the data coming from the two methods of DSMC and Fourier’s equation for what concerns the investi-
gation of the heat flux on the thermally active walls of the system has been presented. The DSMC approach, that 
represents the exact solution of the gas flow in the micro-cavity, makes use of the complete thermal accommoda-
tion theory by neglecting any kind of particle-particle interactions, while the approximate model is loaded with a 
modified expression for the thermal conductivity k, derived from the rarefied gas heat transfer theory. In general, 
a good agreement between the two approaches is obtained by varying the ΔT existing between the two mem-
branes of the considered unit cell and the pressure of the micro-cavity. However, when it comes to consider the 
heat flux on the side walls of the microbolometers such agreement is mainly lost, with the approximate approach 
that fails in reproducing the results coming from the DSMC theory.
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