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ABSTRACT The ImageNet moment was a turning point for Convolutional Neural Networks (CNNs), as it
demonstrated their potential to revolutionize computer vision tasks. This triumph of CNNs has motivated
solving evenmore complex problems involvingmultiple tasks frommultiple datamodalities. Conventionally,
a single CNN accelerator has been optimized to perform just one task or multiple correlated tasks. This
study presents a shared-layers approach that leverages the pattern-learning capabilities of CNNs to perform
multiple uncorrelated tasks from different modalities using a single hardware accelerator. We overcame
the challenge of data imbalance in multi-modal learning by synthetic data generation. We achieved an
average classification accuracy above 90% on a single CNN accelerator, which would otherwise require
three accelerators. Due to the reliability concerns imposed by transistor shrinking and aging, we extended the
shared layers methodology and introduced a fault-tolerant CNN accelerator with reconfigurable capabilities
supporting fault-tolerant (FT), high-performance (HP), and de-stress (DS) modes. FT mode provides high
reliability against soft errors utilizing double/triple modular redundancy, HP mode offers peak performance
of 0.979 TOPs using parallel execution, and DS mode reduces dynamic power consumption by up to 68.6%
in clock-gated design and even more using a partial reconfiguration method, contributing to decelerating the
aging process of the circuit. We have comprehensively evaluated two different CNN architectures (i.e., fused
and branched), for three distinct tasks, in three different operating modes, based on accuracy, quantization,
pruning, hardware resource utilization, power, energy, performance, and reliability.

INDEX TERMS Multi-task learning, multi-modal learning, convolutional neural network, reliability,
FPGAs, reconfigurability.

I. INTRODUCTION
CNNs have transformed many applications, ranging from
self-driving cars and smart video surveillance to intelligent
manufacturing and medical imaging. With the increasing
number of sensor modalities, CNNs are growing in com-
plexity as they evolve from processing images/patterns
captured by a single image sensor for basic object detection
to handling multiple data streams from multiple sensors,
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performing classification tasks across a range of diverse
objectives.

The challenge at hand is that running deep CNN models
is a resource-intensive process, and deploying these models,
with millions of parameters, on edge devices has become
an increasingly pressing matter. CNNs, implemented on
edge devices (i.e., ASICs, FPGAs) as hardware accelerators,
offer benefits in terms of lower latency and enhanced
data security and privacy. However, due to the varying AI
requirements and workload, hardware resource utilization
quickly reaches a boundary. An increase in hardware
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resource utilization leads to higher power consumption.
To address these concerns, several model compression
methods (i.e., pruning, quantization, knowledge distillation,
low-rank factorization, etc.) have been proposed. Model
compression aims to reduce the model size so that it can
be deployed on low-power and resource-constraint devices
without significant accuracy degradation. In this context,
we aspire to provide a fresh perspective on the issue of saving
hardware resources and reducing power consumption using
‘Shared Layers’ approach. This is discussed in our earlier
work [1], where we leverage the fundamental capability of
CNNs of learning to recognize patterns and train multiple
distinct tasks from different modalities, thereby forcing one
application-specific CNN accelerator to learn the common
features between the tasks, which would otherwise require
three separate accelerators. We have evaluated fused and
branched CNN models with different model compression
methods. We conclude that the shared layers approach,
assisted by pruning and quantization methods, substantially
reduces hardware resources and power.

The second challenge arises concerning the reliability of
the hardware components (i.e., ASICs or FPGAs) utilized for
the CNN accelerator, especially given the ubiquity of CNNs
in diverse applications, ranging from healthcare and enter-
tainment to manufacturing and safety-critical applications,
etc. There are high-reliability standards in safety-critical
applications (e.g., self-driving cars, space, etc.) because the
consequences of a failure can be catastrophic and lead to loss
of life or property damage.

Over the years, we’ve witnessed a rise in hardware per-
formance within microprocessors and hardware accelerators,
driven by transistor size shrinking to the Very Deep Sub-
Micron (VDSM) level. The downsizing of transistors results
in increased susceptibility to transient faults due to reduced
threshold voltages and narrower noise margins [2]. In addi-
tion to this, transistor aging presents another substantial
reliability concern due to the gradual deterioration of circuit
performance over time due to Hot Carrier Injection (HCI)
and Bias Temperature Instability (BTI) [32], [33]. Hence,
to ensure fault-free CNN inference on hardware, it is essential
to have a rigorously validated fault-tolerant and aging-aware
methodology in place.

Therefore, with added hardware redundancy, we further
extend the concept of shared layers to propose reconfig-
urable CNNs. The primary idea is that CNN accelerators
should adapt based on the changing needs of accuracy,
power, latency, reliability, etc. Thus, our reconfigurable
accelerator performs multiple tasks in 1) Fault toler-
ant (FT), 2) De-stress (DS), and 3) High performance
(HP) modes. Executing multiple tasks in various oper-
ating modes on CNN accelerators positioned this study
uniquely, which was otherwise observed most commonly
in microprocessors. Noteworthy contributions of the paper
are:
(1) Fault-tolerant multi-modal CNN accelerators based

on shared-layers methodology, with reconfigurable

capabilities qualified to operate in three distinct modes:
1) FT, 2) HP, and 3) DS.

(2) Comprehensive experimental results of three operating
modes, which include:
(a) Fault analysis on various fault models (Single

Event Transients (SETs), Single Event Upsets
(SEUs), Multi-bit upsets (MBUs), SEU in FPGA
configuration memory) in FT mode.

(b) Examination of latency and energy consumption in
the HP mode.

(c) Comparative assessment between clock gating
(CG) and partial reconfiguration(PR) methods to
reduce the dynamic power consumption in the DS
mode.

The subsequent sections of the paper are structured as
follows. Section II distinguishes our work from state-of-
the-art. Section III delves into the background of CNNs
and multi-modal multi-task learning (MMMT). Section IV
explains the fused and branched CNN models based on the
shared-layers approach, while section V and VI discuss its
workflow and experimental results, respectively. We further
develop the idea of shared layers and introduce fault-tolerant
reconfigurable accelerators in section VII. Section VIII
concludes this study.

II. RELATED WORK
In order to address the evolving challenges posed by changing
AI application requirements, several research groups have
proposed the idea of reconfigurable or adaptive accelerators.
The central concept revolves around AI accelerators being
adaptable to changing requirements such as accuracy, power
efficiency, latency, reliability, etc. Thus, diverse notions
related to reconfigurable deep neural networks (DNNs) have
been introduced.

Authors in [3] have different bitstream configurations for
different DNN models with varying quantization levels for a
video processing application. They dynamically change the
bitstream of the DNN model for a tradeoff between accuracy
and power. Samples per second is one of the significant
advantages when transitioning between various FPGA bit-
streams. However, in the context of reconfigurability, [4]
and [7] perform re-programming weights to support different
DNN architectures and unique data compression algorithms,
respectively. Reference [7] also evaluates the impact of faults
in DNNs. Reference [5] has taken a different approach and
suggests an energy-efficient reconfigurable CNN accelerator
design using streaming data flow architecture. This study
decomposes large CNN kernel computations into small
kernel-sized computations and improves energy efficiency
by reducing nonessential data movement. The study [6]
proposes a reconfigurable binary neural network accelerator
that conducts adaptive loading and processing of data in
CNNs kernels to gain performance increase. While [8]
suggests a configurable architecture for implementing CNNs,
which supports hybrid quantization (i.e., different bit widths
for different layers) with the primary objective of increasing
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TABLE 1. Comparison with the state-of-the-art.

TABLE 2. Comparison with previous fault-tolerant DNN studies.

the performance with little accuracy loss. The investigation
by [9] recommends performing data path reconfiguration to
promote data reuse patterns, which reduces total energy for
different CNN models. This study introduces a layer-based
scheduling framework to balance power efficiency and per-
formance for different convolutional neural network models.
The quantitative comparison in terms of hardware resource
utilization, performance, power, energy, operating frequency,
model compression methods, target hardware, and a number
of sensor modalities and tasks performed in section VII D.

Reliability is a primary consideration when deploy-
ing DNN models for safety-critical applications. There-
fore, numerous investigations have been conducted on
fault-tolerant deep neural networks. The study [15] examines
a DNN accelerator utilizing a systolic array architecture
(i.e., Google Tensor Processing Unit) and suggests two
fault-tolerant methodologies, fault-aware pruning (FAP) and
fault-aware pruning + retraining (FAP+T). In FAP, pruning
is leveraged to bypass the fault MACs, which are causing
accuracy degradation. In FAP+T, an additional on-device
retraining step is added to recover the accuracy loss caused
by the missing MAC units. Authors in [22] have performed
a reliability evaluation of pruned DNNs and recommended
adding selective redundancy on vulnerable parts of theDNNs.
A similar analysis was performed by [23], where authors

suggested model compression (i.e., pruning, quantization)
as an impressive way to improve the reliability of DNNS.
The study [12] has proposed two FT methodologies, i.e.,
symptom-based error detectors (SED) and selective latch
hardening (SLH). The former method monitors the output
of DNN’s activation functions, while the latter method adds
redundancy in the vulnerable parts of the hardware. Authors
in [7] suggest a triplemodular redundant reconfigurable DNN
accelerator for data compression using an autoencodermodel,
while authors in [13] have performed reliability analysis of
VGG16, ResNet50, and InceptionV3 against transient faults
happening in the model’s parameter and summarized that
the nature of the layers (batch normalization layers, use of
shortcut connections) can also play a part in the resiliency
of the CNN model. The study [14] proposed an inter-frame
spatiotemporal correlation method to detect errors in CNNs,
using the input and output correlation information while
processing multiple frames. Reference [24] has done a
resiliency analysis on compressed DNNs’ to come up with
virtual and physical redundancy to mitigate errors. Refer-
ence [16] have performed FPGA-accelerated error injection
on output feature maps of CNN layers and have presented
selective channel replication and fault-aware scheduling of
PEs to mitigate the impact of faults. Other fault-tolerant
methods include ensemble learning-based robustness [53],
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Knowledge distillation-based redundancy [54], algorithm-
based fault tolerance (ABFT) [55], [56], [57], clipped
activations function [50], [51] [52], and using arithmetic error
codes to mitigate the reliability of the DNNs [58].

Table 1 provides a conceptual comparison of our approach
to state-of-the-art studies, while Table 2 compares our work
with selected studies related to FT methods in DNNs. Thus,
we can summarize that,

• Several studies on fault-tolerant DNNs seem to overlook
adaptivity/reconfigurability. Meanwhile, studies related
to adaptive/reconfigurable DNNs primarily focus on
increasing their performance. Thus, our study has
addressed both aspects of reconfigurability in DNNs.
i.e., high performance and fault tolerance.

• The discussions about hardware accelerators for multi-
ple tasks and sensor modalities are largely ignored in the
majority of FT DNN studies.

• Many studies have performed reliability analysis of
DNNs, but most of this analysis is based on fault
injection (FI) in neural network parameters (weights
and biases) at the software level. Neural networks
are eventually deployed on hardware (i.e., ASICs or
FPGAs), and the hardware architecture consists of
many components (i.e., memories, DSP blocks, state
machines control, shared buffers, etc). Injecting faults
only in the weights may not give complete insights into
the vulnerability of the DNN accelerator. Therefore,
our investigation concentrates on FI in the complete
accelerator architecture.

• Many studies have only considered one task or sensor
modality or performed fault injection analysis for one
fault model. In contrast, this study has evaluated four
fault models and performed FI analysis at the RTL level
and in the configuration memory of FPGA.

This work proposes a distinctive reconfigurability frame-
work employing the redundancy-assisted shared layers
method to the CNN accelerator. To the best of our knowledge,
this approach to the fault-tolerant CNN accelerator with
reconfigurable capabilities, which aims for optimization of
hardware resources, power consumption, high performance,
and reliability for multiple tasks, has not been addressed.

III. MULTI-MODAL MULTI-TASK CNN MODELS
CNNs, a specialized type of neural network, have proven
highly effective in image classification tasks. CNNs have the
ability to develop an internal representation of an image or
pattern. This allows the CNN model to learn the position and
scale-invariant structures in the image data, which is very
important when working with images. Due to the extensive
use of CNNs in vision applications (i.e., image recognition,
medical imaging, etc.), classification problems have also
grown in complexity. CNNs have demonstrated exceptional
performance, from having simpler CNN networks to solve
one classification task (i.e., multi-class classification) tomore
extensive and complex CNN models solving classification
problems from multiple modalities and tasks.

A. MULTI-MODAL LEARNING
Human beings perceive and interpret the world through
multiple senses (i.e., multi-modal fashion), such as vision,
hearing, touch, taste, and smell. Learning and processing
information from multiple modalities (i.e., sensory organs)
is essential for humans to interact with and understand the
real world. Similarly, multi-modal learning (MML) involves
processing data from multiple modalities, such as images,
audio, text, and sensor data, to extract useful information
and perform classification or prediction tasks. By processing
data from multiple modalities, multi-modal CNNs can learn
to recognize complex patterns and make predictions based
on available information. The use of multiple sensors across
various applications is increasing, resulting in an increased
volume of collected data. The amalgamation of data samples
from multiple modalities (such as camera, radar, lidar, and
microphone) can be employed through sensor fusion to
attain a more comprehensive and accurate understanding
of the surrounding. CNNs, when trained on data from
multiple modalities, learn the shared representation using
various fusion methods (early fusion, late fusion, etc.). This
approach can be effective in improving classification results
by leveraging the strengths of the multiple modalities.

B. MULTI-TASK LEARNING
Depending on the application and data modality, a CNN
model can perform a single task, such as identifying the
type of clothing, or multiple tasks, such as identifying both
the type and color of clothing. In machine learning, this is
termed as multi-task learning (MTL). MTL is a learning
paradigmwhere amodel is trained to performmultiple related
tasks simultaneously. An MTL model is trained for multiple
tasks jointly by optimizing multiple loss functions [38]. The
joint training helps the model learn the shared representation,
reducing overfitting and facilitating the model to learn a more
robust representation of the input data. MTL can be defined
as multi-modal multi-task learning (MMMT)when themodel
can learn a shared representation of inputs across multiple
data modalities and tasks, e.g., in a self-driving car scenario,
an input data, which is captured by various sensors modalities
(cameras, radar, lidar), gets processed by the AI model to
detect multiple objects (i.e., pedestrians, lane markings, stop
signs, etc.)

IV. PROPOSED SHARED LAYERS METHODOLOGY
The CNN models used in various applications are composed
of a significant number of parameters, ranging from several
thousand to millions. Ultimately, these models will be
deployed on edge devices equipped with ASICs or FPGAs.
These edge devices typically have limited computation
resources and power budgets. Thus, deploying such models
on edge devices poses a challenge due to the considerably
high computational and energy requirements. This indicates
a growing need to develop efficient techniques to minimize
hardware resource utilization, power consumption, and
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FIGURE 1. (a) Tasks execution on application-specific accelerators (b) Control element (c) Tasks execution on FM (d) Tasks execution on BM.

latency while meeting specific application requirements.
The majority of studies on CNNs in the context of MTL
and MMMT have focused on highly correlated tasks. Our
approach provides a different perspective on MTL and
MMMT, specifically regarding uncorrelated tasks. This per-
spective capitalizes on the core principle of how CNNs learn
throughout their training process. The lower-level features
of most of the images are the same. Lower layers learn the
low-level features (i.e., edges, curves, blobs, etc.). The deeper
we go in the network, the layers start to learn the high-level
(or more abstract) features [39]. We leverage this concept to
force one model to learn the lower-level features of multiple
uncorrelated tasks. These uncorrelated tasks, characterized
by matching low-level features, utilize the same layers.
Once mapped to the hardware accelerator, these shared
layers would mean sharing computing resources, leading
to substantial savings in hardware resources and decreased
power consumption. Our approach further facilitates the reuse
of the weights for multiple tasks by avoiding unnecessary
DRAM access, thereby leading to additional energy savings
(e.g., Each DRAM access in a typical processing platform for
CNNs consumes a significant amount of energy compared
to the actual Multiply-Accumulate (MAC) operation [40]).
Through this approach, a single application-specific accel-
erator can perform multiple tasks (Fig. 1(c)(d)), as opposed
to the traditional way of utilizing three distinct accelerators
(Fig. 1(a)). In section VII, the shared layers approach is
further capitalized to re-configure the FPGA-based CNN
accelerator during runtime to execute multiple tasks in FT,
HP, and DS modes.

The effectiveness of our approach for multiple tasks is
demonstrated through the creation of two types of CNN
models: fused and branched. In the fused model (FM),
all the tasks share all the layers of the neural network
(Fig. 1(c)). In contrast, the branched model (BM) consists
of tasks-specific branches and shares only particular layers

(Fig. 1(d)). A mux-based logic is used to feed different
data samples ( i.e., corresponding to different tasks) to FM
and BM in a TDM fashion. Although FM is comparatively
easier to train and consumes slightly fewer hardware and
power resources, it may not achieve the desired accuracy
for a specific task. The BM involves a multi-stage training
process and consumes slightly higher hardware and power
resources than FM. However, BM offers several advantages,
i.e., 1) It is slightly more resilient against faults, and it
offers the possibility of task isolation in the presence of
faults, 2) Provides task-specific bit-stream reconfiguration in
FPGAs, 3) Introduces selective replication of only specific
layers (e.g., more vulnerable layers or tasks-specific layers),
4) Enables sub-tasks to supportMTL, 5) Provides extra layers
to achieve more accuracy for specific tasks.

V. WORKFLOW FOR MULTIPLE TASKS EXECUTION ON
FUSED AND BRANCHED MODELS
In this study, different tasks are emulated as different datasets,
i.e., execution of a single task would mean performing a
classification task on a single dataset. Thus, for three tasks,
we have considered three datasets (i.e., radar samples for
hand gesture detection [46], SVHN [19], MNIST [20]) from
two different modalities (i.e., radar and camera image).
These three tasks are illustrated in Fig. 3(a)(b)(c) and are
executed on one application-specific CNN accelerator in a
time-division multiplexing (TDM) manner.

Fig. 2 illustrates the overview of a comprehensive
workflow which encompasses the following key stages:
1) Data preprocessing, 2) Model creation, training, and
testing, 3) Utilizing the hls4ml framework to convert the
Python-based CNN model to its HLS-compatible c/c++

equivalent. 4) This step involves conducting RTL and
post-synthesis simulations to calculate latency and power
(discussed in section VI). This step is further extended
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to perform fault injection analysis, to be covered in
section VII A.

FIGURE 2. Complete workflow showcasing data preprocessing, model
development/training/testing, HLS code generation, and fault injection in
RTL and configuration memory.

A. DATA PREPROCESSING
Data preprocessing is one of the crucial initial steps before
the training of DNN begins, as this step helps improve
the data quality by cleaning, transforming, and normalizing
it (see Fig. 2). As the problem gets more complex in
MMMT CNN models, the importance of data preprocessing
becomes more prevalent. CNNs perform exceptionally well
on images and patterns. Therefore, the datasets need to
be transformed before training. In this way, CNN can
learn the common representations across different tasks
from different modalities. Task 2 (T2) contains RGB image
samples from the SVHN dataset, which does not require
additional transformation. However, task 3 (T3) is a grayscale
dataset, and task 1 (T1) is from a different modality; thus,
T1 and T3 need to be preprocessed and transformed before
CNN training. Data preprocessing of T1 consists of collecting
the real raw radar data, extracting information by fast Fourier
transform (FFT), removing the clutter, and fusing the range,
velocity, and angle feature maps. Additional technical details
of the real radar dataset are available in [46].
The T3 dataset is an adaptation of the MNIST dataset. The

MNIST dataset in its original form contains grayscale images
presented in a 2-dimensional format. The T3 dataset has been
transformed into a 3-dimensional RGB image, with the added
inclusion of noise to further increase the complexity of the
dataset. In order to facilitate the classification of subtasks, the
dataset has been expanded to include two additional colors,
i.e., red and green. Finally, all the tasks are resized to the same
dimensions, i.e., 32×32×3, so that there is a match between
the input dimensions of the images and CNN layers.

The dataset’s size and diversity can affect the model’s
performance. Therefore, it is important to carefully curate

FIGURE 3. (a) FMCW radar hand gesture samples, {Left}: Real dataset,
{Right}: Synthetic dataset (b) SVHN samples (c) Transformed MNIST
dataset.

the dataset to ensure that it represents the range of variation
the model will likely encounter in real-world applications.
T1 consists of 1500 real radar data samples for hand gesture
detection, which is way less as compared to the 99,289
T2 samples and 70,000 T3 samples. Thus, in the initial
experiments, the T1 accuracy was compromised due to an
imbalance between T1 and T2/T3 datasets. The real raw
data samples were collected in an indoor environment with
a Texas Instruments (TI) millimeter-wave radar AWR1642
and data acquisition board DCA1000. Therefore, there is
a significant effort to create a real dataset of thousands
of samples. In order to solve this challenge, a synthetic
dataset generation approach was adopted. Synthetic data
generation is the process that involves generating new data
that has similar statistical properties as the original data (see
Fig. 3(a)). Hence, synthetic hand gestures can be generated by
utilizing Blender animation to create hand gesture trajectories
and configuring Matlab’s phased array system toolbox to
align with AWR1642 radar parameters (refer to Fig. 4). In this
way, we have increased the T1 dataset samples to 6,480
(additional technical details can be found in [45]).

FIGURE 4. Synthetic radar dataset generation approach using Blender
and Matlab.

B. MODEL CREATION, TRAINING, AND TESTING FUSED
AND BRANCHED MODELS
The CNN architecture depicted in Table 3 has been created
using Tensor flow/Keras and Qkeras [21]. Upon data prepro-
cessing and model creation, training and testing of the model
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TABLE 3. CNN architecture with trainable params: 14926.

can be accomplished (see Fig. 2). FM training was treated
as a single-task learning problem and followed a standard
training process. The dataset consisted of three different
tasks (i.e., T1, T2, T3), and the output layer had classes
representing all three tasks. In contrast, BM training could
be accomplished using the Multi-Task Learning (MTL) or
Transfer Learning (TL) methods. MTL involves optimizing
multiple loss functions to train multiple tasks jointly, with
common layers learning shared representations between
related tasks while task-specific branches perform well on
specific tasks.

As all the tasks are being optimized simultaneously, it may
happen that the training of all the tasks does not converge
to the desired accuracy. Therefore, as an alternative, the
transfer learning TL method was applied, which involved
a multi-stage training process: 1) First, the entire model is
trained as an FM. The last layer of the model is removed,
leaving behind the layers trained on the shared representation
of all three tasks. 2) Freeze the weights of the shared layers
3) Add task-specific layers to the model and train each task
individually 4) if a task has additional sub-tasks, they can also
be trained in a similar fashion.

Furthermore, model compression methods can also be
added to the training loop. Model compression aims to
reduce the model size so it can be deployed on low-power
and resource-constraint edge devices without significant
accuracy degradation. This is why the research community
has actively pursued the topic of model compression over
the last few years. Several model compression methods have
been proposed in recent years, i.e., quantization, parame-
ter pruning, low-rank factorization, knowledge distillation,
transferred/compact convolutional filters, etc. Our study
focuses on a) Quantization and b) Pruning, two of the most
promising model compression approaches.

Through experimentation, it has been demonstrated that
many of the parameters in deep neural networks are
superfluous, and in fact, their absence does not significantly
affect the expected performance. This situation may happen
when the parameters of the neural networks are zero,
close to zero, or are replicated. Thus, pruning is a way
to remove unnecessary parameters that do not significantly
contribute to the accuracy of results, thereby resulting in
sparse deep neural networks (Fig. 7). This sparsity offers
two advantages: a) it causes a significant reduction in
hardware resource utilization, which further helps reduce the
computational complexity, and b) It improves the resiliency
of the DNN model [22]. Our implementation focuses on
the magnitude-based weight pruning method to optimize the
model [47].

In addition to pruning, DNN quantization is added to the
training loop as it can significantly reduce the model size
and increase reliability. In many cases, the dynamic range
of the floating-point (FP) numbers is not needed, thus DNN
quantization refers to a method of approximating a neural
network’s parameters and activations to low bit-width fixed
point (FxP) numbers, which are hardware-friendly, offer
faster computations and cost less area overhead as compared
to FP computations. Additionally, quantization can enhance
the DNN model’s reliability, as demonstrated by [23] and
[24]. Hence, we can expect significant benefits in terms
of model size and reliability after DNN quantization. Both
pruning and quantization lead to reduced hardware resources
and power consumption and have become the de-facto step
during the DNN deployment on edge devices [25]. The
shared layers approach, aided by pruning and quantization,
substantially reduces hardware and power resources. Table 4
and Fig. 6 illustrate the experimental results of several
implementations of CNN models, while section VI delves
into a comprehensive analysis of these findings.

FIGURE 5. Impact of different reuse factors values on DSP48E utilization
for the computation between 2 neuron pairs [26].

C. HLS4ML FRAMEWORK
The hls4ml [26] is an open-source framework that allows
deploying machine learning models on FPGAs, specifically
designed for low-latency and energy-efficient inference at
the edge. Once a desired test accuracy is achieved, hls4ml
can be used to convert the trained model into an HLS-
compatible C/C++ code (see Fig. 2). The framework
considers several parameters for generating the synthesizable
C/C++ code. i.e., FPGA part number, interface type, reuse
factor (R), and FxP precision. The parameter ‘R’ determines
the parallelism in the hls4ml generated DNN model (see
Fig. 5).
Multiplication is the most fundamental operation in neural

networks as it involves multiplying the weight with the input.
After the multiplication, a bias is added, and the result is
passed to an activation function. A reuse factor of 1 indicates
an immensely parallel design, resulting in the generation of
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an HLS model with the minimum achievable latency. If the
reuse factor is increased by a factor N, the HLS compiler
tries to reduce the DSP resource by ∼1/N, and as a result,
it increases the model’s overall latency by ∼N.
The parameter ‘precision’ is used by hls4ml to perform

quantization. By default, the hls4ml employs a precision of
< 16, 6>. This signifies that the model will be quantized to
FxP 16 bits in which 6 bits are integer bits (including the sign
bit) and the remaining 10 bits are allocated to fractional rep-
resentation. The ‘precision’ parameter is modified iteratively
to attain the desired level of accuracy. Hls4ml compiles the
quantized model and estimates the model’s accuracy (termed
as hls4ml accuracy) using bit-accurate fixed point emulation
of the FPGA inference code.

As FM is un-branched, it can be converted into HLS-
compatible C/C++ with ease. Nonetheless, hls4ml currently
lacks support for generating HLS code for BM. We recom-
mend a workaround encompassing several sequential actions
for employing this framework for BM. 1) Dissect the BM in
linear branches. 2) Utilizing hls4ml, create HLS code for each
branch individually. 3) Generate HDL code of all branches
by utilizing Vivado HLS. 4) Stitch all branches in HDL using
control element (CE) (Fig. 1(b)). CE, 1) synchronize the data
streams and control signals between the stitched branches,
and 2) enable/disable single or multiple branches based on
the tasks.

TABLE 4. Experimental results of fused and branched models.

VI. EXPERIMENTAL RESULTS AND DISCUSSION OF
FUSED AND BRANCHED MODELS
In accordance with the workflow outlined in the section V,
we have devised five distinct CNN models: fused model
(FM), fused model pruned (FMP), fused model quantized
(FMQ), fused model quantized and pruned (FMQP), and
branched model quantized and pruned (BMQP). Table 4
illustrates the experimental results of accuracy and latency,
while Fig. 6 portrays the power, energy, and hardware
resource utilization savings factor relative to baseline FM
implementation. The savings factor (SF) quantifies howmany
times a model’s power, energy, and hardware resources
have reduced compared to the baseline FM. It is a ratio
of the baseline FM value to the value of the model under
consideration. Thus, the highest SF value suggests the most

efficient model. The absolute FM values are also indicated
in Fig. 6, providing a reference for estimating the absolute
values of the other models. The latency of all models was
calculated through RTL simulation, and power was estimated
during post-synthesis functional simulation using a switching
activity file of the design (i.e., SAIF file). All five models are
synthesized in Vivado, targeting Xilinx Virtex UltraScale+
VCU118 at 200 MHz clock frequency. Notably, all models
have demonstrated over 90% average accuracy across all
three tasks on a single application-specific accelerator, which
distinguishes our work from prior studies where only one
accelerator is optimized to perform just one task.

FIGURE 6. Power, energy, and hardware resource utilization savings
factor of FMP, FMQ, FMQP, and BMQP relative to baseline FM.

The non-optimized baseline implementation is FM, which
has good accuracy for all three tasks but utilizes the most
hardware resources, power, and energy (i.e., SF = 1). FMP is
a 50% pruned version of the baseline FM. The high accuracy
of FM and FMP comes at the cost of increased resource
utilization, power, and energy consumption as these two
models are post-training homogeneously quantized to < 20,
10> bit-widths (BW). In PTQ, the model is first trained using
a floating-point 32-bit (FP32) data type, and then the model’s
weights and activation functions are quantized. This method
is simple to apply, but it could decrease accuracy due to a loss
of dynamic range. This is why PTQ FM and FMP require
a higher bit-width (BW). This provides both FM and FMP
with a good dynamic range and helps avoid any saturation
and wrap-around issues.

FMQ is trained directly with lower precision (i.e.,
quantization-aware training (QAT)), and any loss in accuracy
due to the loss of precision can be rectified during the
training process, enabling the model to perform better in low
BW. FMQ performs equally well in terms of accuracy while
consuming fewer hardware resources, power, and energy.
DSPs are a scarce resource, and these DSP hard macros
consume a higher amount of power compared to LUTs.While
synthesizing FMQ trained on BW using QAT, the simpler
multiplication operations are mapped on LUTs instead of
DSPs. This reduces DSP utilization, power consumption, and
overall energy usage, as also evident from improved FMQ SF
values compared to FM and FMP.
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FMQ and FMP have different strengths. FMP removes
the unnecessary weights, but the existing weights have
high BW due to homogeneous PTQ. FMQ has low BW
due to heterogeneous QAT, but this model is not pruned.
FMQP (see Fig. 7) combines the strength of heterogeneous
QAT and pruning to achieve the best possible results in
terms of accuracy, hardware resources, power, and energy
consumption. (i.e., highest SF value). BMQP is obtained
using the multi-stage transfer learning training method, and
its HLS code is generated using the workaround explained in
the previous section. BMQP delivers slightly higher accuracy
as compared to FMQP. In BMQP, multiple branches can be
active simultaneously, thereby supporting the classification of
numerous sub-tasks. Thus, to illustrate the multi-task support
in BMQP for task 3, two branches get active to classify digits
(T3) and the color of the digits (T3c).

In comparison with FMQP, BMQP SF is lower, as it
consumes slightly more hardware resources, power, and
energy, with additional benefits in the form of resilience and
multi-task support. The impact of quantization and pruning
is the same in BM; therefore, only the results of BMQP
are shown. Pruning helps reduce hardware resources and
improves the model’s accuracy, as evidenced by the FMP,
FMQP, and BMQP results.

FIGURE 7. FMQP model weights distribution.

All the fused models have similar latency. The latency
of the hls4ml generated CNN architecture depends on the
network’s depth, reuse factor (R = 1) of DSPs, and input size
(32×32×3). All three parameters are similar for FM, FMP,
FMQ, and FMQP. The execution of the layers is sequential,
which means that the subsequent layers can only process
the data when the previous layer finishes its computation.
Therefore, for hls4ml, it is advisable to have a wider network
(more kernels/parameters in a layer) as opposed to more
layers (depth of the DNN), as it is more efficient to parallelize
per-layer computations in FPGA. Latency is not impacted by
the quantization bit widths, kernel size, and the number of

FIGURE 8. Reconfigurable CNN accelerators.

kernels. This is why fused models being different in terms
of pruning percentage and quantization bits, have similar
latency. The latency of each task varies in BMQP, as each
task goes through only specific layers. i.e., T3c branched
earliest and has the lowest latency, while T2 branched at the
last layer and therefore has the highest latency in BMQP.
T3c latency is not added to the total latency, as T3 and T3c
branches execute in parallel. Our hardware results match
the analysis presented in [26]. Achieving the best match of
hardware resource utilization, accuracy, power, energy, and
latency depend on the specific application and the available
hardware resources in the targeted hardware.

FIGURE 9. Switching mechanism between different operating modes.

VII. RECONFIGURABLE MULTI-MODAL CNN
ACCELERATOR
Reconfigurability is essential in a dynamic world, as it
enables flexibility, agility, and customization to meet
ever-changing AI computation needs and requirements.
Our perspective on reconfigurability is based on hardware
reliability and computing performance. Execution of multiple
tasks in different modes is often associated with microproces-
sors [27], [28]. The proposed approach of shared layersmakes
it possible to executemultiple tasks on an application-specific
CNN accelerator during runtime. The hls4ml accelerator does
not store weights in a separate memory location. In this
hls4ml accelerator generation framework, the neural network
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FIGURE 10. RTL fault injection at the ports level.

TABLE 5. SET fault injection analysis for diverse pulse width.

accelerator weights are fused in the network architecture.
This eliminates the necessity to fetch weights from a remote
memory location. A single (or multiple) instance of an
accelerator can process any task (tasks on which it is trained)
in any operating mode because the value of weights results
from a training process that includes all three tasks.

By default, one accelerator is sufficient to perform
three tasks, but with triple modular redundancy (TMR),
incorporated with a simple mux-based design (Fig. 9), it is
possible to execute tasks in 1) Fault tolerant (FT), 2) High
performance (HP), and 3) De-stress(DS) modes (Fig. 8).
Among the five models illustrated in Table 4, FMQP and
BMQP are the most optimized fused and branched models.
As, for FT, HP, and DS operating modes, redundant instances
of FMQP/BMQP are utilized, the accuracy of FMQP/BMQP
models in all operating modes will remain the same (as
illustrated in Table 4) in all operational modes.

A. FT MODE
In FT mode, all tasks are executed on all three accelerators,
providing high reliability (Fig. 8 and 9). The latency, power,
and energy in FT mode have been depicted in Table 7. The
hardware resource utilization in the case of DMR and TMR
can be estimated using the values alreadymentioned in Fig. 6,
as it will be a multiple two in DMR and three in the case
of TMR. Among the five models, FMQP and BMQP are
the most optimized fused and branched models, respectively.
We have performed a comprehensive fault analysis of FMQP
and BMQP at the RTL level and in the configuration memory
of the FPGA.

1) FAULT INJECTION AT RTL LEVEL
The HDL code generated by Vivado HLS is imported
into Vivado. Since Vivado is compatible with third-party

simulators, the Xcelium fault simulator is utilized for
conducting a thorough fault injection at the RTL level
(see Fig. 2). There are approximately 1.2 million nodes
where the fault can be injected. Injecting one fault takes
around 6 seconds, and for 1.2 million nodes, it will take
approximately 83 days. The overall simulation time can
drastically increase if we take into account multiple models
(i.e., FMQP, BMQP) operating in different modes (i.e., DMR,
TMR) to study the influence of Single Event Transients
(SETs), Single Event Upsets (SEUs), and Multi-bit upsets
(MBUs) fault models. Thus, instead of targeting every fault
node of all the components, we have targeted the ports of RTL
modules (see Fig. 10). In this manner, the total number of
fault nodes reduces to 35912 for FMQP and 36710 for BMQP,
which takes approximately 2.5 days.

We have considered three fault models, i.e., SETs, SEUs,
andMBUs. The SET-induced failure rate (SETFIR) is defined
as the percentage of SET faults propagating to the output,
thereby leading to an incorrect result. Similarly, SEUFIR
and MBUFIR are estimated. The metrics SETFIR, SEUFIR,
and MBUFIR can assist in determining the resilience of the
model.

The phenomenon of the SETs occurs when a high-energy
particle strikes a combinational circuit and causes a transient
voltage disturbance due to charge deposition. If the particle’s
energy crosses a certain threshold, the end effect of it is
a SET (Glitch) in the combination circuit. If the same
SET propagates to a storage element and gets latched,
it becomes an SEU. When a single SEU affects multiple bits,
it is considered a Multi-bit upset (MBU). Thus to estimate
the failure rate due to MBUs (MBUFIR), in the Xcelium
fault simulator MBU can be emulated as 2 SEUs injected
simultaneously.

Pulse width (PW) duration matters in SET fault analysis.
SETs of shorter pulse widths may not be harmful. Therefore,
before performing a comprehensive SET analysis on all
ports, we first investigated the FMQP on various pulse width
duration on a subset of randomly selected ports (see Table 5).
SETs of Pulse widths of 100ps and 250ps did not lead to
incorrect output (i.e., 0% SETFIR). Out of all the faults
injected, approximately 1% of SETs consisting of PW 500ps,
750ps, and 1000ps, lead to incorrect results at the output.
1/3rd of this 1% SETFIR consists of reset ports. This implies
that reset lines are very critical even at 1%SETFIR. Typically,
the longer the PW, the greater the probability that SET will
get latched at the clock edge. The studies, [29], [30], [31],
indicate that Propagation Induced Pulse Broadening (PIPB)
may result in significant SET broadening, and the resulting
SETs may be longer than 1000ps. Thus, conservatively,
we have selected PW 1000ps for further extensive analysis of
both FMQP and BMQP. Table 6 illustrates the fault injection
results of both architectures under the influence of SETs,
SEUs, and MBUs. The faults are injected during the runtime
of all three tasks. The salient points of the fault analysis are

• Under the influence of all the faults models (SETs,
SEUs,MBUs), BMQP is slightlymore resilient (roughly
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TABLE 6. Fault injection analysis of FMQP and BMQP.

2-3.6 %) than FMQP because of its branched architec-
ture.

• 0.97 % of SETs (PW:1000ps) lead to incorrect results
in FMQP, while this percentage is 0.79% in BMQP.
For both models, of all the ports where SETs lead to
incorrect output, approximately 30% of them are reset
ports (i.e., SETsResets (%)). This suggests the criticality
of the reset lines even in low SETFIR. This percentage
is approximately 9.5 % in SEUs and 5.2 % in MBUs for
both models.

• MBUFIR is higher as compared to SEUFIR and SETFIR
(PW:1000ps). MBUFIR is the highest among the three
fault models because of the high fault rate (i.e., two
SEUs). SETFIR is the lowest, as the chances of fault
masking in SETs are generally higher. The SET fault
propagation depends upon the SET PW (see Table 5) and
the frequency of the design. At higher frequencies, there
will be more clock edges, which means more chances
for SETs to be captured by flip-flops [29].

• FT mode can operate in DMR (i.e., fail-safe) and TMR
(i.e., fail-operational) mode. The DMR mode can detect
all the faults using a comparator circuit. In comparison,
TMR uses a majority voter TMR mode to detect and
produce correct results at the output. Using traditional
approaches to achieve FT mode (TMR) for three tasks
will require nine CNN accelerators.

• The total latency (TL) is 15.63 us, translating to
326.6 GOPs1. The detailed experimental results of
latency, power, and energy consumption in the FT mode
are illustrated in Table 7.

TABLE 7. Experimental results of HP, FT, and DS modes.

1GOPs = Giga Operations Per Second, TOPs = Tera Operations Per
Second

Ultimately, Deep Neural Networks (DNNs) will be
implemented on hardware. Therefore, analyzing the neural
networks under the influence of hardware faults is essential.
Numerous factors can affect the resiliency of deep neural
networks. i.e., quantization, layer type, network architecture,
the bit position of weights, pruning, data type, etc. For
instance, consider a weight parameter value of a DNN
model represented as a floating-point 32 (FP32) number.
A fault in the most significant exponent bit of the FP32
number can substantially change the value of the DNN’s
parameter and dramatically decrease the accuracy [36]. The
majority of studies have only considered fault injection in
the weights of the neural network. Reference [12] argues
that the reliability of a DNN model is also influenced
by the hardware architecture implemented on the targeted
hardware (i.e., ASICs or FPGAs). For instance, faults in the
shared buffers may be read multiple times because of the
reuse (output feature maps, reuse of weights, input feature
maps, etc.), and therefore the same erroneous value can be
distributed to multiple locations very quickly [12]. Therefore,
for safety-critical applications, it becomes paramount to do an
exhaustive design analysis. The fault analysis results of this
study on SET, SEU, and MBU fault models provide a good
insight into the resiliency of the CNNs hardware accelerator
architecture.

2) FAULT INJECTION IN CONFIGURATION MEMORY
In ASICs, the logic is permanently mapped to gates
and flip-flops in silicon. Whereas in FPGAs, logic is
mapped on the configurable logic blocks (CLBs), which
consist of Lookup Tables (LUTs), flip-flops (FFs), and
routing resources (switch matrix, multiplexors, etc.). Unlike
ASICs, FPGAs offer programmability, enabling alteration
of functionality by loading a new bitstream. The bitstream
comprises configuration frames that set up all programmable
and memory elements within the FPGA fabric. However,
it’s important to recognize that these bits are susceptible
to radiation-induced effects, necessitating thorough scrutiny
against diverse fault scenarios.

Authors in [48] have investigated that the impact of the
fault in FPGAs is sometimes different as in ASICs and for
the reason that FPGA fabric is a bit different compared to
ASICs. I.e., The end effect of SEUs in the configuration
memory (CRAM) of FPGAs, and it can be mitigated by
bitstream reconfiguration. To evaluate the impact of SEU
on the CRAM in FT mode, a fault injection platform has
been built based on ZCU102. Furthermore, this platform has
the ability to conduct dynamic partial reconfiguration of the
FPGA bitstream, intended for utilization in DS mode.
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CRAM of the FPGA consists of thousands of frames
consisting of essential and non-essential bits. FI is performed
on the essential bits, which are considered critical for the
system’s functionality, employing the subsequent procedure:
1) Post bitstream generation (see Fig. 2), Configuration
frame numbers corresponding to the accelerator’s instance
are extracted from the logic location file. 2) Linear Frame
addresses (LFAs) are generated using frame numbers and
essential bits of information. 3) Soft Error Mitigation (SEM)
IP core [49], controlled from the application software running
on the Zynq processor, performs fault injection in the CRAM.
Apart from facilitating fault injection, the SEM IP core can
also carry out fault detection and correction. The primary
focal points regarding fault injection in the CRAM are
outlined as follows:

• FI is performed on randomly selected 4000 different
essential bits LFAs. SEM IP continuously monitors the
CRAM and repairs the faulty bit using ECC and CRC-
based algorithms. Depending upon the fault location,
fault detection/correction latency using SEM IP core
varies between 3.14 ms to 48.96 ms. This latency further
depends on the clock frequency, FPGA size [49].

• The SEM IP is designed to detect and correct SEUs that
occur within the CRAM. Notably, the SEM IP core does
not capture SETs occurring in the combinational logic
nor identifies SEUs/MBUs in the sequential logic. Thus,
SEM IP combined with the TMR/DMR-based majority
voter design can cover various fault models, i.e., SETs,
SEUs, MBUs, and SEUs in CRAM.

B. HP MODE
This mode executes all the tasks in parallel, i.e., each
accelerator executes the individual task (Fig. 8 and 9), which
reduces total latency (TL) by 2x. The experimental results
during the HP mode are demonstrated in Table 7. The major
takeaway from HP mode is

• The latency is reduced by 2x, i.e., 15.63 us to 5.21us
in FMQP and from 15.685us to 5.27us in BMQP
(considering all the BMQP accelerators get input at the
same time), translating to having 0.979 TOPs compute
power.

• Each accelerator’s power and energy consumption
slightly varies, as in HP mode, each accelerator is pro-
cessing different input samples. Compared to FT mode,
the reduction in energy consumption is approximately
2x.

• Because of shorter overall latency, the combined energy
consumption of all accelerators in HP mode is less than
in DS mode (CG and PR).

C. DS MODE
In this aging-aware mode, only one accelerator is operational
at a time, and tasks are executed sequentially using a TDM
approach.

Alongside SEUs, SETs, and MBUs due to high-energy
particles, transistor aging is another significant reliability

FIGURE 11. FPGA fabric {Left}: in a CG design {Right}: in a PR design.

concern in integrated circuits. Aging refers to the gradual
degradation (i.e., transistor’s threshold voltage and a decrease
in the carrier mobility) of circuit performance over time
due to Hot Carrier Injection (HCI) and Bias Temperature
Instability (BTI) [32], [33]. This results in a slowdown
in the transistor’s switching speed, which further leads to
a high number of timing failures, thereby reducing the
overall operational lifetime of the circuit. The aging rate is
influenced by multiple factors, i.e., supply voltage, switching
activity, temperature, transistor stress duration, etc. In this
study, we have redundant instances of accelerators, which
are helpful in scenarios where high computation (HP mode)
and high reliability (FT mode) are required. If these modes
are inactive, the redundant accelerators experience persistent
stress, which can contribute to aging. Every time the clock
signal transitions, the elements of the circuit (i.e. flip-flops,
combinational logic gates, etc.) may also change their state,
which results in power consumption. The power consumption
due to the switching activity of the circuit is described as
dynamic power. In such a scenario, a power optimization
method, clock gating (CG), can disable the clock signal to idle
accelerators to reduce unnecessary switching activity. This
diminishes the dynamic power consumption, which translates
to decelerating the aging process. Additionally, we have
investigated partial reconfiguration (PR) methodology to
reduce the circuit elements’ stress. The main aim of the
PR method is to keep only the accelerator configured
and erase the configuration area of the idle accelerators.
This can be achieved using the dynamic partial bitstream
reconfiguration workflow in AMD Xilinx FPGAs. The brief
workflow consists of 1) Assign a reconfigurable region
(RR) for each accelerator on the FPGA fabric, 2) Generate
partial bit streams of all RRs, 3) While one accelerator in
one RR is active, the other two RRs contain nothing (i.e.,
black boxes). In DS mode, the total latency is 15.63 us,
equivalent to 108.88 GOPs. The detailed experimental results
are illustrated in Table 7, and the essential takeaway of
comparison between the CG and PR for DS mode is as
follows.

• There is approximately 65.6% and 68.6 % decrease
in the dynamic power (CG) consumption in idle
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TABLE 8. Quantitative comparison with prior ASICs and FPGA-based implementations.

FMQP and BMQP accelerator, respectively. This aids in
decelerating the aging process.

• The components such as DSPs, Block RAMs (BRAMs),
and Logic are the biggest consumers of dynamic power,
accounting for around 86% of total power consumption.
DSP units are the most power-hungry among these
components, followed by BRAM. Logic, which includes
LUTs and registers, ranks third.(in all the designs).

• The FPGA device static power represents the transistor
leakage power and is a function of process, voltage, and
temperature [34]. This is approximately the same for all
the designs, i.e., ∼2.5W.

• Using the CGmethod, the percentage of dynamic power
reduction in ASICs is more as compared to the FPGAs,
for the reason that, in ASICs, there is more freedom and
control over clock trees design [35].

• Our experimental results display that a single idle accel-
erator still consumes 34.5 % of dynamic power, causing
aging in the circuit. Removing the idle accelerators
using PR can ensure maximum power savings in such a
scenario. After a specific time interval (T), an existing
accelerator is erased, and the next-in-line accelerator
is dynamically configured on the assigned RR (see
Fig. 11). Hence, the PR method can decelerate aging
more as compared to the standard CG method.

• It takes approximately 34 ms to perform PR of a single
accelerator instance using the processor configuration
access port (PCAP) interface in the fault injection
platform. This latency varies depending on the size of
the RR, clock frequency, and size of the FPGA and
interface used for PR (ICAP/PCAP). In this case, The
PR is scheduled for execution during system inactivity
or standby mode periods, ensuring that latency-related
safety risks are effectively mitigated.

D. COMPARISON WITH PRIOR STUDIES
Table 8 provides a quantitative comparison of our
FPGA-based implementation results with the previous stud-
ies. The comparison consists of neural network deployment

for both FPGAs and ASICs-based implementations. For
simplicity in comparison, we have utilized the FMQP model
for comparison. Our methodology extracts more performance
from the CNN accelerator than other prior studies. The
performance of the accelerator varies depending on the
operating mode. DS, FT, and HP modes offer 108.88 GOPs,
326.6 GOPs, and 0.979 TOPs, respectively.

For FPGA-based designs, our approach can process
multiple tasks power-efficiently while maintaining a good
performance even in the DS mode. E.g. In comparison
with [26], which uses almost the same CNN model as ours,
it is processing only one task from one modality. In contrast,
our approach can process 3 tasks from 2 different sensor
modalities. As compared to other implementations based on
FPGAs, our findings demonstrate competitiveness in terms
of performance and power/energy, as well as the added
advantages of reconfigurability/self-adaptivity.

Generally, for a specific application, ASIC implementa-
tions are more power/energy efficient than implementing
the same design on FPGA. However, apart from [7] and
[37], our findings remain competitive in comparison to
other ASIC implementations. Additionally, our approach
provides enhanced support for re-reconfigurability, address-
ing the dynamic requirements of AI applications in both
high-performance and high-reliability domains, as noticeable
from the comprehensive comparison in Tables 1, 2 and 8.

VIII. CONCLUSION AND FUTURE WORK
The shared-layers methodology utilizes the fundamental
operating principles of CNNs to execute three distinct tasks
on a single optimized multi-modal multi-task application-
specific CNN accelerator. By incorporating redundancy, this
approach is further leveraged to propose a fault-tolerant
accelerator with reconfigurable capabilities suitable for
operating in FT, DS, and HP modes. The detailed workflow,
methodology, experimental results, and fault injection analy-
sis are presented, demonstrating our approach’s effectiveness
and versatility compared to the state-of-the-art. This work
serves as an essential step towards developing more efficient,
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reconfigurable, and intelligent AI processing systems that
adapt to changing AI application requirements.

Future work will focus on achieving a fully reconfigurable
AI processing system consisting of four major building
blocks: 1) On-chip sensors (temperature, aging, and SEU
sensors, etc.), 2) Reconfigurable quad-core RISC-V cores,
3) Reconfigurable AI accelerators, and 4) Reconfigurable
hardware (i.e., FPGAs). These building blocks will assist
in dynamically reconfiguring the RISC-V processing cores,
AI accelerators, and RRs on the FPGA fabric to optimize
performance, energy reduction, and reliability improvement.
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