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ABSTRACT
Neural hardware accelerators have been proven to be energy-efficient
when used to solve tasks which can be mapped into an artificial neu-
ral network (ANN) structure. Resistive random-access memories
(RRAMs) are currently under investigation together with several dif-
ferent memristive devices as promising technologies to build such
accelerators combined together with complementary metal-oxide
semiconductor (CMOS)-technologies in integrated circuits (ICs).
While many research groups are actively developing sophisticated
physical-based representations to better understand the underlying
phenomena characterizing these devices, not much work has been
dedicated to exploit the trade-off between simulation time and ac-
curacy in the definition of low computational demanding models
suitable to be used at many abstraction layers. Indeed, the design
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of complex mixed-signal systems as a neural hardware accelera-
tors requires frequent interaction between the application- and the
circuit-level that can be enabled only with the support of accurate
and fast-simulating devices’ models. In this work, we propose a
solution to fill the aforementioned gap with a lookup table (LUT)-
based Verilog-A model of IHP’s 1-transistor-1-RRAM (1T1R) cell.
In addition, the implementation challenges of conveying the com-
munication between the abstract ANN simulation and the circuital
analysis are tackled with a design flow for resistive neural hardware
accelerators that features a custom Python wrapper. As a demon-
stration of the proposed design flow and 1T1R model, an ANN for
the MNIST handwritten digit recognition task is assessed with the
last layer verified in circuit simulation. The obtained recognition
confidence intervals show a considerable discrepancy between the
purely application-level PyTorch simulation and the proposed de-
sign flow which spans across the abstraction layers down to the
circuital analysis.

CCS CONCEPTS
• Hardware → Emerging tools and methodologies; Memory and
dense storage.
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1 INTRODUCTION
Building and deploying ANNs, and in particular deep neural net-
works (DNNs), in integrated circuits (ICs) for machine learning
(ML) tasks has been a complex challenge for both: system and cir-
cuit designers over the past several years [2, 12]. A recent direction
is the adoption of neural hardware accelerators to increase the
efficiency of the most common operations as the vector-matrix
multiplication (VMM). Among the different implementations for
such accelerators, one possible solution to lower the power con-
sumption and increase the operational speed consists of encoding
the synaptic weights in the conductance values stored in a memory
cell composed by a NMOS transistor and a RRAM in series (1T1R)
[13, 16]. This allows to perform VMM operations efficiently in an
analog fashion by multiplying a voltage input vector via Ohm’s law
with the conductive states of the RRAM devices and adding up the
currents at the source contacts of the 1T1R cells by Kirchoff’s law.
Although promising, the RRAM technology is still in an emerging
phase with active research innovating in the production steps.

To understand the underlying switching phenomena and how
they impact the device’s response, different component descrip-
tions have been developed ranging from atomistic models [4], to
physical-based compact representations [10], up to behavioral de-
scriptions [9, 14]. While there is a clear trade-off between accuracy
and acceptable simulation time that drives the choice of the model
coherently with the specific use case, the recent progress in the sim-
ulation frameworks and the increase in the available computational
resources have allowed the adoption of complex mathematical de-
scriptions of the device even at the application level. With the tool
presented in [8], for instance, the user can train the neural net-
work while considering the full switching behaviour of the RRAM’s
conductance. MemTorch [5] is another framework developed in
Python for the functional assessment of resistive neural hardware
accelerators. It allows the user to select between different mem-
ristive devices’ models, some of which include also computational
demanding differential equations.

These new possibilities have been extremely beneficial at the sys-
tem level, increasing the accuracy estimation since the early design
phase and improving the overall performance thanks to Fault-Aware
Training (FAT) and Quantization-Aware Training (QAT) techniques
[3, 17]. Nevertheless, the great focus in the last years to tools at
high-level of abstraction have left neglected an important part of
the design flow required to develop neural hardware accelerators,
namely the circuit design. Indeed, the development of mixed-signal
systems still relies on professional tools such as Design Compiler
(DS) by Synopsys and Spectre by Cadence for the implementation
of complex logic circuits and analog components. When these es-
tablished and reliable, although generally associated with a high
computational cost, design tools are required, the aforementioned
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Figure 1: Overview of the design flow of a resistive neural
hardware accelerator from system to circuit level, using the
LUT-based Verilog-A model of a 1T1R cell.

trade-off between accuracy and simulation speed returns to be
critical. Including thousands of RRAM devices in the netlist de-
scribed by Verilog-A model involving differential equations with
often bounding constraints on the timestep, can quickly become an
unbearable burden. The principal aim of this work is to introduce a
model for the 1T1R cell which can depict the switching behaviour
of the RRAM devices, while avoiding computational demanding
equations. Thus, it is suitable to be used from the application to the
circuit level in a top-down design flow of resistive neural hardware
accelerators (see Fig. 1). To verify the functionalities of such mode
at the circuit level, a custom Python wrapper is developed around
the ANN PyTorch simulation. It generates the Spectre stimuli files
required to program the 1T1R matrices and to perform inference
operations.

This paper is structured as follows: The LUT-based model of
IHP’s RRAMdevice for circuit simulation is described and simulated
in Section 2. Subsequently, Section 3 proposes the design flow for
resistive neural hardware accelerators starting from a system level
simulation of ANN architecture, extracting and mapping different
parameters to the netlist, simulating the circuit with the developed
1T1R model and comparing the outcome with the achieved PyTorch
result. Based on the shown design flow an use case is analyzed: the
MNIST handwritten digit recognition [6] task is solved with a DNN
architecture in Section 4. Section 5 presents conclusions and gives
an outlook on how to expand the 1T1R circuit design model and
the presented neural hardware accelerator design flow.

2 LUT-BASED RRAMMODEL
2.1 Model Description
To capture the multi-level switching behaviour of the RRAM device
without the need of computational demanding equations, three

https://doi.org/10.1145/3611315.3633273
https://doi.org/10.1145/3611315.3633273


LUT-based RRAM Model for Neural Accelerator Circuit Simulation NANOARCH ’23, December 18–20, 2023, Dresden, Germany

Figure 2: Finite state machine model of IHP’s 1T1R cell with lookup tables implemented in Verilog-A.

assumptions are taken: i) the set/reset voltages required to switch
the device are deterministic and fixed before launching the simula-
tion; ii) the non-linear behavior is captured only in the transition
between conductive states; and iii) setting the RRAM to a different
Low Resistive State (LRS) requires to mandatory reset the device to
the High Resistive State (HRS) first. While iii) can be a reasonable
design choice depending on the selected programming algorithm, i)
and ii) are simplifications of the complex memristive behaviour of
the device. Nevertheless, they allow the 1T1R model to fully repro-
duce the set/reset cycles using only a Finite State Machine (FSM)
and Look-up Tables (LUTs). The number of LUTs (𝑀) is bound by
the relation𝑀 = 2 ∗ 𝑁 , where 𝑁 is the number of considered low
conductance states. The model is calibrated on IHP’s 1T1R struc-
ture composed by an RRAM device with a TiN/Al:HfO2/Ti/TiN
material stack in series with a 130 nm NMOS transistor [10]. A
graphical representation of the three-terminals Verilog-A imple-
mentation of the model can be seen in Fig. 2. The model considers
already formed devices, initiating the component to HRS. The state
to be programmed is chosen depending on the applied gate voltage
𝑉GATE to the transistor, while the voltage drop across the device
(𝑉TE −𝑉S) is used as entry key to read the conductance values in
the LUTs during switching operations. When 𝑉TE − 𝑉S is equal
or higher than 0.5𝑉 , the cell is considered under programming,
and its conductance values are derived from LUTs until the voltage
across the device is higher than 0.7𝑉 . Afterwards, the programming
phase is considered concluded and the resistance is assumed fixed
based on the selected LRS. This condition is preserved until the
reset phase is started by applying a voltage drop across the device
smaller than −0.5𝑉 . While resetting the 1T1R cell, the non-linear
changes of the resistance value are again obtained by LUTs. Once
𝑉TE −𝑉S is equal or minor than −1.5𝑉 with a𝑉GATE of at least 2𝑉 ,
the reset procedure is considered concluded and the device conduc-
tance returns to the HRS value. In principle the model is capable
of updating its resistive value every simulation step. However, a
resistive slew rate parameter 𝑅Slew is included to depict a realistic
dynamic switching behavior. Analog RRAM devices are character-
ized by transient switching time at least in the nanosecond order
of magnitude [18]. Therefore, for a resistance change of around
100 kΩ in 100 ps, a 𝑅Slew = 10 PΩ/𝑠 is set.

2.2 Model Simulation
To assess the model’s capability of correctly reproducing the device
behaviour, a quasi static DC simulation is performed. Fig. 3 shows
the resulting IV-characteristics compared with the measured data
for each conductive level. The voltage across the 1T1R cell is swept
in the range [0 V:1 V] with different 𝑉GATE depending on the se-
lected LRS. Afterward, the devices are reset to HRS with a 𝑉GATE
equal to 2.7 V and a negative polarization across the device. As it
can be observed, the model successfully reproduces the switching
behaviour with a very accurate fit between −0.4 V and 0.4 V re-
gardless of the programmed state. This is a crucial feature of any
RRAM model because the devices are often operated in low voltage
range to allow reading operations (eg. during inference) without
applying significant stress that may cause undesired change in the
resistance level [11, 15]. It should be noted that, as expected, the
perfect fit with the measurement data is partially lost during the
transition phases between states due to the LUTs simplifications.
This is especially true for the setting of the LRSs where an abrupt be-
haviour is assumed. Nevertheless, the devices are operated in such
voltage rage only seldom and for very limited time. Consequently,
the presented model can be efficiently used in circuit simulations
allowing to capture switching behaviour of the device and without
the need of computational demanding mathematical operations.
For instance, comparing the required CPU times for one transient
simulation of a set-reset cycle for one 1T1R cell modelled with the
proposed LUT-based representation or with complex mathemati-
cal models [10], the presented approach enables almost 15× faster
simulation when tested in Spectre tool.

3 NEURAL ACCELERATOR CO-DESIGN FLOW
Although an holistic simulation at the circuit level of the whole
neural hardware accelerator could be unpractical, the validation
of the circuit under realistic conditions is of paramount impor-
tance before fabrication for an accurate performance assessment.
Consequently, designers focus their testing on the most critical
sub systems, while abstracting the components which have been
already verified. At the application level, for example, in case of
a recognition task, the final verification cannot neglect a careful
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Figure 3: IV sweep comparison of model (solid line) and measurement (dashed line) results for SET and RESET operation of the
1T1R cell with different gate voltages applied.

Table 1: Artificial Neural Network Architecture for the MNIST Dataset implemented in PyTorch

Layer Type Input Shape Output Shape Kernel Shape Stride Padding Activation

1 Conv2D (28,28,1) (24,24,10) (5,5,10) 1 0 ReLU
2 MaxPooling2D (24,24,10) (12,12,10) (2,2,10) 2 0 /
3 Conv2D* (12,12,10) (8,8,20) (5,5,20) 1 0 ReLU
4 MaxPooling2D (8,8,20) (4,4,20) (2,2,20) 2 0 /
5 Flatten (4,4,20) (320) / / / /
6 FullyConnected* (320) (50) / / / ReLU
7** FullyConnected (50) (10) / / / LogSoftmax

*Dropout p=0.5
**Layer parameters extracted and simulated in Cadence Spectre

evaluation of the hardware implementation for the last fully con-
nected (FC) layers which perform the decision-making step. This
requirement is often hindered by the difficulties of translating input
and output signals across abstraction layers, resulting in the adop-
tion of simplified test-bench rather then real use case scenario. To
overcome this challenge and to verify the proposed RRAM model
under realistic conditions, we developed a Python wrapper that can
generate custom stimuli files to reproduce the programming and
inference operations in Spectre circuit simulations. The design flow
spanning all abstraction levels is shown in Fig. 1. After defining
the network architecture for the specific task, we apply specific
FAT techniques for quantized network [3] to prepare the synaptic
weights for the translation in discrete conductance values without
hindering the system accuracy. This operation is performed in Bre-
vitas [7], a tool developed on top of PyTorch by Xilinx that offers
great customization to the user while remaining at the applica-
tion level. When an acceptable accuracy is achieved, the quantized
weights are mathematically converted in resistance states that can
be stored in RRAM components. Based on this information and on
the proposed RRAMmodel, our Pythonwrapper generates the input
stimuli required to program the devices. Moreover, the wrapper
can extract during inference operations the inputs values from any
layers and convert them in voltage levels to apply to the matrices in
the circuit simulation. The stimuli files are generated in the Spectre
dialect of the SPICE language, thus they can be easily included in
any netlist file. Therefore, if a coherent naming scheme is followed
by the circuit designer for the pins nomenclature, the resulting
waveforms are applied to the circuit allowing to reproduce the pro-
gramming phase of the entire array, followed by inference steps

useful to assess the hardware impact on the network accuracy at
the circuit level. The obtained output currents from the circuit sim-
ulation can then be re-converted in digital values and compared to
the results achieved in PyTorch at the application level. The design
choice of developing the Python wrapper for the generation of the
input stimuli rather than for the creation of the entire netlist is
driven by the requirement of giving a high degree of freedom to the
circuit designer in the definition of the sub-system for the circuital
analysis. Moreover, although some changing may be necessary to
tune the custom wrapper for the input signals of a different circuit,
the implementation effort is still significantly lower compared to
the task of adapting the wrapper to generate a new netlist.

4 RESISTIVE NEURAL ACCELERATOR
SIMULATION & CIRCUIT VERIFICATION

4.1 ANN Architecture
As a small although relevant workload, we select the MNIST hand-
written digit recognition task to employ the proposed design flow.
After an initial normalization, the 28 × 28 input images are directly
fed to the first convolutional layer. The structure of the considered
DNN is reported in Table 1. The LogSoftmax activation function
is adopted in the last layer for the decision-making step to ensure
higher numerical stability compared to the standard Softmax func-
tion. Brevitas framework is used during the training phase to apply
a signed 3-bits quantization to each convolutional and fully con-
nected layer. During this step, the weights are still assumed to be
mapped on purely linear devices. With such QAT procedure, the
network is able to converge to an accuracy level of 97.5 %.
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Figure 4: Test-bench & stimuli for 1T1R matrix simulation in Cadence Spectre.

Table 2: Mapping of Synaptic Weights of the FC Output Layer
into Hardware Parameters

RRAM States Conductance Integer Rep. Bits

LRS2-HRS +120 µS +3 +"11"
LRS1-HRS +90 µS +2 +"10"
LRS0-HRS +60 µS +1 +"01"
HRS-HRS 0 µS 0 "00"
HRS-LRS0 −60 µS −1 -"01"
HRS-LRS1 −90 µS −2 -"10"
HRS-LRS2 −120 µS −3 -"11"

4.2 Mapping to Hardware Parameters
To correctly reproduce the signed weights in the RRAM levels,
a differential approach with two paired crossbars is considered
[1]. The available 4 conductance states are therefore combined
to represent the signed 3-bits integer values in the range [-3:+3]
(Table 2). While the two least significant bits (LSBs) define the two
conductance levels required to store the weight, the most significant
bit (MSB) represents the sign of the weight and it states in which
crossbar the two levels are set. It should be noted that with the
available conductance levels, the considered differential states are
not evenly distributed. In particular, there is a 60 𝜇𝑆 gap between
the conductances representing the integers -1, 0, and +1, while
all other states are divided by 30 𝜇𝑆 . The resulting non-linearity
will inevitable add an error factor in the final result compared to
theoretical output of the PyTorch simulation. The input signals in
the digital domain are extracted by the Python wrapper during
the inference phase. Coming from a rectified linear unit (ReLU)
activation function, only positive inputs have to be translated in
voltage levels. This is performed with an analog linear mapping in
the [0 V : 0.4 V] range.

To translate back to the digital domain with a linear transfor-
mation the output of the matrices, it is necessary to calculate the
theoretical maximum and minimum output currents during infer-
ence with Equations 1 and 2.

𝐼max = Δ𝐺max ×𝑉max × 𝑛cols (1)
𝐼min = Δ𝐺min ×𝑉max × 𝑛cols (2)

Figure 5: Output predictions with PyTorch simulation (or-
ange) and in circuit simulation with deviation of the infer-
ence voltage (red) for the ’7’ digit reported in the inset.

Δ𝐺max and Δ𝐺min are the maximum and minimum conductance
difference (±120 µS), 𝑉max is the maximum voltage applied to read
the device (0.4 V), and𝑛cols is the number of columns that contribute
to the output current. Assuming that both the analog differential
current range and the digital range are symmetric, the digital result
of the VMM can be obtained from the output current applying
Equation 3 with 𝑦max and 𝑦min maximum and minimum values
observed during the PyTorch ANN simulation and back-annotated
by the proposed Python wrapper.

𝑦 = (𝐼y − 𝐼0)
∆I
∆y

+ 𝑦0 = (𝐼y − 𝐼0)
𝐼max − 𝐼min
𝑦max − 𝑦min

+ 𝑦0 (3)

4.3 Circuit Simulation Results
In an ideal situation with RRAM devices having evenly distributed
conductance levels, the results coming from the Python evaluation
and the circuit simulation are expected to be identical. This can
change when the real behaviour of the RRAM devices is considered.
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As a demonstration of the presented 1T1R model and design
flow, the last layer of the aforementioned ANN is simulated in Spec-
tre after being entirely mapped in two 10 × 50 1T1R matrices. To
showcase an additional possibility, the robustness to input varia-
tions is assessed applying a Gaussian noise (𝜇 = 0, 𝜎 = 1 mV) to
the generated voltage signals for the inference phase. Fig. 4 shows
the input waveforms with the considered circuits. The differential
output currents are then translated from the circuit simulation to
the PyTorch environment to compare the results with the expected
recognition accuracy. It is interesting to note how even a moderate
number of non-idealities can be problematic for certain critical
input data. As an example, when the digit ’7’ presented in Fig. 5 is
applied as input, the network is able to correctly identify it in both
our design flow and PyTorch. Nevertheless, the confidence interval
between the correct class ’7’ and the wrong ’9’ is reduced more
than one order of magnitude when a more realistic representation
of the hardware is considered thanks to the circuit simulation. This
entails that with higher input variability, the wrong prediction will
be given. In the figure, the log probability obtained at the output
of the ANN is translated in the standard [0, 1] unit interval via
exponential operation. The more precise assessment of the network
performance once deployed in a resistive neural hardware acceler-
ator can, moreover, be achieved with a reasonable simulation time.
The circuital simulation of the entire programming phase including
50 pulses plus one inference operation of the fully-connected layer
required 7.49 s on a single Intel Xeon® E5-4627 v4 CPU @ 2.60 GHz
clock frequency with conservative accuracy settings.

5 CONCLUSION
In this work, we present a Verilog-A LUT-basedmodel for a 1T1R cell
that can depict the full switching behaviour of the RRAM devices,
while achieving 15× faster simulation time compared to physical-
based models based on computational demanding equations with
possible convergence issues. To verify its functionalities, a design
flow for resistive neural hardware accelerators is proposed. The
required interaction between PyTorch, an ANN high-abstraction
framework, and Spectre, state-of-the-art tool for circuital analysis,
is achieved via a custom Python wrapper that generates the stimuli
files for the circuit simulation.

As a representative use case, an ANN for the MNIST handwritten
digit recognition task is designed and analyzed with the proposed
design flow. While the rest of the network runs in PyTorch, the last
layer is fully mapped and simulated at the circuit level on two ma-
trices employing the presented 1T1R model. The obtained results
not only prove the low computational requirement of our approach
(7.49 s for two 10 × 50matrices), but they also highlight how the
performance determined by the PyTorch analysis can be much more
optimistic compared to the actual circuit level simulation. This
underlines the importance of including circuital analysis for the
performance assessment of a neural network hardware accelerator.
The current version of the model aims to reproduce the device’s
deterministic behavior. Nevertheless, the stochastic nature of the
underlying physial mechanism can make the inclusion of variability
effects relevant for the reliability circuit assessment. Future interest-
ing research may focus on the integration in the model of stochastic
behaviour (e.g., set/reset voltages, conductance values), as well as

the inclusion in the design flow of larger mixed-signal system with
more sophisticated programming and inference circuitry.
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