
Microelectronics Reliability 148 (2023) 115173

A
0

Contents lists available at ScienceDirect

Microelectronics Reliability

journal homepage: www.elsevier.com/locate/microrel

The TETRISC SoC—A resilient quad-core system based on the ResiliCell
approach
Markus Ulbricht a,∗, Li Lu a, Junchao Chen a, Milos Krstic a,b

a IHP - Leibniz Institute for High Performance Microelectronics, Im Technologiepark 25, Frankfurt (Oder), 15236, Germany
b University of Potsdam, Am Neuen Palais 10, Potsdam, 14469, Germany

A R T I C L E I N F O

Keywords:
RISC-V
Reliability
TETRISC SoC
Multicore
NMR
Adaptive lockstep system

A B S T R A C T

Resilient systems require monitoring and prediction of environmental and intrinsic conditions and the ability
to adapt to changing circumstances to optimize the trade-off between performance, power consumption, and
fault tolerance. This paper presents an approach for enabling a design to achieve resilience. By using a range
of reliability sensors and the novel ResiliCells, we have developed the TETRISC System-on-Chip (SoC), which
is a multiprocessor system based on the PULPissimo platform. The TETRISC SoC can operate its four cores in
different performance and fault tolerance modes based on real-time data, making it ideal for use cases with
dynamically changing and reliability critical requirements, such as avionics or aerospace. Additional in-depth
studies on possible optimizations demonstrate the flexibility of the ResiliCell approach.
1. Introduction

Due to the steadily growing demand for real-time data processing,
multi- and manycore systems are becoming increasingly important,
especially in avionic and aerospace. Inherent to such systems is always
a degree of redundancy that can be exploited to adapt the performance
and fault tolerance to specific situations. Fault tolerance, in particular,
plays a significant role in this respect. In space, for example, the flux
of high energy particles and, thus, the number of transient errors can
quickly fluctuate by several orders of magnitude [1]. In order to cope
with such demanding environments, systems need to quickly adapt
to different requirements and situations by allocating the available
redundancy and without interrupting the service.

Over the years, considerable work has been done in the domain
of fault tolerance [2], and many of these works have a strong focus
on multi-core systems [3]. Adaptive fault tolerance methods, however,
are a rather new topic that is gaining more interest in recent years.
Kempf et al. for example, proposed a dual-core platform that is based
on LEON3 cores [4]. The two cores are able to either run indepen-
dently and offer maximum performance, or they act as a dual modular
redundant (DMR) lockstep system and enable fault tolerance by cross-
checking the computational results of the two cores. The distribution of
either different or identical instructions to the cores is implemented in
software, but the comparison in fault-tolerant mode is realized via an
additional pipeline stage. Rogenmoser et al. furthermore presented an
adaptive system [5] that is based on the PULP platform [6], an open,
scalable hardware and software research and development platform

∗ Corresponding author.
E-mail address: ulbricht@ihp-microelectronics.com (M. Ulbricht).

that is based on the RISC-V ISA. Here, a clustered system with two
times three cores either runs in performance mode with six independent
cores or forms two triple modular redundant systems for soft-error
tolerance. The distribution of either different or identical instructions
also happens in software, and the error correction is achieved with an
additional majority voter in hardware.

If such a system is equipped with respective sensors and the re-
quired intelligence, it even gains the ability to trigger the adaption
autonomously and proactively. Simevski et al. for example, include
temperature sensors in their adaptive PISA platform [7] that consists
of four LEON2 cores. The cores are capable of running independently
in high-performance mode, individually in destress mode or group-wise
in different NMR lockstep combinations. Here, the distribution of the
commands, the voting, and the control of the system state is done via
a dedicated hardware-based framework controller. This controller also
has access to the sensors and triggers the destressing mode if certain
heat thresholds are exceeded. In addition to temperature, other types
of sensors can be useful for autonomous adaptation too. For example,
in-depth studies on on-chip sensors for single event upsets (SEUs) were
conducted by Andjelkovic et al. and Chen et al. [8,9]. In this context,
the integration of these sensors into the PISA design was discussed as
well.

The main objective of our research was to develop a generaliz-
able approach for implementing such a highly adaptive system that
is able to deliver a dynamic trade-off between reliability, power, and
vailable online 14 August 2023
026-2714/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.microrel.2023.115173
Received 2 June 2023; Received in revised form 24 July 2023; Accepted 28 July 2
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

023

https://www.elsevier.com/locate/microrel
http://www.elsevier.com/locate/microrel
mailto:ulbricht@ihp-microelectronics.com
https://doi.org/10.1016/j.microrel.2023.115173
https://doi.org/10.1016/j.microrel.2023.115173
http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2023.115173&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
Fig. 1. Schematic architecture of the TETRISC SoC.

performance depending on environmental and intrinsic conditions and
trends. In this paper, we describe how we successfully achieved this
goal by a combination of lessons learned from prior work and a novel
approach based on the so-called ResiliCell. As a proof of concept, we
implemented our approach in a state-of-the-art open-source compute
platform, which is now suited to be used in rough environments. The
remainder of this paper will be divided into two parts. The first one will
give deeper insights into the implementation of the resulting platform
and will briefly introduce the ResiliCell approach as part of the general
architecture. The second part will then focus on the design of the
ResiliCells and investigate different implementations to optimize the
trade-off between hardware overhead and reliability.

2. The TETRISC SoC

To avoid any ambiguity, we first want to define two concepts
that have essential importance for this work — fault tolerance and
n-modular redundancy. In terms of fault tolerance, we adhere to the
definition by Stolte et al. [10] and refer to any kind of redundant exe-
cution as "fault-tolerant’’, covering both error-detecting and -correcting
configurations. The term n-modular redundancy (NMR) furthermore
often refers to a configuration with an odd number of identical sys-
tems, but we would not consider this a general definition. Shooman
et al. [11], for example, state the following (ch. 4.4.1, p. 153): "In gen-
eral, 𝑁 is an odd integer; however, if we have additional information
on which systems are malfunctioning and also the ability to lock out
malfunctioning systems, it is feasible to let 𝑁 be an even integer’’. A
prominent example they provide with an even number of 𝑁 is the space
shuttle control system (ch. 5.9.3, p. 266 ff). In this case, the system
consists of four identical processors, forming a 2-out-of-4 system. Based
on this, we would extend the term n-modular redundancy to systems
with any number of identical systems.

Now let us continue with the description of our system. After thor-
ough investigations on possible RISC-V based platforms, we decided
to use the PULP [6] as a basis. But unlike Rogenmoser et al. with
OpenPULP and IBEX cores [5], we chose the less complex PULPissimo
framework with the more powerful RI5CY core as the better candidate
2

Fig. 2. Block diagram of the HiRel Framework Controller.

for our cause. The resulting architecture has been named TETRISC
(TETra Core System based on RISC-V) SoC and is shown in Fig. 1. The
gray blocks illustrate the original IPs of the PULPissimo SoC. The newly
added components are shown in green and orange.

2.1. PULPissimo as multicore

As a first step, we extended the PULPissimo to a quad-core processor
structure (see Fig. 1). Three additional RI5CY cores, shown in green,
were inserted into the system and connected to the correspondingly
expanded interfaces. We chose to implement the TETRISC SoC as a
quad-core system because this offers enough redundancy to withstand
even the high radiation environment in space [12] and it also de-
livers sufficient freedom for implementing a wide range of system
configurations, which will be explained later in this section.

In addition to the cores, the memory interface had to be adapted to
offer equal access to all four cores over the entire address space. The
program and data memory are separated on the software side. As with
the original PULPissimo platform, interrupts are handled by a (to the
cores) external event/interrupt unit. For TETRISC, this was extended
accordingly so all four processors could receive interrupts separately.

2.2. Reliability-sensors and configurability

For a sensor-based proactive reconfiguration of the system, three
types of sensors were selected that, in combination, provide a compre-
hensive overall picture of acute or future threats: sensors to determine
the temperature, which is a major accelerator of various failure effects;
aging detectors for measuring different wear-out related effects on
the chip [13], as well as the SEU monitor/solar particle event (SEP)
predictor by Chen et al. [9].

2.3. HiRel framework controller

To allow hardware-driven reconfigurability and fault tolerance,
we extended the design by the High-Reliability Framework Controller
(HFC), depicted in Fig. 2. The HFC is based on the framework controller
described by Simevski et al. [7] and serves as the main control unit in
the SoC. It manages the inputs and outputs across the four cores and
enables three different operational modes: high-performance, power-
saving (destress), and fault tolerance. The states are realized with
either core-level NMR or clock-gating (CG) strategies and are shown
in Fig. 3. The circles correspond to the cores, while different colors

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
Fig. 3. Operation modes for the system.

represent different tasks running on the cores. Hollow circles represent
the clock-gating of a core.

The main component of the HFC is a binary matrix-based pro-
grammable NMR majority voter designed for multiprocessors. It allows
the inclusion of each processing core into the voting process and, with
the help of the Input Multiplexing Logic (IML) and Output Multiplexing
Logic (OML), manages the routing of inputs and outputs across all
cores within the selection. During fault-tolerant mode, the outputs
of the cores are gathered and compared by the programmable voter
within the OML. Based on this setup, the system offers various lockstep
combinations: double-modular redundancy (DMR) - two cores, single
error detection; dual-DMR (D-DMR) - two independent DMR systems
with two cores, single error detection each; triple-modular redundancy
(TMR) - three cores, single error correction; quadruple-modular redun-
dancy (QMR) - four cores, double error correction (if not identical
errors); The QMR configuration enables a degree of fault tolerance,
which is comparable to the system by Rogenmoser et al. [5], but with
altogether only four cores instead of six. The current operating mode
and NMR group are specified in the mode register, which controls the
programming bits of the programmable voter. The action registers steer
different measures initiated upon voting discrepancies and voter errors
(e.g., IRQs, synchronous, clock on/off). The voter outputs increment
the four error counters, thereby counting the detected errors for each
core.

The HFC contains four aging monitors [13] to track the effects of
Hot Carrier Injection (HCI) and Negative Bias Temperature Instability
(NBTI) on each core. It should be noted that while the registers of these
aging monitors are logically integrated with the HFC, their sensory
components are physically dispersed within each core to detect core
aging. For instance, should a core be clocked off, the corresponding
sensory element of the aging monitor is likewise deactivated.

The collaborative efforts of the HFC and the onboard monitor
system enable the implementation of two operational mode reconfig-
uration strategies: user-defined- and sensor-defined-NMR. User-defined
NMR allows users to activate predefined modes by writing into the
registers of the framework controller. It is designed to provide fault-
tolerant protection for critical software operations, such as satellite
altitude control processes. On the other hand, sensor-defined-NMR
is intended to enhance the resilience of all tasks during challenging
conditions as they are measured by the sensors, such as periods of solar
particle events that the radiation monitor network can detect.

2.4. The ResiliCell approach

As an important, fully novel feature, we aimed to ensure that the
processors can switch to the different NMR modes and back within a
few clock cycles without losing the processor state. For this purpose,
every flip flop (FF) of the RI5CY cores was replaced by a so-called
ResiliCell (RC), which extends the ‘‘original’’ FF by a second Slave
FF and some control logic. The ResiliCells were originally inspired
by shadow registers but in this case, they are not used to store the
processor state for recovery but to mirror the system state of another
3

Fig. 4. General principle of the ResiliCells to achieve redundant task execution.

processor into a cores logic paths. This can be seen in Fig. 4, where
identical RCs of two different cores are depicted. In performance mode,
the two processors run in parallel on different tasks. Once more fault
tolerance is required, the HFC programs the content of every original FF
(F) of core one into the Slave FF (S) of core two without interrupting the
operation of core two. Afterward, the HFC fully switches into redundant
mode by rerouting all signals from F to S in all ResiliCells, thereby
changing the entire system state of core two. Together with supplying
identical inputs to both cores and cross-checking the primary outputs,
this instantly forms a DMR system. Once the system requires more
performance, the HFC restores the original processor state of core two
by switching back the original FFs into their respective path.

2.5. Hardening peripherals

In addition to the previously mentioned fault mitigation methods,
we have implemented TMR (Triple Modular Redundancy) flip-flops
to protect all components outside the cores from radiation effects.
This approach, proposed by Schrape et al. [14], helps mitigate Single
Event Effects (SEE) caused by energetic particles. Based on established
research [15], SRAM, the most susceptible element which accounts for
nearly 40% of the target chip’s area, necessitates sufficient hardening
strategies. Our design incorporates the HSIAO (39,32) Single Error
Correction and Double Error Detection (SEC-DED) code within the
SRAM blocks to safeguard the memory contents. Additionally, we have
implemented a scrubbing technique in the memory blocks, which helps
prevent fault accumulation and reduces the risk of data corruption
within the memory banks.

Furthermore, various hardening systems can be implemented at
different layers of the system, employing various fault mitigation meth-
ods [16]. At the circuit layer, which forms the foundational level, fault
occurrence primarily depends on circuit design and inherent physi-
cal properties. For example, the LEAP-DICE hardened flip-flop design
utilizes Dual-interlocked cell (DICE) and Error Aware Transistor Posi-
tioning (LEAP) technology. Moving up to the logic layer, which encom-
passes different gates and memory elements, various Error Correcting
Codes (ECCs) can be employed for fault management. In the architec-
tural layer, common strategies include data and control flow checking
methods and module-level redundancy. Progressing to the software
layer, fault tolerance is typically achieved through software-based tech-
niques such as code and data replication for comparison, as seen in
duplication with comparison technique. Alternatively, Algorithm-Based
Fault Tolerance (ABFT) strengthens the system by integrating detection
or correction mechanisms at the algorithmic layer.

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
Table 1
TETRISC SoC details.

Chip area 4356 mm2 (6.6*6.6 mm)
Nominal clock frequency 30 MHz
Power consumption <1 W (estimated)
Memory 4*8192*40 Bit SRAM
Pads 81 Signal pads, 35 others

3. Improvements to the ResiliCell approach

In order to fully evaluate the design with respect to adaptability
and fault tolerance, we implemented the TETRISC architecture in IHPs
SG13S technology, which is our current 130 nm node. The final chip’s
most significant properties are given in Table 1. The comparatively low
limit in clock frequency will be improved in future versions.

In the following section, we want to focus on optimizing the ap-
proach by looking deeper at the ResiliCells. Since they replace every
FF of every core in the system, their design and number greatly impact
the overall system. Therefore, we will first present different layout
options for the cells, each offering distinct advantages. Then, we will
optimize the ResiliCells for a trade-off between hardware overhead and
reliability by identifying an optimal number of master cores on the one
hand and identifying and selectively hardening ‘‘critical’’ cells on the
other.

3.1. Different versions of the ResiliCells

To provide an impression of the current hardware overhead, we
have listed the area of the design in Table 2 after synthesizing it
with IHP’s 130 nm library. Column 0 (Orig) shows the original area
of PULPissimo. Column 1 (Base) summarizes the area of TETRISC
without ResiliCells, including the three additional RI5CY cores, sensors,
interfaces, and the HFC. The third column (v0) gives data about the
TETRISC, including ResiliCells, as depicted in gray in Fig. 5. The other
columns will be explained soon. The first row lists the area of a memory
cell. Here the size of the ‘‘original’’ FF in Orig and Base can be compared
to the basic ResiliCell in column v0. It can be seen that the area is more
than quadrupled due to the additional Slave FF and multiplexers. The
size of the RI5CY core grows between Orig/Base and v0 by about 54%.
This growth comes from the 3041 FFs that our ResiliCells replace. The
area of the overall SoC increases by 23% from Orig to Base and by 30%
from Orig to v0. This moderate increase also shows that the area of the
SoC is very much affected by the other components (SRAM, controller,
IOs) outside of cores. The last row displays the relative size compared
to the Base variant.

An attractive property of the ResiliCell approach is that it can be
easily adjusted to require less hardware or to include higher degrees
of fault tolerance by optimizing the cell design. Fig. 5 depicts the
different adjustment options. The basic cell in gray is the original
implementation (v0). It enables mirroring the system state of every core
to every other core, allowing every combination of NMR subsystems. By
removing (some of) the multiplexers marked with ‘‘vI’’, one reduces the
number of possible input FFs and thereby the number of ‘‘master’’ cores
of the NMR subsystems, but also decreases the hardware overhead.

A second adjustment (‘‘vII’’) allows daisy-chaining of the ResiliCells
during the programming phase, which results in an execution delay of
the cores in the NMR system of 1 cycle. Together with corresponding
input and output buffers, this implements a delayed lockstep similar
to the one deployed in the MPC5744P core [17] and offers protection
against common cause failures.

The third variant (‘‘vIII’’) adds an additional FF with a delay element
on the clock line. It, therefore, implements a simplified version of the
radiation-hardened TMR FF by Schrape et al. [14]. This way, an SEU
cannot ‘‘silently corrupt’’ the system state in the original FF while
disabled. The implementation overhead for the different versions can
be taken from Table 2, columns vI, vII, and vIII.
4

Table 2
Area comparison of the different Extensions.

Orig Base v0 vI vII vIII

Cell (um2) 32,1 32,1 130,4 103,9 143,6 190,8
Core (𝑒−3mm2) 552,1 552,1 850,9 770,5 891,2 1034,8
Core (% growth) 0 0 54,1 39,5 61,4 87,4
SoC (mm2) 17,3 21,2 22,4 22,1 22,6 23,1
SoC (% growth) 0 22,8 29,7 27,8 30,6 33,9
SoC (% growth) −18, 5 0 5,6 4,1 6,3 9

Fig. 5. Schematic design of the ResiliCell (gray) with adapted versions I, II and III
(green).

Fig. 6. Markov Chain.

3.2. Optimizing the number of masters

To find an optimal implementation of the ResiliCell, we first want to
look at vI. As mentioned above, this version minimizes the number of
multiplexers, thereby limiting the number of ‘‘master’’ cores of which
the state can be written into the Slave FF. With an overall reduction of
the hardware overhead by about 15% per core and roughly 1.5% for the
SoC, this improvement does not have the greatest impact. Nevertheless,
finding the minimal amount of masters is a very compelling task.

In principle, one single master would suffice to make full use of the
system’s configurability and adaptiveness, as only one single task can
be executed redundantly at a time (or two in DDMR). Critical tasks
of other cores could be scheduled to the master as required. Still, this
would cost additional time. More masters, on the other hand, would
lead to more hardware — but less scheduling overhead and possibly
more freedom if one of the masters fails permanently.

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
To investigate the long-term effects on functionality, we developed
a reliability model based on the Markov chain approach that models the
main aspects of our system. The result is depicted in Fig. 6. The basic
system with four masters is depicted in black and starts off at state
‘‘4P’’, where all four cores run in parallel. Each core might fail with a
rate of 𝜆, and since in this state, there is no method for fault tolerance
active, we consider the system as failed (state ‘‘F’’). If the sensors report
an incident that requires more fault tolerance, the system switches into
the ‘‘4R’’ state. For simplicity, we will assume that this is a QMR state.
We also assume those incidents occur randomly with rate parameter
𝛼. Once the situation normalizes, the system returns to the ‘‘4P’’ state
with rate 𝛽. We assume that transient faults are also covered by 𝛽 and
repaired by returning to performance mode. If, on the other hand, one
of the cores fails with a permanent error, the system now degrades into
the TMR mode ‘‘3R’’ with a rate 𝜅 for each core. 𝜅 will generally be
bigger than 𝜆 due to the incident reported by the sensors. Now, analog
to the ‘‘4R’’ state, the system might switch back to performance mode
with three functioning cores (‘‘3P’’) with rate parameter 𝛽 or further
degrade with 𝜅. From state ‘‘2R’’ or ‘‘2P’’, no further degradation is
possible, and we consider the entire system failed with the respective
rates.

Suppose the number of multiplexers and, thereby, the number of
masters is reduced. In that case, the system gradually loses its ability to
transition from performance to a redundant state when the remaining
master cores permanently fail. This is depicted in the blue and red
‘‘sidearms’’. With a single master, there is a chance of 3𝜅 that the
system degrades and the master is still functional. But if the master
fails with rate 𝜅, the system reaches the ‘‘3RD’’ state. From here, it
can further degrade in redundant mode with rate 𝜅 for each remaining
core or move to performance mode with rate 𝛽. But since there is no
functioning master, it cannot move back to a redundant mode and fails
as soon as one of the remaining cores fails. Starting with two masters,
the system can only enter the blue sidearm after the two masters have
failed in succession.

We derive the transition matrix from the graph in Fig. 6 and
compute the steady-state probability of all states with the help of the
numerical approach presented in [18] with an initial state probability
of 1 for state ‘‘4P’’. For defining the parameters 𝛼, 𝛽, 𝜆 and 𝜅, we refer
to the results presented by Chen [12]. In his thesis, he determines the
time a space-born system would be subject to increased radiation (in
which it would move to fault-tolerant mode) and provides an amount
of 220 h or 2.5% per year. Based on this, we set 𝛼 = 0.025 and 𝛽 = 0.975.
The radiation rate moves from 2.8 ∗ 10−6 upsets/bits/day, which is
the lower limit for moving into a fault-tolerant state, to 1.32 ∗ 10−3

upsets/bits/day, which is the average of the highest radiation events
during the measurement period. To further include the additional hard-
ware for implementing multiple masters, we introduce another factor,
𝛿. This factor scales the respective fault rate according to the percentage
of hardware overhead per core because, with increasing hardware, the
susceptibility to faults rises. In reality, hardware susceptibility strongly
depends on the nature of different fault effects as well, but we will
accept this simplification for now. Thus, we set 𝛿4 = 1, 𝛿3 = 0.96, 𝛿2 =
0.92, 𝛿1 = 0.84 for 4, 3, 2, and 1 masters, respectively.

The results of this investigation are depicted in Fig. 7. We have
plotted the reliability of the RI5CY-based QMR systems for the dif-
ferent numbers of masters with the aforementioned assumptions and
parameters. The implementations with 3 or 4 masters have the lowest
reliability, which shows the heavy impact of the additional hardware
overhead. The preferable implementation is the one having two mas-
ters. It is characterized by the highest reliability and more flexibility
than the one with a single master.

3.3. Identification of critical FFs

To further optimize the hardware–reliability trade-off, we aim to
identify the set of ResiliCells that are most critical and thus require
5

Fig. 7. The reliability of the RI5CY-based QMR systems with different numbers of
masters.

the highest level of fault tolerance. Therefore, we decided to follow
a structured approach based on the vulnerability of a core presented
in [19]. It puts the susceptiveness of a (partial) design to faults in rela-
tion to a particular simulation’s overall runtime. It, therefore, delivers
information on how vulnerable a design really is.

To apply this to the ResiliCells, we first generated random instruc-
tions representing approximately 90% of the instruction set as a test
set by using a program based on the assembler software generator
riscv-torture [20]. The resulting programs included around 5000 in-
structions with an execution time of about 13.6k cycles. After that,
simulations based on these routines were performed using the Xcelium
fault simulator [21], widely used in industrial applications.

A fault injection campaign followed this. First, at time 0, two types
of permanent faults (SA0 and SA1) were injected into all FFs of the
original RI5CY core. If the simulator did not detect the fault at the
primary outputs of the design, we conclude that it is never activated.
Therefore, the fault could be ruled out of the following injection of SEUs
and the overall amount of simulations could be reduced. If, on the other
hand, the error was detected, the time of the detection was measured.
Starting at this time 𝑥, where 𝑥 = 𝑀𝑖𝑛(𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝐴0, 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝑆𝐴1) and
thus equals the activation time of the FF, SEUs (bitflips) were injected
into the FF several times until the simulation ended at time 𝑡. The
injection frequency was evenly distributed over the time window from
𝑥 to 𝑡. The so-called SEU-induced failure rate (SIFR) of a FF under a
certain test load hence describes the probability of the SEU propagating
to the primary outputs of the design. Thus, if 𝑛 faults were injected
during the time window from 𝑥 to 𝑡 and 𝑚 were detected, the SIFR for
the FF under the given load was calculated as follows:

𝑆𝐼𝐹𝑅 = 𝑡 − 𝑥
𝑡

× 𝑚
𝑛

(1)

If neither of the two permanent errors of a FF was detected, its SIFR
was set to 0 right away.

The SIFR for all flip-flops of the RI5CY core is given in Table 3.
The first and third rows contain the rounded SIFR, and the second and
fourth rows the number of FFs that fall in this value range. The last two
cells on the bottom right present the average SIFR and number of all
FFs in the core. It can be seen that about half of the FFs have a SIFR of
0. This means that the software never activated the respective s-a-0/1
faults or bit-flips and did not propagate to the primary outputs of the
design. The other half has a higher susceptibility, which goes up to 1
for 407 FFs, where the faults were always visible.

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
Table 3
SIFR of the FFs in the design.

SIFR 0 0,1 0,2 0,3 0,4 0,5

FFs 1561 100 65 99 99 17

SIFR 0,6 0,7 0,8 0,9 1 ø 𝟎, 𝟑𝟑

FFs 153 153 185 203 407 𝚺𝟑𝟎𝟒𝟏

3.4. Optimizing the number of ResiliCells with variant vIII

Based on the distribution of the SIFR among the FFs, the ResiliCells
can be further optimized concerning the trade-off between the addi-
tional hardware overhead for vIII and the respective gain in reliability.
Not adding redundancy to ResiliCells, of which the output is always
masked or never used, and protecting the cells with a SIFR of 1 is
a good starting point. But what about ResiliCells with a SIFR that
is somewhere in between? To investigate this, we first collected the
necessary hardware cost to protect all the cells above a certain SIFR
range. Let 𝛤 be the different ranges given in Table 3, lines 1 and 3,
and 𝛥 the number of ResiliCells in this range as given in lines 2 and
4. Table 4 contains the cost of protecting all cells from 𝛤0 = 1 down
to and including the given 𝛤𝑖 value with the additional DMR FF, XOR,
and delay element of vIII.

Table 4
Relative size of the implementations for vIII with different 𝛤𝑖.

Version v0 𝛤0 = 1.0 𝛤1 = 0.9 𝛤2 = 0.8

Growth % 0 2.88 4.33 5.64

Version 𝛤3 = 0.7 𝛤4 = 0.6 𝛤5 = 0.5 𝛤6 = 0.4

Growth % 6.73 7.82 7.94 8.64

Version 𝛤7 = 0.3 𝛤8 = 0.2 𝛤9 = 0.1 𝛤10 = 0

Growth % 9.34 9.81 10.52 21.61

To investigate the reliability gain of the different implementations
of vIII, we develop a reliability model of the ResiliCells that includes
both the measured SIFR value and the number of cells that need
additional protection. To achieve this, we first model the reliability of
the ‘‘original’’ Flip-Flop (𝑅𝐹𝐹) in two phases: a low-stress phase (𝑙𝑠),
where the system is typically in performance mode, and a high-stress
phase (ℎ𝑠), in which the system is in redundant mode. The reliability in
the 𝑙𝑠 phase (𝑅𝑙𝑠) is characterized by a constant fault rate 𝜆, which lasts
for a percentage 𝛼 (0 ≤ 𝛼 ≤ 1) of time t. The fault rate 𝜆 is scaled by the
SIFR-factor 𝛤𝑖, as presented in Table 3. The reliability in the ℎ𝑠 phase
(𝑅ℎ𝑠) is analogous with constant fault rate 𝜅, duration 𝛽 (𝛼+𝛽 = 1) and
SIFR-factor 𝛤𝑖:

𝑅 (𝑖, 𝑡) = 𝑒−𝜆𝛼𝛤𝑖𝑡, 𝑅 (𝑖, 𝑡) = 𝑒−𝜅𝛽𝛤𝑖𝑡 (2)
6

𝑙𝑠 ℎ𝑠
𝑅𝐹𝐹 (𝑖, 𝑡) = 𝑅𝑙𝑠(𝑖, 𝑡) ∗ 𝑅ℎ𝑠(𝑖, 𝑡) (3)

The reliability of all FFs that do not implement vIII (𝑅𝑣0) can now be
described as a series system of the reliability of all FFs in the respective
SIFR-ranges (𝛥𝑖) as taken from Table 3:

𝐑𝐯𝟎(𝐣,𝐤, 𝐭) =
𝑘
∏

𝑖=𝑗
(𝑅𝑙𝑠(𝑖, 𝑡))𝛥𝑖 ∗

𝑘
∏

𝑖=𝑗
(𝑅ℎ𝑠(𝑖, 𝑡))𝛥𝑖 (4)

To model the implementation of vIII, we must include two additional
aspects: the influence of the combinational logic (XOR, delay element)
and the two flip-flops forming a DMR subsystem. Concerning the two
logic gates, one must consider a different size compared to the FF
and a different nature regarding the susceptibility to certain faults. To
take this into account, we assume a different but proportional constant
fault rate that we will express by the factor 𝛿. The reliability of the
additional logic in the low-stress (𝑅𝑥𝑙𝑠) and high-stress (𝑅𝑥ℎ𝑠) phases is
then calculated as follows:

𝑅𝑥𝑙𝑠(𝑖, 𝑡) = (𝑅𝑙𝑠(𝑖, 𝑡))𝛿 , 𝑅𝑥ℎ𝑠(𝑖, 𝑡) = (𝑅ℎ𝑠(𝑖, 𝑡))𝛿 (5)

With respect to the two FFs, we consider the system failed if both the
‘‘original’’ and the DMR FF are faulty (because then they produce the
same erroneous result). The reliability of the two flip-flops can then be
modeled with the well-known formula for k-out-of-n-systems for the 𝑙𝑠
(𝑅𝑘𝑛𝑙𝑠) and ℎ𝑠 (𝑅𝑘𝑛𝑙𝑠) phases as follows with 𝑛 = 2 and 𝑘 = 1:

𝑅𝑘𝑛𝑙𝑠(𝑖, 𝑡) =
𝑛
∑

𝑘

(

𝑛
𝑘

)

𝑅𝑙𝑠(𝑖, 𝑡)𝑘(1 − 𝑅𝑙𝑠(𝑖, 𝑡))𝑛−𝑘 (6)

𝑅𝑘𝑛ℎ𝑠(𝑖, 𝑡) =
𝑛
∑

𝑘

(

𝑛
𝑘

)

𝑅ℎ𝑠(𝑖, 𝑡)𝑘(1 − 𝑅ℎ𝑠(𝑖, 𝑡))𝑛−𝑘 (7)

The reliability of all FFs that implement vIII (𝑅𝑣3) can now be described
as a series system of the logic gates and of the reliability of all FFs in
the respective SIFR-ranges (𝛥𝑖):

𝐑𝐯𝟑(𝐣,𝐤, 𝐭) =
𝑘
∏

𝑖=𝑗
(𝑅𝑥𝑙𝑠(𝑖, 𝑡) ∗ 𝑅𝑘𝑛𝑙𝑠(𝑖, 𝑡))

𝛥𝑗 ∗

𝑘
∏

𝑖=𝑗
(𝑅𝑥ℎ𝑠(𝑖, 𝑡) ∗ 𝑅𝑘𝑛ℎ𝑠(𝑖, 𝑡))

𝛥𝑗

(8)

Finally, the reliability of all FFs that either are or are not implemented
in vIII can be calculated as follows:

𝐑𝐬𝐲𝐬(𝐣,𝐤, 𝐥, 𝐭) = 𝐑𝐯𝟎(𝐣,𝐤, 𝐭) ∗ 𝐑𝐯𝟑(𝐤, 𝐥, 𝐭) (9)

The results of our investigations in this regard can be seen in Fig. 8.
We set 𝛼 = 0.975, 𝛽 = 0.025, 𝜆 = 2.8 ∗ 10−6 and 𝜅 = 1.32 ∗ 10−3. We ran
the calculations twice to take into account the different natures of the
logic regarding fault susceptibility. First (left), we set 𝛿 = 0. This erases
Fig. 8. Reliability of the implementations for vIII with different 𝛤𝑖 for transient (left) and permanent (right) faults.

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
Fig. 9. ‘‘Turning point’’ for the reliability at ≈ 𝛿 = 1.

the influence of the logic altogether and therefore models the behavior
of the ResiliCells concerning SEUs only. Looking at the graph, it can
be seen that having only ResiliCells without vIII (all_v1) delivers the
lowest reliability. Including more cells increases the reliability (𝛤 =
1.0 − 𝛤 = 0.1), reaching its maximum if only those with 𝛤 = 0.0 are
excluded or if all ResiliCells are implemented with vIII (all_v3). The
last two cases are identical because of a SIFR factor of 𝛥 = 0 for 𝛤 = 0.

In the second run (right), we set 𝛿 = 1 because the overall area of
the XOR and the delay element roughly equal the area of the FF and
change the value of 𝜅 to the same value as 𝜆. This models the effects
of long-term static faults that affect the entire ResiliCell (logic and FFs)
at the same constant rate during both phases. It can be seen that the
reliability is now lower and (nearly) equal for all cases. This leads to the
conclusion that the negative impact of the additional logic equalizes the
gain in the reliability of the DMR implementation. Interestingly, 𝛿 = 1
roughly marks the turning point between the DMR systems improving
the reliability and the (unprotected) combinational logic worsening it.
This can be seen in Fig. 9. In the top graph, with 𝛿 = 0.5, adding
redundancy improves the reliability, while in the bottom graph with
𝛿 = 1.5, more ResiliCells with vIII only decrease it.

4. Conclusion and outlook

This paper presented an approach for implementing a highly config-
urable system that is able to dynamically adapt to internal or external
conditions as they are measured by relevant sensors. By inserting
the HFC and the ResiliCells, we enabled the system to run the four
cores either independently in high-performance mode, exclusively for
destressing/power reduction, or in different NMR subsystems for fault
tolerance without interrupting the service.

To further improve the approach, we presented several possible
designs for the ResiliCell that optimize hardware overhead or add
additional fault tolerance. We developed a system reliability model
based on a Markov chain and determined an optimum of 2 master
cores. On top of this, we introduced the SIFR, a unit of measure to
state the criticality of flip-flops under a given load. Based thereupon,
we investigated the impact of selectively hardening the ResiliCells on
hardware overhead and reliability. Unfortunately, we cannot provide
clear guidelines for design decisions in this case. The results strongly
depend on the selected fault model and other requirements, such as
7

hardware overhead or power consumption. Still, for our target areas in
avionics or space, where SEUs represent a dominant fault effect, it is
preferable to implement vIII for every ResiliCell with a SIFR > 0.

For future research, some interesting points can be addressed. First
of all, our approach is very hardware-centric. Adding a software per-
spective, especially for scheduling the tasks between the masters, will
deliver interesting results. Second, we have concentrated on the cores
and mostly ignored the peripherals or the board as sources of errors.
Widening the view will add to the overall reliability of the system.
Third, the models we developed and the variables we used as a basis
should be refined to reflect reality better. We have chosen them to the
best of our knowledge, but there are still things open for discussion.

CRediT authorship contribution statement

Markus Ulbricht: Conceptualization, Methodology, Writing – orig-
inal draft, Writing – review & editing, Visualization. Li Lu: Writ-
ing – original draft, Writing – review & editing, Investigation. Jun-
chao Chen: Writing – original draft, Writing – review & editing,
Investigation. Milos Krstic: Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgment

The project on which this report is based was funded by the Ger-
man Federal Ministry of Education under grant number 16ME0134.
The responsibility for the content of this publication lies with the
authors. During the preparation of this work, the authors used the
large language model GPT-3.5 in order to improve readability and
language. After using this tool/service, the authors reviewed and edited
the content as needed and take full responsibility for the content of the
publication.

References

[1] R. Glein, F. Rittner, A. Heuberger, Detection of solar particle events inside FPGAs,
in: 2016 16th European Conference on Radiation and Its Effects on Components
and Systems, RADECS, 2016, pp. 1–5, http://dx.doi.org/10.1109/RADECS.2016.
8093159.

[2] S. Safari, M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin, A. Yeganeh-
Khaksar, S. Hessabi, A. Ejlali, J. Henkel, A survey of fault-tolerance techniques
for embedded systems from the perspective of power, energy, and thermal issues,
IEEE Access 10 (2022) 12229–12251, http://dx.doi.org/10.1109/ACCESS.2022.
3144217, URL https://ieeexplore.ieee.org/document/9684471/.

[3] H. Mushtaq, Z. Al-Ars, K. Bertels, Survey of fault tolerance techniques for shared
memory multicore/multiprocessor systems, in: 2011 IEEE 6th International
Design and Test Workshop, IDT, 2011, pp. 12–17, http://dx.doi.org/10.1109/
IDT.2011.6123094, ISSN: 2162-061X.

[4] F. Kempf, T. Hartmann, S. Baehr, J. Becker, An adaptive lockstep architecture
for mixed-criticality systems, in: 2021 IEEE Computer Society Annual Symposium
on VLSI, ISVLSI, (ISSN: 2159-3477) 2021, pp. 7–12, http://dx.doi.org/10.1109/
ISVLSI51109.2021.00013.

[5] M. Rogenmoser, N. Wistoff, P. Vogel, F. Gürkaynak, L. Benini, On-Demand
Redundancy Grouping: Selectable Soft-Error Tolerance for a Multicore Cluster,
2022, http://dx.doi.org/10.48550/arXiv.2205.12580.

[6] PULP platform. URL https://pulp-platform.org/.
[7] A. Simevski, O. Schrape, C. Benito, M. Krstic, M. Andjelkovic, PISA: Power-

robust multiprocessor design for space applications, in: 2020 IEEE 26th
International Symposium on on-Line Testing and Robust System Design, IOLTS,
(ISSN: 1942-9401) 2020, pp. 1–6, http://dx.doi.org/10.1109/IOLTS50870.2020.
9159716.

http://dx.doi.org/10.1109/RADECS.2016.8093159
http://dx.doi.org/10.1109/RADECS.2016.8093159
http://dx.doi.org/10.1109/RADECS.2016.8093159
http://dx.doi.org/10.1109/ACCESS.2022.3144217
http://dx.doi.org/10.1109/ACCESS.2022.3144217
http://dx.doi.org/10.1109/ACCESS.2022.3144217
https://ieeexplore.ieee.org/document/9684471/
http://dx.doi.org/10.1109/IDT.2011.6123094
http://dx.doi.org/10.1109/IDT.2011.6123094
http://dx.doi.org/10.1109/IDT.2011.6123094
http://dx.doi.org/10.1109/ISVLSI51109.2021.00013
http://dx.doi.org/10.1109/ISVLSI51109.2021.00013
http://dx.doi.org/10.1109/ISVLSI51109.2021.00013
http://dx.doi.org/10.48550/arXiv.2205.12580
https://pulp-platform.org/
http://dx.doi.org/10.1109/IOLTS50870.2020.9159716
http://dx.doi.org/10.1109/IOLTS50870.2020.9159716
http://dx.doi.org/10.1109/IOLTS50870.2020.9159716

Microelectronics Reliability 148 (2023) 115173M. Ulbricht et al.
[8] M. Andjelkovic, J. Chen, A. Simevski, Z. Stamenkovic, M. Krstic, R. Kraemer, A
review of particle detectors for space-Borne self-adaptive fault-tolerant systems,
in: 2020 IEEE East-West Design & Test Symposium, EWDTS, (ISSN: 2472-761X)
2020, pp. 1–8, http://dx.doi.org/10.1109/EWDTS50664.2020.9225138.

[9] J. Chen, T. Lange, M. Andjelkovic, A. Simevski, L. Lu, M. Krstic, Solar particle
event and single event upset prediction from SRAM-based monitor and supervised
machine learning, IEEE Trans. Emerg. Top. Comput. 10 (2) (2022) 564–580, http:
//dx.doi.org/10.1109/TETC.2022.3147376, Conference Name: IEEE Transactions
on Emerging Topics in Computing.

[10] T. Stolte, S. Ackermann, R. Graubohm, I. Jatzkowski, B. Klamann, H. Winner,
M. Maurer, Taxonomy to unify fault tolerance regimes for automotive systems:
Defining fail-operational, fail-degraded, and fail-safe, IEEE Trans. Intell. Veh. 7
(2) (2022) 251–262, http://dx.doi.org/10.1109/TIV.2021.3129933, Conference
Name: IEEE Transactions on Intelligent Vehicles.

[11] N-modular redundancy, in: Reliability of Computer Systems and Networks, John
Wiley & Sons, Ltd, 2002, pp. 145–201, http://dx.doi.org/10.1002/047122460X.
ch4, arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/047122460X.ch4.

[12] J. Chen, A Self-Adaptive Resilient Method for Implementing and Managing
the High-Reliability Processing System, Universität Potsdam, 2023, http://
dx.doi.org/10.25932/publishup-58313, URL https://publishup.uni-potsdam.de/
frontdoor/index/index/docId/58313.

[13] A. Simevski, R. Kraemer, M. Krstic, Low-complexity integrated circuit aging
monitor, in: 14th IEEE International Symposium on Design and Diagnostics of
Electronic Circuits and Systems, 2011-04, pp. 121–125, http://dx.doi.org/10.
1109/DDECS.2011.5783060.

[14] O. Schrape, M. Andjelković, A. Breitenreiter, A. Balashov, M. Krstić, Design
concept for radiation-hardening of triple modular redundancy TSPC flip-flops,
in: 2020 23rd Euromicro Conference on Digital System Design, DSD, 2020, pp.
616–621, http://dx.doi.org/10.1109/DSD51259.2020.00101.
8

[15] J. Chen, M. Andjelkovic, A. Simevski, Y. Li, P. Skoncej, M. Krstic, Design of
SRAM-based low-cost SEU monitor for self-adaptive multiprocessing systems, in:
2019 22nd Euromicro Conference on Digital System Design, DSD, 2019, pp.
514–521, http://dx.doi.org/10.1109/DSD.2019.00080.

[16] E. Cheng, J. Abraham, P. Bose, A. Buyuktosunoglu, K. Campbell, D. Chen, C.-Y.
Cher, H. Cho, B. Le, K. Lilja, S. Mirkhani, K. Skadron, M. Stan, L. Szafaryn,
C. Vezyrtzis, S. Mitra, Cross-layer resilience in low-voltage digital systems: Key
insights, in: 2017 IEEE International Conference on Computer Design, ICCD,
2017, pp. 593–596, http://dx.doi.org/10.1109/ICCD.2017.103.

[17] Freescale Semiconductor Inc, Safety manual for MPC5744P, 2014, URL https://
www.nxp.com/files-static/microcontrollers/doc/ref_manual/MPC5744PSM.pdf.

[18] V. Knight, Timing Data for Algorithms for Calculating Steady State Distribu-
tions of Continuous Time Markov Chains, Zenodo, 2018-12-19, http://dx.doi.
org/10.5281/ZENODO.2429025, Type: dataset, URL https://zenodo.org/record/
2429025.

[19] D. Asciolla, L. Dilillo, D. Santos, D. Melo, A. Menicucci, M. Ottavi, Characteriza-
tion of a RISC-V microcontroller through fault injection, in: S. Saponara, A. De
Gloria (Eds.), Applications in Electronics Pervading Industry, Environment and
Society, in: Lecture Notes in Electrical Engineering, Springer International Pub-
lishing, Cham, 2020, pp. 91–101, http://dx.doi.org/10.1007/978-3-030-37277-
4_11.

[20] P. Adelt, B. Koppelmann, W. Mueller, C. Scheytt, Register and instruction
coverage analysis for different RISC-v ISA modules, in: MBMV 2021; 24th
Workshop, 2021, pp. 1–8.

[21] Incisive Functional Safety Simulator, URL https://www.cadence.com/ko_
KR/home/tools/system-design-and-verification/simulation-and-testbench-
verification/incisive-functional-safety-simulator.html.

http://dx.doi.org/10.1109/EWDTS50664.2020.9225138
http://dx.doi.org/10.1109/TETC.2022.3147376
http://dx.doi.org/10.1109/TETC.2022.3147376
http://dx.doi.org/10.1109/TETC.2022.3147376
http://dx.doi.org/10.1109/TIV.2021.3129933
http://dx.doi.org/10.1002/047122460X.ch4
http://dx.doi.org/10.1002/047122460X.ch4
http://dx.doi.org/10.1002/047122460X.ch4
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/047122460X.ch4
http://dx.doi.org/10.25932/publishup-58313
http://dx.doi.org/10.25932/publishup-58313
http://dx.doi.org/10.25932/publishup-58313
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/58313
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/58313
https://publishup.uni-potsdam.de/frontdoor/index/index/docId/58313
http://dx.doi.org/10.1109/DDECS.2011.5783060
http://dx.doi.org/10.1109/DDECS.2011.5783060
http://dx.doi.org/10.1109/DDECS.2011.5783060
http://dx.doi.org/10.1109/DSD51259.2020.00101
http://dx.doi.org/10.1109/DSD.2019.00080
http://dx.doi.org/10.1109/ICCD.2017.103
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/MPC5744PSM.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/MPC5744PSM.pdf
https://www.nxp.com/files-static/microcontrollers/doc/ref_manual/MPC5744PSM.pdf
http://dx.doi.org/10.5281/ZENODO.2429025
http://dx.doi.org/10.5281/ZENODO.2429025
http://dx.doi.org/10.5281/ZENODO.2429025
https://zenodo.org/record/2429025
https://zenodo.org/record/2429025
https://zenodo.org/record/2429025
http://dx.doi.org/10.1007/978-3-030-37277-4_11
http://dx.doi.org/10.1007/978-3-030-37277-4_11
http://dx.doi.org/10.1007/978-3-030-37277-4_11
http://refhub.elsevier.com/S0026-2714(23)00273-1/sb20
http://refhub.elsevier.com/S0026-2714(23)00273-1/sb20
http://refhub.elsevier.com/S0026-2714(23)00273-1/sb20
http://refhub.elsevier.com/S0026-2714(23)00273-1/sb20
http://refhub.elsevier.com/S0026-2714(23)00273-1/sb20
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-functional-safety-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-functional-safety-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-functional-safety-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-functional-safety-simulator.html
https://www.cadence.com/ko_KR/home/tools/system-design-and-verification/simulation-and-testbench-verification/incisive-functional-safety-simulator.html

	The TETRISC SoC—A resilient quad-core system based on the ResiliCell approach
	Introduction
	The TETRISC SoC
	PULPissimo as Multicore
	Reliability-Sensors and Configurability
	HiRel Framework Controller
	The ResiliCell Approach
	Hardening peripherals

	Improvements to the ResiliCell approach
	Different versions of the ResiliCells
	Optimizing the number of Masters
	Identification of critical FFs
	Optimizing the number of ResiliCells with variant vIII

	Conclusion and Outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgment
	References

